Analysis of the Effectiveness of Multifrequency OFDM Systems with a Constant Envelope in a Hydroacoustic Simulator and During In Situ Tests
Abstract
1. Introduction
2. Materials and Methods
2.1. Short Synchronizing Binary Sequences with the Best Autocorrelation Properties
2.2. Multifrequency Signals with Constant Envelope CE-OFDM
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuh, J.; Ura, T.; Bekey, G.A. (Eds.) Underwater Robots; Springer Science & Business Media: New York, NY, USA, 2012; p. 251. [Google Scholar]
- Preisig, J. Acoustic propagation considerations for underwater acoustic communications network development. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2007, 19, 2–10. [Google Scholar] [CrossRef]
- Lü, B.; Darmon, M.; Potel, C. Stochastic simulation of the high-frequency wave propagation in a random medium. J. Appl. Phys. 2012, 112, 054902. [Google Scholar] [CrossRef]
- Chitre, M.; Ong, S.H.; Potter, J. Performance of Coded OFDM in Very Shallow Water Channels and Snapping Shrimp Noise. In Proceedings of the OCEANS 2005 MTS/IEEE, Washington, DC, USA, 17–23 September 2005; pp. 996–1001. [Google Scholar]
- Scherbatyuk, A.P.; Dubrovin, F.S. Some algorithms of AUV positioning based on one moving beacon. IFAC Proc. Vol. 2012, 45, 1–6. [Google Scholar] [CrossRef]
- Sergeenko, N.; Scherbatyuk, A.; Dubrovin, F. Some Algorithms of Cooperative AUV Navigation with Mobile Surface Beacon. In Proceedings of the 2013 OCEANS-San Diego, San Diego, CA, USA, 23–27 September 2013; pp. 1–6. [Google Scholar]
- Dubrovin, F.; Scherbatyuk, A. Development of Algorithms for an Autonomous Underwater Vehicle Navigation with a Single Mobile Beacon: The results of Simulations and Marine Trials. In Proceedings of the 22nd Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2015-Proceedings, Saint Petersburg, Russia, 25–27 May 2015; pp. 164–171. [Google Scholar]
- Dubrovin, F.S.; Scherbatyuk, A.P. About Accuracy Estimation of AUV Single-Beacon Mobile Navigation using ASV, Equipped with DGPS. In Proceedings of the OCEANS 2016-Shanghai IEEE, Shanghai, China, 10–13 April 2016; pp. 1–4. [Google Scholar]
- Kebkal, K.G.; Kebkal, A.G.; Yakovlev, S.G. A frequency-modulated-carrier digital communication technique for multipath underwater acoustic channels. Acoust. Phys. 2004, 50, 177–184. [Google Scholar] [CrossRef]
- Lu, B.; Darmon, M.; Potel, C.; Zernov, V. Models Comparison for the scattering of an acoustic wave on immersed targets. J. Phys. Conf. Ser. 2012, 353, 012009. [Google Scholar] [CrossRef]
- Kebkal, K.G.; Mashoshin, A.I. AUV acoustic positioning methods. Gyroscopy Navig. 2017, 8, 80–89. [Google Scholar] [CrossRef]
- Proakis, J.G.; Stojanovic, M.; Catipovic, J. Adaptive Equalization Algorithms for High Rate Underwater Acoustic Communications. In Proceedings of the IEEE Symposium on Autonomous Underwater Vehicle Technology (AUV′94), Cambridge, MA, USA, 19–20 July 1994; pp. 157–164. [Google Scholar]
- Petrov, P.S.; Golov, A.A.; Bezotvetnykh, V.V.; Burenin, A.V.; Kozitskiy, S.B.; Sorokin, M.A.; Morgunov, Y.N. Experimental and theoretical study on arrival times and effective velocities in the case of long-range propagation of acoustical pulses along the shelf edge in a shallow sea. Acoust. Phys. 2020, 66, 21–32. [Google Scholar] [CrossRef]
- Morgunov, Y.N.; Bezotvetnykh, V.V.; Golov, A.A.; Burenin, A.V.; Lebedev, M.S.; Petrov, P.S. Experimental study of the impulse response function variability of underwater sound channel in the Sea of Japan using pseudorandom sequences and its application to long-range acoustic navigation. Acoust. Phys. 2021, 67, 287–292. [Google Scholar] [CrossRef]
- Morgunov, Y.N.; Golov, A.A.; Kamenev, S.I.; Matvienko, Y.V. Means and methods for hydrological–acoustic support of high-precision long-range positioning of underwater objects. Acoust. Phys. 2019, 65, 711–715. [Google Scholar] [CrossRef]
- Morgunov, Y.N.; Burenin, A.V.; Besotvetnykh, V.V.; Golov, A.A. Propagation of pulse pseudorandom signals from a shelf into shallow water in winter hydrological conditions of the Sea of Japan. Acoust. Phys. 2017, 63, 681–685. [Google Scholar] [CrossRef]
- Morgunov, Y.N.; Bezotvetnykh, V.V.; Burenin, A.V.; Voitenko, E.A. Study of how hydrological conditions affect the propagation of pseudorandom signals from the shelf in deep water. Acoust. Phys. 2016, 62, 350–356. [Google Scholar] [CrossRef]
- Rodionov, A.Y.; Unru, P.P.; Kirianov, A.V.; Dubrovin, F.S.; Kulik, S.Y. Some Algorithms for DSSS Signal Processing with Time-Shift Keying for Long-Distance Underwater Communication. In Proceedings of the 2017 IEEE Underwater Technology (UT), Busan, Republic of Korea, 21–24 February 2017; p. 7890287. [Google Scholar]
- Chusov, A.A.; Kovylin, A.A.; Statsenko, L.G.; Mirgorodskaya, Y.V. Parallel search for signals with specified cross-and autocorrelation properties on multiprocessor platforms. Radioelectron. Commun. Syst. 2011, 54, 425–431. [Google Scholar] [CrossRef]
- Van Walree, P.; Sangfelt, E.; Leus, G. Multicarrier spread spectrum for covert acoustic communications. In Proceedings of the MTS/IEEE OCEANS, Quebec City, QC, Canada, 8–11 April 2008; pp. 1–8. [Google Scholar]
- Zhou, S.; Wang, Z. OFDM for Underwater Acoustic Communications; John Wiley & Sons: New York, NY, USA, 2014; p. 416. [Google Scholar]
- Rodionov, A.Y.; Statsenko, L.G.; Kuzin, D.A.; Smirnova, M.M. Application of incoherent multi-frequency signals for information transmission in a nonstationary hydroacoustic environment. Acoust. Phys. 2023, 69, 738–747. [Google Scholar] [CrossRef]
- Berger, C.R.; Huang, J.; Moura, J.M. Study of pilot overhead for iterative OFDM receivers on time-varying and sparse underwater acoustic channels. In Proceedings of the OCEANS′11 MTS/IEEE KONA, Waikoloa, HI, USA, 19–22 September 2011; pp. 1–8. [Google Scholar]
- Chitre, M.; Shahabudeen, S.; Stojanovic, M. Underwater acoustic communications and networking: Recent advances and future challenges. Mar. Technol. Soc. J. 2008, 42, 103–116. [Google Scholar] [CrossRef]
- Weichman, P.B. Doppler effects in heterogeneous media with applications to ocean acoustic modeling. Nonlinear Soft Matter Phys. 2005, 72, 066602. [Google Scholar] [CrossRef] [PubMed]
- Sklar, B. Digital Communications: Fundamentals and Applications; Pearson Education: London, UK, 2021; p. 1136. ISBN 9780134588667/0134588665. [Google Scholar]
- Rodionov, A.Y.; Unru, P.P.; Statsenko, L.G.; Kir’yanov, A.V.; Chusov, A.A.; Scherbatyuk, A.F. Development of the Preamble-based FM-OFDM Underwater Acoustic Communication System Using High-Performance Computing. In Proceedings of the 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, Tunisia, 19–21 December 2016; pp. 697–704. [Google Scholar]
- Rodionov, A.; Statsenko, L.; Unru, P.; Morgunov, Y.; Golov, A.; Voitenko, E.; Kiryanov, A. Experimental estimation of the constant envelope fm-ofdm method usage in underwater acoustic communication systems. Appl. Sci. 2018, 8, 402. [Google Scholar] [CrossRef]
- Van Walree, P.A.; Jenserud, T.; Smedsrud, M. A discrete-time channel simulator driven by measured scattering functions. IEEE J. Sel. Areas Commun. 2008, 26, 1628–1637. [Google Scholar] [CrossRef]
- van Walree, P.; Otnes, R.; Jenserud, T. Watermark: A Realistic Benchmark for Underwater Acoustic Modems. In Proceedings of the 2016 IEEE Third Underwater Communications and Networking Conference (UComms), Lerici, Italy, 30 August–1 September 2016; pp. 1–4. [Google Scholar]
M, Bits | Level of Sidelobes of ACF, Bits | K | M, Bits | Level of Sidelobes of ACF, Bits | K | M, Bits | Level of Sidelobes of ACF, Bits | K |
---|---|---|---|---|---|---|---|---|
14 | 2 | 72 | 28 | 2 | 16 | 42 | 3 | 32 |
15 | 2 | 104 | 29 | 3 | 2244 | 43 | 3 | 96 |
16 | 2 | 80 | 30 | 3 | 688 | 44 | 3 | 120 |
17 | 2 | 32 | 31 | 3 | 2008 | 45 | 3 | 32 |
18 | 2 | 16 | 32 | 3 | 3376 | 46 | 3 | 8 |
19 | 2 | 8 | 33 | 3 | 1132 | 47 | 3 | 8 |
20 | 2 | 24 | 34 | 3 | 408 | 48 | 3 | 32 |
21 | 2 | 24 | 35 | 3 | 888 | 49 | 4 | 392,704 |
22 | 3 | 3024 | 36 | 3 | 1288 | 50 | 4 | 201,352 |
23 | 3 | 4084 | 37 | 3 | 440 | 51 | 3 | 8 |
24 | 3 | 6864 | 38 | 3 | 136 | 52 | 4 | 264,464 |
25 | 2 | 8 | 39 | 3 | 240 | 53 | 4 | - |
26 | 3 | 1936 | 40 | 3 | 456 | 54 | 4 | - |
27 | 3 | 3096 | 41 | 3 | 120 | 55 | 4 | - |
Name | NCS1 |
---|---|
Location | Shoal |
Time of year | June |
Range | 540 м |
Depth | 80 м |
Transmitter location | Bottom |
Receiver location | Bottom |
Signal type | DSSS (broadband) |
Bandwidth | 10–18 kHz |
Delay | 32 ms |
Type | SISO (one transmitter and one receiver) |
Number of hydrophones | 1 |
Distance, m | BER CE-OFDM |
---|---|
400 m, 2-point wave disturbance | 1 × 10−4 |
400 m, relative motion 1 m/s | 2 × 10−4 |
1000 m, 2-point wave disturbance | 3 × 10−3 |
1000 m, relative motion 1 m/s | 5 × 10−3 |
2000 m, 3-point wave disturbance | 1.5 × 10−2 |
2000 m, relative motion 1 m/s | 5 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodionov, A.Y.; Statsenko, L.G.; Chusov, A.A.; Kuzin, D.A.; Smirnova, M.M. Analysis of the Effectiveness of Multifrequency OFDM Systems with a Constant Envelope in a Hydroacoustic Simulator and During In Situ Tests. Acoustics 2024, 6, 1140-1153. https://doi.org/10.3390/acoustics6040062
Rodionov AY, Statsenko LG, Chusov AA, Kuzin DA, Smirnova MM. Analysis of the Effectiveness of Multifrequency OFDM Systems with a Constant Envelope in a Hydroacoustic Simulator and During In Situ Tests. Acoustics. 2024; 6(4):1140-1153. https://doi.org/10.3390/acoustics6040062
Chicago/Turabian StyleRodionov, A. Yu., L. G. Statsenko, A. A. Chusov, D. A. Kuzin, and M. M. Smirnova. 2024. "Analysis of the Effectiveness of Multifrequency OFDM Systems with a Constant Envelope in a Hydroacoustic Simulator and During In Situ Tests" Acoustics 6, no. 4: 1140-1153. https://doi.org/10.3390/acoustics6040062
APA StyleRodionov, A. Y., Statsenko, L. G., Chusov, A. A., Kuzin, D. A., & Smirnova, M. M. (2024). Analysis of the Effectiveness of Multifrequency OFDM Systems with a Constant Envelope in a Hydroacoustic Simulator and During In Situ Tests. Acoustics, 6(4), 1140-1153. https://doi.org/10.3390/acoustics6040062