Music Listening as Kangaroo Mother Care: From Skin-to-Skin Contact to Being Touched by the Music
Abstract
:1. Introduction
1.1. Music Has Penetrating Power
1.2. Celebrating the Sense of Touch
1.3. Kangaroo Mother Care Therapy
2. Coping with the Sounds
2.1. Management of Arousal and Seeking Reward
2.2. Adaptive Coping and Homeostatic Regulation
2.3. Immersion, Absorption, and Peak Experiences in Music
3. Musical Enjoyment, Pleasure, and Reward
3.1. Aesthetic Responses, Hedonic Pleasure, and Eudaimonic Enjoyment
3.2. Being Moved by the Music: Chills and Thrills
4. Musical Interaction and the Second-Person Perspective
5. Conclusions and Perspectives
Funding
Data Availability Statement
Conflicts of Interest
References
- Finnegan, R. Tactile communication. In The Book of Touch; Classen, C., Ed.; Routledge: London, UK; New York, NY, USA, 2020; pp. 18–25. [Google Scholar]
- Volcler, J. Extremely Loud: Sound as a Weapon; The New Press: New York, NY, USA; London, UK, 2013. [Google Scholar]
- Cusick, S. Music as Torture/Music as Weapon. Transcult. Music. Rev. 2006, 10, 1–9. [Google Scholar]
- Reybrouck, M.; Podlipniak, P.; Welch, D. Music and Noise: Same or Different? What Our Body Tells Us. Front. Psychol. 2019, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Çakır, O.; İlal, M.E. An Investigation of User Attitudes towards Public Spaces without Background Music. In Proceedings of the Book: Architecture Technology—ICONARCh—International Congress of Architecture, Konya, Turkey, 15–17 November 2012; Selçuklu Municipality of Konya: Konya, Turkey, 2012; pp. 235–243. [Google Scholar]
- Huang, J.; Gamble, D.; Sarnlertsophon, K.; Wang, X.; Hsiao, S. Feeling music: Integration of auditory and tactile inputs in musical meter perception. PLoS ONE 2012, 7, e48496. [Google Scholar] [CrossRef] [PubMed]
- Todd, N.P. Vestibular feedback in musical performance: Response to “somatosensory feedback in musical performance”. Music Percept. 1993, 10, 379–382. [Google Scholar] [CrossRef]
- Todd, N. Evidence for a behavioral significance of saccular acoustic sensitivity in humans. J. Acoust. Soc. Am. 2001, 110, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Todd, N.; Cody, F. Vestibular responses to loud dance music: A physiological basis of the “rock and roll threshold”? J. Acoust. Soc. Am. 2000, 107, 496–500. [Google Scholar] [CrossRef]
- Piéron, H. The Sensations. Their Functions, Processes and Mechanisms; Pirenne, T.M., Miller, B.G., Eds.; Frederick Muller: London, UK, 1956. [Google Scholar]
- Sherrington, C. The Integrative Action of the Nervous System; Cambridge University Press: Cambridge, UK, 1948. [Google Scholar]
- Hayward, V. A Brief Overview of the Human Somatosensory System. In Musical Haptics; Papetti, S., Saitis, C., Eds.; Springer Open: Cham, Switzerland, 2018; pp. 29–48. [Google Scholar]
- Reybrouck, M. From Sound to Image and Back. Audiovisual Aesthetics between Sensory Processing and Multisensory Design. Est. Stud Rich. 2023, 12, 267–290. [Google Scholar]
- Imhof, J. Feeling the Music. A Neurological, Biological, and Linguistic Basis for an Embodied Explanation of What Happens When We Experience Music; ISME: Upper Montclair, NJ, USA, 2002. [Google Scholar]
- Eidsheim, N. Sensing Sound. Singing & Listening as Vibrational Practice; Duke University Press: Durham, UK; London, UK, 2015. [Google Scholar]
- Abbate, C. Music—Drastic or Gnostic? Crit. Inq. 2004, 30, 505–536. [Google Scholar] [CrossRef]
- Reybrouck, M. Musical sense-making between experience and conceptualisation: The legacy of Peirce, Dewey and James. Interdiscip. Stud. Musicol. 2014, 14, 176–205. [Google Scholar]
- Reybrouck, M. Perceptual immediacy in music listening: Multimodality and the “in time/outside of time” dichotomy. Versus 2017, 124, 89–104. [Google Scholar]
- Reybrouck, M.; Eerola, T. Music and its inductive power: A psychobiological and evolutionary approach to musical emotions. Front. Psychol. 2017, 8, 494. [Google Scholar] [CrossRef] [PubMed]
- Jankélévitch, V. Music and the Ineffable; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Classen, C. (Ed.) The Book of Touch; Routledge: London, UK; New York, NY, USA, 2020. [Google Scholar]
- Gowing, L. Common Bodies: Women, Touch and Power in Seventeenth-Century England; Yale University Press: New Haven, CT, USA, 2003. [Google Scholar]
- Harvey, E. (Ed.) Sensible Flesh: On Touch in Early Modern Culture; University of Pennsylvania Press: Philadelphia, PA, USA, 2002. [Google Scholar]
- Sedgwick, E.K. Touching Feeling: Affect, Pedagogy, Performativity; Duke University Press: Durham, NC, USA, 2003. [Google Scholar]
- Deleuze, G.; Guattari, F. A Thousand Plateaus: Capitalism and Schizophrenia; University of Minnesota Press: Minneapolis, MN, USA, 1987. [Google Scholar]
- Derrida, J. Le Toucher, Jean-Luc Nancy; Galilee: Paris, France, 2000. [Google Scholar]
- Montagu, A. Touching; Harper Colophon Books: New York, NY, USA, 1978. [Google Scholar]
- Montagu, A. The Skin, Touch, and Human Development in Nonverbal Communication. Weitz, S., Ed.; Oxford University Press: New York, NY, USA, 1979. [Google Scholar]
- Papetti, S.; Saitis, C. (Eds.) Musical Haptics; Springer Open: Cham, Switzerland, 2018. [Google Scholar]
- Young, G.; Murphy, D.; Weeter, J. A Functional Analysis of Haptic Feedback in Digital Musical Instrument Interactions. In Musical Haptics; Papetti, S., Saitis, C., Eds.; Springer Open: Cham, Switzerland, 2018; pp. 95–122. [Google Scholar]
- Young, G.; Murphy, D.; Weeter, J. Haptics in Music: The Effects of Vibrotactile Stimulus in Low Frequency Auditory Difference Detection Tasks. IEEE Trans. Haptics 2017, 10, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Fontana, F.; Papetti, S.; Järveläinen, H.; Avanzini, F.; Giordano, B. Perception of Vibrotactile Cues in Musical Performance. In Musical Haptics; Papetti, S., Saitis, C., Eds.; Springer Open: Cham, Switzerland, 2018; pp. 49–72. [Google Scholar]
- Giordano, M.; Sullivan, J.; Wanderley, M. Design of Vibrotactile Feedback and Stimulation for Music Performance. In Musical Haptics; Papetti, S., Saitis, C., Eds.; Springer Open: Cham, Switzerland, 2018; pp. 193–214. [Google Scholar]
- Merchel, S.; Altinsoy, E. Auditory-Tactile Experience of Music. In Musical Haptics; Papetti, S., Saitis, C., Eds.; Springer Open: Cham, Switzerland, 2018; pp. 123–148. [Google Scholar]
- Saitis, C.; Järveläinen, H.; Fritz, C. The Role of Haptic Cues in Musical Instrument Quality Perception. In Musical Haptics; Papetti, S., Saitis, C., Eds.; Springer Open: Cham, Switzerland, 2018; pp. 74–93. [Google Scholar]
- Sulmaz, D. Haptic Feedback Technology in the Music Industry: Enhancing the Digital Experience. Available online: https://denizsulmaz.medium.com/haptic-feedback-technology-in-the-music-industry-enhancing-the-digital-experience-400c97c46bb6 (accessed on 21 November 2023).
- Classen, C. Contact. In The Book of Touch; Classen, C., Ed.; Routledge: London, UK; New York, NY, USA, 2020; pp. 13–15. [Google Scholar]
- Synnott, A. Handling Children. To Touch or Not to Touch. In The Book of Touch; Classen, C., Ed.; Routledge: London, UK; New York, NY, USA, 2020; pp. 41–47. [Google Scholar]
- Ludington-Hoe, S. Thirty Years of Kangoroo Care Science and Practice. Neonatal Netw. 2011, 30, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Dombrowski, M.; Anderson, G.; Santori, C.; Roller, C.; Pagliotti, F.; Dowling, D. Kangaroo skin-to-skin care for premature twins and their adolescent parents. MCN Am. J. Matern. Child Nurs. 2000, 25, 92–94. [Google Scholar] [CrossRef] [PubMed]
- Browne, J. Early relationship environments: Physiology of skin-to-skin contact for parents and their preterm infants. Clin. Perinatol. 2004, 31, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M. Hidden regulators: Implication for a new understanding of attachment, separation, and loss. In Attachment Theory: Social, Developmental, and Clinical Perspectives; Golberg, S., Muir, R., Kerr, J., Eds.; Analytic Press: Hillsdale, NJ, USA, 1995; pp. 203–230. [Google Scholar]
- Depue, R.; Morrone-Strupinsky, J. A neurobehavioral model of affiliative bonding: Implications for conceptualizing a human trait of affiliation. Behav. Brain Sci. 2005, 28, 313–395. [Google Scholar] [CrossRef]
- Eisenberger, N.; Lieberman, M.; Williams, K. Does rejection hurt? An fMRI study of social exclusion. Science 2003, 302, 290–292. [Google Scholar] [CrossRef]
- Di Chiara, G.; North, R.A. Neurobiology of opiate abuse. Trends Physiol. Sci. 1992, 13, 185–193. [Google Scholar] [CrossRef]
- Anderson, G.; Moos, E.; Hepworthy, J.; Bergman, N. Early skin-to-skin contact for mothers and their healthy newborn infants. Birth 2003, 30, 206–207. [Google Scholar] [CrossRef]
- Ferber, S.; Makhoul, I. The effect of skin-to-skin contact (Kangaroo Care) shortly after birth on the neurobehavioral responses of the term newborn: A randomized, controlled trial. Pediatrics 2004, 113, 858–865. [Google Scholar] [CrossRef]
- Feldman, R.; Eidelman, A. Skin-to-skin contact (Kangaroo Care) accelerates autonomic and neurobehavioural maturation in preterm infants. Dev. Med. Child Neurol. 2003, 45, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Ludington-Hoe, S. Kangaroo care is developmental care. In Developmental Care of Newborns and Infants; Kenner, C., McGrath, J., Eds.; Mosby and National Association of Neonatal Nurses: St. Louis, MO, USA, 2010; pp. 245–288. [Google Scholar]
- Ludington-Hoe, S. Evidence-based review of physiologic effects of Kangaroo Care. Curr. Women’s Health Rev. 2011, 7, 243–253. [Google Scholar] [CrossRef]
- Cong, X.; Ludington-Hoe, S.; Hussain, N.; Cussona, R.; Walsh, S.; Vazquez, V.; Briere, C.-E.; Vittner, D. Parental oxytocin responses during skin-to-skin contact in pre-term infants. Early Hum. Dev. 2015, 91, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Olausson, H.; Wessberg, J.; Morrison, I.; McGlone, F.; Vallbo, A. The neurophysiology of unmyelinated tactile afferents. Neurosci. Biobehav. Rev. 2010, 34, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Uvnas-Moberg, K.; Arn, I.; Magnusson, D. The psychobiology of emotion: The role of the oxytocinergic system. Int. J. Behav. Med. 2005, 12, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Ross, H.; Young, L. Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front. Neuroendocrinol. 2009, 30, 534–547. [Google Scholar] [CrossRef] [PubMed]
- Gordon, I.; Zagoory-Sharon, O.; Leckman, J.F.; Feldman, R. Oxytocin and the development of parenting in humans. Biol. Psychiatry 2010, 68, 377–382. [Google Scholar] [CrossRef]
- Uvnas-Moberg, K. The Oxytocin Factor: Tapping the Hormone of Calm, Love, and Healing; Da Capo Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Maestripieri, D.; Hoffman, C.L.; Anderson, G.M.; Carter, C.S.; Higley, J.D. Mother–infant interactions in free-ranging rhesus macaques: Relationships between physiological and behavioral variables. Physiol. Behav. 2009, 96, 613–619. [Google Scholar] [CrossRef]
- Teckenberg-Jansson, P.; Huotilainen, M.; Pölkki, T.; Lipsanen, J.; Järvenpää, A.-L. Rapid effects of neonatal music therapy combined with kangaroo care on prematurely-born infants. Nord. J. Music Ther. 2011, 20, 22–42. [Google Scholar] [CrossRef]
- Arnon, S.; Diamant, C.; Bauer, S.; Regev, R.; Sirota, G.; Litmanovitz, I. Maternal singing during kangaroo care led to autonomic stability in preterm infants and reduced maternal anxiety. Acta Paediatr. 2014, 103, 1039–1044. [Google Scholar] [CrossRef]
- Lai, H.-L.; Chen, C.-J.; Peng, T.-C.; Chang, F.-M.; Hsieh, M.-L.; Huang, H.-Y.; Chang, S.-C. Randomized controlled trial of music during kangaroo care on maternal state anxiety and preterm infants’ responses. Int. J. Nurs. Stud. 2006, 43, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Schlez, A.; Litmanovitz, I.; Bauer, S.; Dolfin, T.; Regev, R.; Arnon, S. Combining kangaroo care and live harp music therapy in the neonatal intensive care unit setting. Isr. Med. Assoc. J. 2011, 13, 354–358. [Google Scholar] [PubMed]
- DeCasper, A.; Fifer, W. Of human bonding: Newborns prefer their mothers’ voices. Science 1980, 208, 1174–1176. [Google Scholar] [CrossRef] [PubMed]
- Fifer, W.; Moon, C. The role of mother’s voice in the organization of brain function in the newborn. Acta Paediatr. 1994, 83, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Chorna, O.; Slaughter, J.; Wand, L.; Stark, A.R.; Nathalie, L. A pacifier-activated music player with mother’s voice improves oral feeding in preterm infants. Pediatrics 2014, 133, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Krueger, C.; Parker, L.; Chiu, S.; Theriaque, D. Maternal voice and short-term outcomes in preterm infants. Dev. Psychobiol. 2010, 52, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Picciolini, O.; Porro, M.; Meazza, A.; Giannì, M.L.; Rivoli, C.; Lucco, G.; Barretta, F.; Bonzini, M.; Mosca, F. Early exposure to maternal voice: Effects on preterm infants’ development. Early Hum. Dev. 2014, 90, 287–292. [Google Scholar] [CrossRef]
- Rand, K.; Lahav, A. Maternal sounds elicit lower heart rate in preterm newborns in the first month of life. Early Hum. Dev. 2014, 90, 679–683. [Google Scholar] [CrossRef]
- Doheny, L.; Hurwitz, S.; Insoft, R.; Ringer, S.; Lahav, A. Exposure to biological maternal sounds improves cardiorespiratory regulation in extremely preterm infants. J. Matern. Fetal Neonatal Med. 2012, 25, 1591–1594. [Google Scholar] [CrossRef]
- Smith, N.; Trainor, L. Infant-directed speech is modulated by infant feedback. Infancy 2008, 13, 410–420. [Google Scholar] [CrossRef]
- Trainor, L. Infant preferences for infant-directed versus non-infant directed playsongs and lullabies. Infant Behav. Dev. 1996, 19, 83–92. [Google Scholar] [CrossRef]
- Fancourt, D.; Perkins, R. The effects of mother–infant singing on emotional closeness, affect, anxiety, and stress hormones. Music Sci. 2018, 1, 1–10. [Google Scholar] [CrossRef]
- Lense, M.; Shultz, S.; Astésano, C.; Jones, W. Music of infant-directed singing entrains infants’ social visual behavior. Proc. Natl. Acad. Sci. USA 2022, 119, e2116967119. [Google Scholar] [CrossRef] [PubMed]
- Trehub, S.; Trainor, L. Singing to infants: Lullabies and playsongs. In Advances in Infancy Research; Rovee-Collier, C., Lipsitt, L., Hayne, H., Eds.; Ablex: Norwood, Australia, 1998; pp. 43–77. [Google Scholar]
- Trevarthen, C. Origins of musical identity: Evidence from infancy for musical social awareness. In Musical identities; MacDonald, R., Hargreaves, D., Miell, D., Eds.; Oxford University Press: Oxford, UK, 2002; pp. 21–38. [Google Scholar]
- Cirelli, L.; Trehub, S. Familiar songs reduce infant distress. Dev. Psychol. 2020, 56, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Trehub, S.; Ghazban, N.; Corbeil, M. Musical affect regulation in infancy. Ann. N. Y. Acad. Sci. 2015, 1337, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Clayton, M.; Sager, R.; Wil, U. In time with the music: The concept of entrainment and its significance for Ethnomusicol. Eur. Meet. Ethnomusicol. 2005, 11, 1–82. [Google Scholar]
- Reybrouck, M. A Dynamic Interactive Approach to Music Listening: The Role of Entrainment, Attunement and Resonance. Multimodal Technol. Interact. 2023, 7, 66. [Google Scholar] [CrossRef]
- Chauvigné, L.; Walton, A.; Richardson, M.; Brown, S. Multi-person and multisensory synchronization during group T dancing. Hum. Mov. Sci. 2019, 63, 199–208. [Google Scholar] [CrossRef]
- Brown, S. The Unification of the Arts. A Framework for Understanding What the Arts Share and Why; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- Reybrouck, M.; Podlipniak, P.; Welch, D. Music Listening and Homeostatic Regulation: Surviving and Flourishing in a Sonic World. Int. J. Environ. Res. Public Health 2022, 19, 278. [Google Scholar] [CrossRef]
- Petitot, J.; Varela, F.; Pachoud, B.; Roy, J.M. (Eds.) Naturalizing Phenomenology: Issues in Contemporary Phenomenology and Cognitive Science; Stanford University Press: Stanford, CA, USA, 1999. [Google Scholar]
- Brown, S.; Gao, X.; Tisdelle, L.; Eickhoff, S.; Liotti, M. Naturalizing aesthetics: Brain areas for aesthetic appraisal across sensory modalities. NeuroImage 2011, 58, 250–258. [Google Scholar] [CrossRef]
- Reybrouck, M. Music as Environment: An Ecological and Biosemiotic Approach. Behav. Sci. 2015, 5, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Welch, D.; Reybrouck, M.; Podlipniak, P. Meaning in Music Is Intentional, but in Soundscape It Is Not—A Naturalistic Approach to the Qualia of Sounds. Int. J. Environ. Res. Public Health 2023, 20, 269. [Google Scholar] [CrossRef] [PubMed]
- Alberti, P. The anatomy and physiology of the ear and hearing. In Occupational Exposure to Noise: Evaluation, Prevention, and Control; Goelzer, B., Hansen, C., Sehrdt, G., Eds.; World Health Organization: Geneva, Switzerland, 2001; pp. 53–62. [Google Scholar]
- Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.; Stansfeld, S. Auditory and non-auditory effects of noise on health. Lancet 2014, 383, 1325–1332. [Google Scholar] [CrossRef] [PubMed]
- Kujawa, S.; Liberman, C. Adding Insult to Injury: Cochlear Nerve Degeneration after “Temporary” Noise-Induced Hearing Loss. J. Neurosci. 2009, 29, 14077–14085. [Google Scholar] [CrossRef] [PubMed]
- Maschke, C.; Rupp, T.; Hecht, T. The influence of stressors on biochemical reactions—A review of present scientific findings with noise. Int. J. Hyg. Environ. Health 2000, 203, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Mercier, V.; Hohmann, B.W. Is electronically amplified music too loud? What do young people think? Noise Health 2002, 4, 47–55. [Google Scholar]
- Williams, W.; Beach, E.; Gilliver, M. Clubbing: The cumulative effect of noise exposure from attendance at dance clubs and night clubs on whole-of-life noise exposure. Noise Health 2010, 12, 155–158. [Google Scholar] [CrossRef]
- Gould van Praag, C.; Garfinkel, S.; Sparasci, O.; Mees, A.; Philippides, A.; Ware, M.; Ottaviani, C.; Critchley, H. Mind-wandering and alterations to default mode network connectivity when listening to naturalistic versus artificial sounds. Sci. Rep. 2017, 7, 45273. [Google Scholar] [CrossRef]
- Fitch, W.T. The biology and evolution of music: A comparative perspective. Cognition 2006, 100, 173–215. [Google Scholar] [CrossRef]
- Fitch, W. Four principles of bio-musicology. Phil. Trans. R. Soc. 2015, 370, 20140091. [Google Scholar] [CrossRef]
- Berlyne, D. Aesthetics and Psychobiology; Appleton-Century-Crofts: New York, NY, USA, 1971. [Google Scholar]
- North, A.C.; Hargreaves, D.J. Liking, arousal potential, and the emotions expressed by music. Scand. J. Psychol. 1997, 38, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Orians, G.H.; Heerwagen, J.H. Evolved responses to landscape. In The Adapted Mind; Barkow, J.H., Cosmides, L., Eds.; Tooby Oxford University Press: Oxford, UK, 1992; pp. 555–579. [Google Scholar]
- Broadhurst, P. Emotionality and the Yerkes-Dodson law. J. Exp. Psychol. 1957, 54, 345–352. [Google Scholar] [CrossRef] [PubMed]
- van der Zwaag, M.; Westerink, J.; van den Broek, E. Emotional and psychophysiological responses to tempo, mode, and percussiveness. Music Sci. 2011, 15, 250–269. [Google Scholar] [CrossRef]
- Selye, H. The Stress of Life; McGraw-Hill: New York, NY, USA, 1956. [Google Scholar]
- Selye, H. The stress syndrome. Am. J. Nurs. 1965, 65, 97–99. [Google Scholar]
- Selye, H. Stress without Distress; Springer Science and Business Media LLC.: Berlin/Heidelberg, Germany, 1976. [Google Scholar]
- Perrez, M. Eustress. In The Oxford Companian to Emotion and the Affective Sciences; Sander, D., Scherer, K., Eds.; Oxford University Press: Oxford, UK; New York, NY, USA, 2009; p. 158. [Google Scholar]
- Sterling, P.; Eyer, J. Allostasis: A new paradigm to explain arousal pathology. In Handbook of Life Stress, Cognition, and Health; Fisher, J., Reason, J., Eds.; Wiley: New York, NY, USA, 1988; pp. 629–649. [Google Scholar]
- McEwen, B. Stress, adaptation, and disease. Allostasis and allostatic load. Ann. N. Y. Acad. Sci. 1998, 840, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Vago, D.; Silbersweig, D. Self-awareness, self-regulation, and self-transcendence(S-ART): A framework for understanding the neurobiological mechanisms of mindfulness. Front. Hum. Neurosci. 2012, 6, 296. [Google Scholar] [CrossRef] [PubMed]
- Panksepp, J. Brain opioids—A neurochemical substrate for narcotic and social dependence. In Theory in Psychopharmacology; Cooper, S., Ed.; Academic: New York, NY, USA, 1981; pp. 149–175. [Google Scholar]
- Panksepp, J. Neurochemical control of moods and emotions: Amino acids to neuropeptides. In Handbook of Emotions; Lewis, M., Haviland, J.M., Eds.; Guilford: New York, NY, USA, 1993; pp. 87–106. [Google Scholar]
- Ryff, C.; Singer, B. The Contours of Positive Health. Psychol. Inq. 1988, 9, 1–28. [Google Scholar] [CrossRef]
- Bernard, C. La Science Expérimentale; Baillière & Fils: Paris, France, 1878. [Google Scholar]
- Cannon, W. The Wisdom of the Body; Norton: New York, NY, USA, 1932. [Google Scholar]
- Selye, H. Stress and the general adaptation syndrome. Br. Med. J. 1950, 1, 1383–1392. [Google Scholar] [CrossRef]
- Alcaro, A.; Huber, R.; Panksepp, J. Behavioral functions of the mesolimbic dopaminergic system: An affective neuroethological perspective. Brain Res. Rev. 2007, 56, 283–321. [Google Scholar] [CrossRef]
- Venkatraman, A.; Edlow, B.; Immordino-Yang, M. The Brainstem in Emotion: A Review. Front. Neuroanat. 2017, 11, 15. [Google Scholar] [CrossRef]
- Carozza Sofia, C.; Victoria, L. The Role of Affectionate Caregiver Touch in Early Neurodevelopment and Parent–Infant Interactional Synchrony. Front. Neurosci. 2021, 14, 613378. [Google Scholar] [CrossRef] [PubMed]
- Crucianelli, L.; Wheatley, L.; Filippetti, M.L.; Jenkinson, P.M.; Kirk, E.; Fotopoulou, A.K. The mindedness of maternal touch: An investigation of maternal mind-mindedness and mother-infant touch interactions. Dev. Cogn. Neurosci. 2019, 35, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Mateus, V.; Osório, A.; Miguel, H.; Cruz, S.; Sampaio, A. Maternal sensitivity and infant neural response to touch: An fNIRS study. Soc. Cogn. Affect. Neurosci. 2021, 16, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, R.; Folkman, S. Stress, Appraisal, and Coping; Springer: New York, NY, USA, 1984. [Google Scholar]
- Bernstein, A. The orienting response and direction of stimulus change. Psychon. Sci. 1968, 12, 127–128. [Google Scholar] [CrossRef]
- Bernstein, A.S. The orienting response as novelty and significance detector: Reply to O’Gorman. Psychophysiology 1979, 16, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Błaszczyk, J. Startle response to short acoustic stimuli in rats. Acta Neurobiol. Exp. 2003, 63, 25–30. [Google Scholar] [CrossRef]
- Salloum, R.; Yurosko, C.; Santiago, L.; Sandridge, S.; Kaltenbach, J. Induction of Enhanced Acoustic Startle Response by Noise Exposure: Dependence on Exposure Conditions and Testing Parameters and Possible Relevance to Hyperacusis. PLoS ONE 2014, 9, e111747. [Google Scholar] [CrossRef]
- Todd, N.; Cody, F.; Banks, J. A saccular origin of frequency tuning in myogenic vestibular evoked potentials?: Implications for human responses to loud sounds. Hear. Res. 2000, 141, 180–188. [Google Scholar] [CrossRef]
- Davis, M.; Antoniadis, E.A.; Amaral, D.G.; Winslow, J.T. Acoustic startle reflex in rhesus monkeys: A review. Rev. Neurosci. 2008, 19, 171–185. [Google Scholar] [CrossRef]
- Bradley, M.; Codispoti, M.; Lang, P.J. A multi-process account of startle modulation during affective perception. Psychophysiology 2006, 43, 486–497. [Google Scholar] [CrossRef]
- Lang, P.J.; Davis, M. Emotion, motivation, and the brain: Reflex foundations in animal and human research. Prog. Brain Res. 2006, 156, 3–29. [Google Scholar] [PubMed]
- Parker, K.; Hyde, S.; Buckmaster, C.; Tanaka, S.; Brewster, K.; Schatzberg, A.; Lyons, D.; Woodward, S. Somatic and neuroendocrine responses to standard and biologically salient acoustic startle stimuli in monkeys. Psychoneuroendocrinology 2011, 36, 547–556. [Google Scholar] [CrossRef]
- Reybrouck, M. Biological roots of musical epistemology: Functional Cycles, Umwelt, and enactive listening. Semiotica 2001, 134, 599–633. [Google Scholar] [CrossRef]
- Reybrouck, M. A Biosemiotic and Ecological Approach to Music Cognition: Event Perception between Auditory Listening and Cognitive Economy. Axiomathes 2005, 15, 229–266. [Google Scholar] [CrossRef]
- Rogers, M. An introduction to the theoretical basis of nursing. AJN Am. J. Nurs. 1971, 71, 2026–2027. [Google Scholar] [CrossRef]
- Rogers, M. The science of unitary human beings: Current perspectives. Nurs. Sci. Q. 1994, 7, 33–35. [Google Scholar] [CrossRef]
- Cooke, P.H.; Melchert, T.; Connor, K. Measuring Well-Being: A Review of Instruments. Couns. Psychol. 2016, 44, 730–757. [Google Scholar] [CrossRef]
- Damasio, A. Looking for Spinoza. Joy, Sorrow and the Feeling Brain; Vintage: London, UK, 2004. [Google Scholar]
- Welch, D.; Fremaux, G. Why do People Like Loud Sound? A Qualitative Study. Int. J. Environ. Res. Public Health 2017, 14, 908. [Google Scholar] [CrossRef]
- Welch, D.; Fremaux, G. Understanding Why People Enjoy Loud Sound. Sem. Hear. 2017, 38, 348–358. [Google Scholar]
- Koelsch, S.; Skouras, S. Functional centrality of amygdala, striatum and hypothalamus in a “small-world” network underlying joy: An fMRI study with music. Hum. Brain Mapp. 2014, 35, 3485–3498. [Google Scholar] [CrossRef]
- LeDoux, J. Semantics, surplus meaning, and the science of fear. Trends Cogn. Sci. 2017, 21, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Filippi, P.; Congdon, J.; Hoang, J.; Bowling, D.; Reber, S.; Pašukonis, A.; Hoeschele, M.; Ocklenburg, S.; de Boer, B.; Sturdy, C.; et al. Humans recognize emotional arousal in vocalizations across all classes of terrestrial vertebrates: Evidence for acoustic universals. Proc. R. Soc. B 2017, 284, 20170990. [Google Scholar] [CrossRef] [PubMed]
- Garrido, S.; Schubert, E. Adaptive and maladaptive attraction to negative emotions in music. Music Sci. 2013, 17, 147–166. [Google Scholar] [CrossRef]
- Miranda, D.; Claes, M. Music listening, coping, peer affiliation and depression in adolescence. Psychol. Music 2009, 37, 215–233. [Google Scholar] [CrossRef]
- Hsee, C.; Yu, F.; Zhang, J.; Zhang, Y. Medium maximization. J. Consum. Res. 2003, 30, 1–14. [Google Scholar] [CrossRef]
- Jayawickreme, E.; Forgeard, M.; Seligman, M. The Engine of Well-Being. Rev. Gen. Psychol. 2012, 16, 327–342. [Google Scholar] [CrossRef]
- Hyman, S.; Malenka, R.; Nestler, E. Neural mechanisms of addiction: The role of reward-related learning and memory. Annu. Rev. Neurosci. 2006, 29, 565–598. [Google Scholar] [CrossRef]
- Ryan, R.; Deci, E. On Happiness and Human Potentials: A Review of Research on Hedonic and Eudaimonic Well-Being. Annu. Rev. Psychol. 2001, 52, 141–166. [Google Scholar] [CrossRef]
- Brattico, E.; Varankaité, U. Aesthetic empowerment through music. Music Sci. 2019, 23, 285–303. [Google Scholar] [CrossRef]
- Kringelbach, M.; Berridge, K. Towards a functional neuroanatomy of pleasure and happiness. Trends Cogn. Sci. 2009, 13, 479–487. [Google Scholar] [CrossRef]
- Brattico, E.; Pearce, M. The Neuroaesthetics of Music. Psychol. Aesthet. Creat. Arts 2013, 7, 48–61. [Google Scholar] [CrossRef]
- Scherer, K.; Zentner, M. Music evoked emotions are different—More often aesthetic than utilitarian. Behav. Brain Sci. 2008, 5, 595–596. [Google Scholar] [CrossRef]
- Zentner, M.; Grandjean, D.; Scherer, K. Emotions Evoked by the Sound of Music: Characterization, Classification, and Measurement. Emotion 2008, 8, 494–521. [Google Scholar] [CrossRef] [PubMed]
- Gabrielsson, A. Strong Experiences with Music; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Hu, C.; He, L.; Ge, N.; Li, Y. Relationships Among Extreme Sports Participation, Sensation Seeking, and Negative Risky Behaviors of Middle-School Students. Front. Psychol. 2021, 12, 722769. [Google Scholar]
- Maslow, A.H. Toward a Psychology of Being; Van Nostrand Reinhold Company: New York, NY, USA, 1968. [Google Scholar]
- Diaz, F. Mindfulness, attention, and flow during music listening: An empirical investigation. Psychol. Music 2011, 41, 42–58. [Google Scholar] [CrossRef]
- Presicce, G. The Image Behind the Sound: Visual Imagery in Music Performance. In Music and Mental Imagery; Küssner, M., Taruffi, L., Floridou, G., Eds.; Routledge: London, UK; New York, NY, USA, 2023; pp. 241–254. [Google Scholar]
- Saarinen, J.A. The Oceanic State: A Conceptual Elucidation in Terms of Modal Contact. Int. J. Psychoanal. 2012, 93, 939–961. [Google Scholar] [CrossRef] [PubMed]
- Dibble, K. Hearing loss and music. J. Audio Eng. Soc. 1995, 43, 251–266. [Google Scholar]
- Panksepp, J. The Emotional Sources of “Chills” Induced by Music. Music Percept. 1995, 13, 171–207. [Google Scholar] [CrossRef]
- Harrison, L.; Loui, P. Thrills, chills, frissons, and skin orgasms: Toward an integrative model of transcendent psychophysiological experiences in music. Front. Psychol. 2014, 5, 790. [Google Scholar] [CrossRef]
- Høffding, S. A Topography of Musical Absorption. In A Phenomenology of Musical Absorption, New Directions in Philosophy and Cognitive Science; Høffding, S., Ed.; Palgrave Macmillan: Cham, Switzerland, 2018. [Google Scholar]
- McMahan, A. Immersion, Engagement, and Presence. A Method for Analyzing 3-D Video Games. In The Video Game, Theory Reader; Wolf, M., Perron, B., Eds.; Routledge, Taylor & Francis: New York, NY, USA, 2003; pp. 77–78. [Google Scholar]
- Murray, J. Hamlet on the Holodeck: The Future of Narrative in Cyberspace; MIT Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Agrawal, S.; Simon, A.; Bech, S.; Bærentsen, K.; Forchhammer, S. Defining immersion: Literature review and implications for research on immersive audiovisual experiences. Audio Eng. Soc. 2020, 68, 404–417. [Google Scholar] [CrossRef]
- Witmer, B.G.; Singer, M.J. Measuring presence in virtual environments: A presence questionnaire. Presence Teleoperators Virtual Environ. 1998, 7, 225–240. [Google Scholar] [CrossRef]
- Calleja, G. Revising Immersion: A Conceptual Model for the Analysis of Digital Game Involvement, 3rd ed.; Digital Games Research Association: Tokyo, Japan, 2007; pp. 83–90. [Google Scholar]
- Csikszentmihalyi, M. Flow: The Psychology of Optimal Experience; Harper and Row: New York, NY, USA, 1990. [Google Scholar]
- Csikszentmihalyi, M. Beyond Boredom and Anxiety: The Experience of Play in Work and Games; Jossey-Bass: San Francisco, CA, USA, 1975. [Google Scholar]
- Csikszentmihalyi, M. Optimal Experience: Psychological Studies of Flow in Consciousness; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Ermi, F.; Mäyrä, F. Fundamental Components of the Gameplay Experience: Analysing Immersion. In Changing Views: Worlds in Play: Proceedings of the 2005 Digital Games Research Association’s Second International Conference, Vancouver, BC, Canada, 16–20 June 2005; de Castell, S., Jenson, J., Eds.; DiGRA: Tampere, Finland, 2005; pp. 15–27. [Google Scholar]
- Salselas, I.; Penha, R.; Bernardes, G. Sound Design Inducing Attention in the Context of Audiovisual Immersive Environments. Pers. Ubiquitous Comput. 2021, 25, 737–748. [Google Scholar] [CrossRef]
- Calleja, G. Game: From Immersion to Incorporation; MIT-Press: Cambridge, UK; London, UK, 2001. [Google Scholar]
- Pine, B.; Gilmore, J. The Experience Economy: Work is Theatre & Every Business a Stage; Harvard Business School Press: Boston, MA, USA, 1999. [Google Scholar]
- Becker, J. Deep Listeners: Music, Emotion, and Trancing; Indiana University Press: Bloomington, IL, USA, 2004. [Google Scholar]
- Butler, L. The dissociations of everyday life. J. Trauma Dissociation 2004, 5, 1–11. [Google Scholar] [CrossRef]
- Fachner, J. Recumbent Journeys Into Sound—Music, Imagery, and Altering States of Consciousness. In Music and Mental Imagery; Küssner, M., Taruffi, L., Floridou, G., Eds.; Routledge: London, UK; New York, NY, USA, 2023; pp. 199–208. [Google Scholar]
- Herbert, R. Musical Daydreaming and Kinds of Consciousness. In Music and Mental Imagery; Küssner, M., Taruffi, L., Floridou, G., Eds.; Routledge: London, UK; New York, NY, USA, 2023; pp. 167–177. [Google Scholar]
- Vroegh, T. Visual imagery in the listener’s mind: A network analysis of absorbed consciousness. Psychol. Conscious. 2021. [Google Scholar] [CrossRef]
- Vuoskoski, J.; Clarke, E.; DeNora, T. Music listening evokes implicit affiliation. Psychol. Music 2017, 45, 584–599. [Google Scholar] [CrossRef]
- Craig, A. How do you feel—Now? The anterior insula and human awareness. Nat. Rev. Neurosci. 2009, 10, 59–70. [Google Scholar] [CrossRef]
- Immordino-Yang, M.; Damasio, A. We Feel, Therefore We Learn: The Relevance of Affective and Social Neuroscience to Education. Mind Brain Educ. 2007, 1, 3–10. [Google Scholar] [CrossRef]
- Billman, G.E. Homeostasis: The Underappreciated and Far Too Often Ignored Central Organizing Principle of Physiology. Front. Physiol. 2020, 11, 200. [Google Scholar] [CrossRef]
- Salimpoor, V.; Zatorre, R. Neural interactions that give rise to musical pleasure. Psychol. Aesthet. Creat. Arts 2013, 7, 62–75. [Google Scholar] [CrossRef]
- Barrett, K.; Ashley, R.; Strait, D.; Kraus, N. Art and science: How musical training shapes the brain. Front. Psychol. 2013, 4, 713. [Google Scholar] [CrossRef]
- Blood, A.J.; Zatorre, R.J. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl. Acad. Sci. USA 2001, 98, 11818–11823. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Molina, N.; Mas-Herrero, E.; Rodríguez-Fornells, A.; Zatorre, R.; Marco-Pallarés, J. Neural correlates of specific musical anhedonia. Proc. Natl. Acad. Sci. USA 2016, 113, E7337–E7345. [Google Scholar] [CrossRef] [PubMed]
- Mas-Herrero, E.; Dagher, A.; Zatorre, R. Modulating musical reward sensitivity up and down with transcranial magnetic stimulation. Nat. Hum. Behav. 2018, 2, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Mas-Herrero, E.; Karhulahti, M.; Marco-Pallares, J.; Zatorre, R.; Rodriguez-Fornells, A. The impact of visual art and emotional sounds in specific musical anhedonia. Prog. Brain Res. 2018, 237, 399–413. [Google Scholar] [PubMed]
- Salimpoor, V.; Zald, D.; Zatorre, R.; Dagher, A.; McIntosh, A. Interactions between the nucleus accumbens and auditory cortices predicts music reward value. Science 2013, 340, 216–219. [Google Scholar] [CrossRef]
- Berridge, K.; Kringelbach, M. Affective neuroscience of pleasure: Reward in humans and animals. Psychophysiology 2008, 199, 457–480. [Google Scholar] [CrossRef]
- Kringelbach, M. The Pleasure Center. Trust Your Animal Instincts; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Nadal, M.; Skov, M. Introduction to the Special Issue: Toward an Interdisciplinary Neuroaesthetics. Psychol. Aesthet. Creat. Arts 2013, 7, 1. [Google Scholar] [CrossRef]
- Salimpoor, V.; Benovoy, M.; Larcher, K.; Dagher, A.; Zatorre, R. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 2011, 14, 257–262. [Google Scholar] [CrossRef]
- Schultz, W. Updating dopamine reward signals. Curr. Opin. Neurobiol. 2013, 23, 229–238. [Google Scholar] [CrossRef]
- Baskerville, T.A.; Douglas, A.J. Dopamine and oxytocin interactions underlying behaviors: Potential contributions to behavioral disorders. CNS Neurosci. Ther. 2010, 16, e92–e123. [Google Scholar] [CrossRef]
- Ferreri, L.; Mas-Herrero, E.; Zatorre, R.; Ripollés, P.; Gomez-Andres, A.; Alicart, H.; Olivé, G.; Marco-Pallarés, J.; Antonijoan, R.; Valle, M.; et al. Dopamine modulates the reward experiences elicited by music. Proc. Natl. Acad. Sci. USA 2019, 116, 3793–3798. [Google Scholar] [CrossRef] [PubMed]
- Ben-Jonathan, N.; Hnasko, R. Dopamine as a Prolactin (PRL) Inhibitor. Endocr. Rev. 2001, 22, 724–763. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, P.; Dinan, T. Prolactin and dopamine: What is the connection? A Review Article. J. Psychopharmacol. 2008, 22, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Eerola, T.; Vuoskoski, J.; Kautiainen, H.; Peltola, H.; Putkinen, V.; Schäfer, K. Being moved by listening to unfamiliar sad music induces reward-related hormonal changes in empathic listeners. Ann. N. Y. Acad. Sci. 2021, 1502, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Brattico, E. The Neuroaesthetics of Music: A Research Agenda Coming of Age. In The Oxford Handbook of Music and the Brain; Thaut, M., Hodges, D., Eds.; Oxford University Press: Oxford, UK, 2020; pp. 364–390. [Google Scholar]
- Brown, S.; Dissanayake, E. The arts are more than aesthetics: Neuroaesthetics as narrow aesthetics. In Neuroaesthetics; Skov, M., Vartanian, O., Eds.; Baywood: Amityville, NY, USA, 2009; pp. 43–57. [Google Scholar]
- Chatterjee, A. Neuroaesthetics: A Coming of Age Story. J. Cogn. Neurosci. 2010, 23, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Leder, H. Next Steps in Neuroaesthetics: Which Processes and Processing Stages to Study? Psychol Aesthet Creat Arts 2013, 7, 27–37. [Google Scholar] [CrossRef]
- Pearce, M.T.; Zaidel, D.W.; Vartanian, O.; Skov, M.; Leder, H.; Chatterjee, A.; Nadal, M. Neuroaesthetics: The Cognitive Neuroscience of Aesthetic Experience. Perspect. Psychol. Sci. 2016, 11, 265–279. [Google Scholar] [CrossRef]
- Zaidel, D. Brain and art: Neuro-clues from intersection of disciplines. In Neuroaesthetics; Skov, M., Vartanian, O., Eds.; Baywood: Amityville, NY, USA, 2009; pp. 153–170. [Google Scholar]
- Zaidel, D.; Nadal, M. Brain intersections of aesthetics and morals: Perspectives from biology, neuroscience, and evolution. Perspect. Biol. Med. 2011, 54, 367–380. [Google Scholar] [CrossRef]
- Liu, C.; Brattico, E.; Abu-Jamous, B.; Pereira, C.; Jacobsen, T.; Nandi, A. Effect of Explicit Evaluation on Neural Connectivity Related to Listening to Unfamiliar Music. Front. Hum. Neurosci. 2017, 11, 611. [Google Scholar] [CrossRef]
- Tinbergen, N. On aims and methods of ethology. Z. Tierpsychol. 1963, 20, 410–433. [Google Scholar] [CrossRef]
- Fredrickson, B. The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. Am. Psychol. 2001, 56, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, A.; Balleine, B. Hedonics: The cognitive-motivational interface. In Pleasures of the Brain; Kringelbach, M., Berridge, K., Eds.; Oxford University Press: Oxford, UK, 2010; pp. 74–84. [Google Scholar]
- Fredrickson, B.L.; Cohn, M.A.; Coffey, K.A.; Pek, J.; Finkel, S.M. Open hearts build lives: Positive emotions, induced through loving-kindness meditation, build consequential personal resources. J. Personal. Soc. Psychol. 2008, 95, 1045–1062. [Google Scholar] [CrossRef] [PubMed]
- Nesse, R. Natural selection and the elusiveness of happiness. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004, 359, 1333–1347. [Google Scholar] [CrossRef] [PubMed]
- Peck, K.; Girard, T.; Russo, F.; Fiocco, A. Music and memory in Alzheimer’s disease and the potential underlying mechanisms. J. Alzheimer’s Dis. 2016, 51, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Kringelbach, M.; Berridge, K. The affective core of emotion: Linking pleasure, subjective well-being, and optimal metastability in the brain. Emot. Rev. 2017, 9, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Chanda, M.; Levitin, D. The neurochemistry of music. Trends Cogn. Sci. 2013, 17, 179–193. [Google Scholar] [CrossRef]
- Zaidel, D.; Nadal, M.; Flexas, A.; Munar, E. An Evolutioary Approach to Art and Aesthetic Experience. Psychol. Aesthet. Creat. Arts 2013, 7, 100–109. [Google Scholar] [CrossRef]
- Leknes, S.; Tracey, I. A common neurobiology for pain and pleasure. Nat. Rev. Neurosci. 2008, 9, 314–320. [Google Scholar] [CrossRef]
- Lent, R. Toward a Unifying Theoretical and Practical Perspective on Well-Being and Psychosocial Adjustment. J. Couns. Psychol. 2004, 51, 482–509. [Google Scholar] [CrossRef]
- Seligman, M.; Csikszentmihalyi, M. Positive psychology: An introduction. Am. Psychol. 2000, 55, 5–14. [Google Scholar] [CrossRef]
- Diener, E.; Suh, E.; Lucas, R.; Smith, H. Subjective Well-Being: Three decades of progress. Psychol. Bull. 1999, 125, 276–302. [Google Scholar] [CrossRef]
- Waterman, A. Personal expressiveness: Philosophical and psychological foundations. J. Mind Behav. 1990, 11, 47–74. [Google Scholar]
- Waterman, A. The relevance of Aristotle’s conception of eudaimonia for the psychological study of happiness. Theor. Philos. Psychol. 1990, 10, 39–44. [Google Scholar] [CrossRef]
- McEwen, B. Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur. J. Pharmacol. 2008, 583, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Kays, J.; Hurley, R.; Taber, K. The dynamic brain: Neuroplasticity and mental health. J. Neuropsychiatry Clin. Neurosci. 2012, 24, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Reybrouck, M.; Podlipniak, P.; Welch, D. Music Listening as Coping Behavior: From Reactive Response to Sense-Making. Behav. Sci. 2020, 10, 119. [Google Scholar] [CrossRef] [PubMed]
- Eerola, T.; Vuoskoski, J.; Peltola, H.-R.; Putkinen, V.; Schäfer, K. An integrative review of the enjoyment of sadness associated with music. Phys. Life Rev. 2018, 25, 100–121. [Google Scholar] [CrossRef]
- Ladinig, O.; Brooks, C.; Hansen, N.; Horn, K.; Huron, D. Enjoying sad music: A test of the prolactin theory. Music. Sci. 2021, 25, 429–448. [Google Scholar] [CrossRef]
- Cova, F.; Deonna, J. Being moved. Philos. Stud. 2014, 169, 447–466. [Google Scholar] [CrossRef]
- Konečni, V. The aesthetic trinity: Awe, being moved, thrills. Bull. Psychol. Arts 2005, 5, 27–44. [Google Scholar]
- Konečni, V. Being moved as one of the major aesthetic emotional states: A commentary on Being moved: Linguistic representation and conceptual structure. Front. Psychol. 2015, 6, 343. [Google Scholar] [PubMed]
- Kuehnast, M.; Wagner, V.; Wassiliwizky, E.; Jacobsen, T.; Menninghaus, W. Being moved: Linguistic representation and conceptual structure. Front. Psychol. 2014, 5, 1242. [Google Scholar] [CrossRef] [PubMed]
- Menninghaus, W.; Wagner, V.; Hanich, J.; Wassiliwizky, E.; Kuehnast, M.; Jacobsen, T. Towards a psychological construct of being moved. PLoS ONE 2015, 10, e0128451. [Google Scholar] [CrossRef] [PubMed]
- Huron, D.; Vuoskoski, J. On the Enjoyment of Sad Music: Pleasurable Compassion Theory and the Role of Trait Empathy. Front. Psychol. 2020, 11, 106. [Google Scholar] [CrossRef] [PubMed]
- Grewe, O.; Nagel, F.; Kopiez, R.; Altenmüller, E. Listening to Music as a Re-Creative Process: Physiological, Psychological, and Psychoacoustical Correlates of Chills and Strong Emotions. Music Percept. 2007, 24, 297–314. [Google Scholar] [CrossRef]
- Bannister, S. Distinct varieties of aesthetic chills in response to multimedia. PLoS ONE 2019, 14, e0224974. [Google Scholar] [CrossRef] [PubMed]
- van der Schyff, D.; Schiavio, A.; Elliott, D. (Eds.) Musical Bodies, Musical Minds. Enactive Cognitive Science and the Meaning of Human Musicality; The MIT Press: Cambridge, UK; London, UK, 2022. [Google Scholar]
- Flohr, J.; Hodges, D. Music and neuroscience. In The New Handbook of Research on Music Teaching and Learning. A Project of the Music Educators National Conference; Colwell, R., Richardson, C., Eds.; Oxford University Press: Oxford, UK, 2002; pp. 991–1008. [Google Scholar]
- Varela, F.; Shear, J. (Eds.) The View from within. First-Person Approaches to the Study of Consciousness; Imprint Academic: Thorverton, UK, 2002. [Google Scholar]
- Zahavi, D. Subjectivity and Selfhood. Investigationg the First-Person Perspective; The MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Lutz, A. Toward a neurophenomenology as an account of generative passages: A first empirical case study. Phenomenol. Cogn. Sci. 2002, 1, 133–167. [Google Scholar] [CrossRef]
- Seth, A.; Dienes, Z.; Cleeremans, A.; Overgaard, M.; Pessoa, P. Measuring Consciousness: Relating behavioural and neurophysiological approaches. Trends Cogn. Sci. 2008, 12, 314–321. [Google Scholar] [CrossRef]
- Lutz, A.; Thompson, E. Neurophenomenology: Integrating subjective experience and brain dynamics in the neuroscience of consciousness. J. Conscious. Stud. 2003, 10, 31–52. [Google Scholar]
- Rudrauf, D.; Lutz, A.; Cosmelli, D.; Lachaux, J.-P.; Le Van Quyen, M. From autopoiesis to neurophenomenology: Francisco Varela’s exploration of the biophysics of being. Biol. Res. 2003, 36, 27–65. [Google Scholar] [CrossRef]
- Thompson, E. Life and mind: From autopoiesis to neurophenomenology. A tribute to Francisco Varela. Phenomenol. Cogn. Sci. 2004, 3, 381–398. [Google Scholar] [CrossRef]
- Varela, F. Neurophenomenology: A methodological remedy for the hard problem. J. Conscious. Stud. 1996, 3, 330–350. [Google Scholar]
- Gallagher, S.; Zahavi, D. The Phenomenological Mind. An Introduction to Philosophy of Mind and Cognitive Science; Routledge: London, UK; New York, NY, USA, 2008. [Google Scholar]
- Froese, T.; Leavens, D.A. The direct perception hypothesis: Perceiving the intention of another’s action hinders its precise imitation. Front. Psychol. 2014, 5, 65. [Google Scholar] [CrossRef] [PubMed]
- Kojima, H.; Froese, T.; Oka, M.; Iizuka, H.; Ikegami, T. A Sensorimotor Signature of the Transition to Conscious Social Perception: Co-regulation of Active and Passive Touch. Front. Psychol. 2017, 8, 1778. [Google Scholar] [CrossRef] [PubMed]
- Overgaard, S.; Michael, J. The interactive turn in social cognition research: A critique. Philos. Psychol. 2015, 28, 160–183. [Google Scholar] [CrossRef]
- Schneck, D.; Berger, D. The Music Effect. Music Physiology and Clinical Applications; Kingsley Publishers: London, UK; Philadelphia, PA, USA, 2010. [Google Scholar]
- Gerber, R. Vibrational Medicine; Bear & Company: Rochester, VT, USA, 2001. [Google Scholar]
- Castelo Branco, N.; Alves-Pereira, M. Vibroacoustic Disease. Noise Health 2004, 6, 3–20. [Google Scholar]
- Alves-Pereira, M.; Castelo Branco, N. Vibroacoustic disease: Biological effects of infrasound and low-frequency noise explained by mechanotransduction cellular signalling. Prog. Biophys. Mol. Biol. 2007, 93, 256–279. [Google Scholar] [CrossRef]
- Pantaleone, J. Synchronization of metronomes. Am. J. Phys. 2002, 70, 992–1000. [Google Scholar] [CrossRef]
- Roenneberg, T.; Hut, R.; Daan, S.; Merrow, M. Entrainment Concepts Revisited. J. Biol. Rhythm. 2010, 25, 329–339. [Google Scholar] [CrossRef]
- Secora Pearl, J. Cognitive vs. physical entrainment. Eur. Meet. Ethnomusicol 2005, 11, 61–63. [Google Scholar]
- Pallasmaa, J. The Eyes of the Skin: Architecture, and the Senses; Wiley-Academy: Chichester, UK, 2005. [Google Scholar]
- Hove, M.; Risen, J. It’s all in the timing: Interpersonal synchrony increases affiliation. Soc. Cogn. 2009, 27, 949–960. [Google Scholar] [CrossRef]
- Demos, A.P.; Chaffin, R.; Begosh, K.T.; Daniels, J.R.; Marsh, K.L. Rocking to the beat: Effects of music and partner’s movements on spontaneous interpersonal coordination. J. Exp. Psychol. 2012, 141, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Haslam, C.; Cruwys, T.; Haslam, S. “The we’s have it”: Evidence for the distinctive benefits of group engagement in enhancing cognitive health in aging. Soc. Sci. Med. 2014, 120, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Koball, H.L.; Moiduddin, E.; Henderson, J.; Goesling, B.; Besculides, M. What do we know about the link between marriage and health? J. Fam. Issues 2010, 31, 1019–1040. [Google Scholar] [CrossRef]
- Pearce, E.; Launay, J.; Dunbar, R. The Ice-Breaker Effect: Singing Mediates Fast Social Bonding. R. Soc. Open Sci. 2015, 2, 150221. [Google Scholar] [CrossRef] [PubMed]
- Clift, S.; Hancox, G. The perceived benefits of singing: Findings from preliminary surveys of a university college choral society. J. R. Soc. Promot. Health 2001, 121, 248–256. [Google Scholar] [CrossRef]
- Grindley, H.; Astbury, J.; Sharples, J.; Aguirre, C. Benefits of Group Singing for Community Mental Health and Wellbeing: Survey & Literature Review; Victorian Health Promotion Foundation: Carlton, Australia, 2011. [Google Scholar]
- Joseph, D.; Southcott, J. Singing and companionship in the Hawthorn University of the Third-Age Choir, Australia. Int. J. Lifelong Educ. 2014, 34, 334–347. [Google Scholar] [CrossRef]
- Launay, J.; Dean, R.T.; Bailes, F. Synchronization can influence trust following virtual interaction. Exp. Psychol. 2013, 60, 53–63. [Google Scholar] [CrossRef]
- Launay, J.; Dean, R.T.; Bailes, F. Synchronising movements with the sounds of virtual partner enhances partner likeability. Cogn. Process. 2014, 15, 491–501. [Google Scholar] [CrossRef]
- Reddish, P.; Fischer, R.; Bulbulia, J. Let’s dance together: Synchrony, shared intentionality and cooperation. PLoS ONE 2013, 8, e71182. [Google Scholar] [CrossRef]
- Wolf, W.; Launay, J.; Dunbar, R. Joint attention, shared motivation and social bonding. Br. J. Psychol. 2015, 107, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, R.I.M.; Kaskatis, K.; MacDonald, I.; Barra, V. Performance of music elevates pain threshold and positive affect. Evol. Psychol. 2012, 10, 688–702. [Google Scholar] [CrossRef] [PubMed]
- Tarr, B.; Launay, J.; Cohen, E.; Dunbar, R.I.M. Synchrony and exertion during dance independently raise pain threshold and encourage social bonding. Biol. Lett. 2015, 11, 20150767. [Google Scholar] [CrossRef] [PubMed]
- Tarr, B.; Launay, J.; Dunbar, R.I.M. Music and social bonding: “Self–other” merging and neurohormonal mechanisms. Front. Psychol. 2014, 5, 1096. [Google Scholar] [CrossRef] [PubMed]
- Balandra, A.; Mitake, H.; Hasegawa, S. Haptic Music Player—Synthetic audio-tactile stimuli generation based on the notes’ pitch and instruments’ envelope mapping. NIME 2016, 16, 90–95. [Google Scholar]
- Hwang, I.; Lee, H.; Choi, S. Real-Time Dual-Band Haptic Music Player for Mobile Devices. IEEE Trans. Haptics 2013, 6, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Aker, S.; Innes-Brown, H.; Faulkner, K.; Vatti, M.; Marozeau, J. Effect of audio-tactile congruence on vibrotactile music enhancement. J. Acoust. Soc. Am. 2022, 152, 3396–3409. [Google Scholar] [CrossRef]
- Frid, E.; Panariello, C. Haptic music players for children with profound and multiple learning disabilities (PMLD). Exploring different modes of interaction for felt sound. In Proceedings of the 24th International Congress on Acoustics, Gyeongju, Republic of Korea, 24–28 October 2022. hal-04029009. [Google Scholar]
- Carter, C. Oxytocin pathways and the evolution of human behavior. Annu. Rev. Psychol. 2014, 65, 17–39. [Google Scholar] [CrossRef]
- Gingrich, B.; Liu, Y.; Cascio, C.; Wang, Z.; Insel, T.R. Dopamine D2 receptors in the nucleus accumbens are important for social attachment in female prairie voles (Microtus ochrogaster). Behav. Neurosci. 2000, 114, 173–183. [Google Scholar] [CrossRef]
- Uvnas-Moberg, K. Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology 1998, 23, 819–835. [Google Scholar] [CrossRef]
- Porges, S. The polyvagal theory: Phylogenetic substrates of a social nervous system. Int. J. Psychophysiol. 2001, 42, 123–146. [Google Scholar] [CrossRef] [PubMed]
- McDermott, J.; Hauser, M. The Origins of Music; Innateness, Uniqueness, and Evolution. Music Percept 2005, 23, 29–59. [Google Scholar] [CrossRef]
- Greenberg, D.M.; Rentfrow, P.J.; Baron-Cohen, S. Can music increase empathy? Interpreting musical experience through the empathizing–systemizing (E-S) theory: Implications for autism. Empir. Musicol. Rev. 2015, 10, 80. [Google Scholar] [CrossRef]
- Brown, S. Evolutionary models of music: From sexual selection to group selection. In Perspectives in Ethology, Vol. 13: Evolution, Culture and Behavior; Tonneau, F., Thompson, N., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2000; pp. 231–281. [Google Scholar]
- Savage, P.E.; Loui, P.; Tarr, B.; Schachner, A.; Glowacki, L.; Mithen, S.; Fitch, W.T. Music as a coevolved system for social bonding. Behav. Brain Sci. 2021, 44, e59. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, E. What art is and what art does: An overview of contemporary evolutionary hypotheses. In Evolutionary and Neurocognitive Approaches to Aesthetics, Creativity, and the Arts; Martindale, C., Locher, C., Petrov, P., Eds.; Baywood: Amityville, NY, USA, 2007; pp. 1–14. [Google Scholar]
- Greenberg, D.; Decety, J.; Gordon, I. The Social Neuroscience of Music: Understanding the Social Brain Through Human Song. Am. Psychol. 2021, 76, 1172–1185. [Google Scholar] [CrossRef] [PubMed]
- Reybrouck, M.; Vuust, P.; Brattico, E. Music and Brain Plasticity: How Sounds Trigger Neurogenerative Adaptations. In Neuroplasticity: Insights of Neural Reorganization; Chaban, V., Ed.; InTech: Rijeka, Croatia, 2018; pp. 85–103. [Google Scholar]
- Reybrouck, M.; Brattico, E. Neuroplasticity beyond Sounds: Neural Adaptations Following Long-Term Musical Aesthetic Experiences. Brain Sci. 2015, 5, 69–91. [Google Scholar] [CrossRef] [PubMed]
- Sachs, M.; Ellis, R.; Schlaug, G.; Loui, P. Brain connectivity reflects human aesthetic responses. Soc. Cogn. Affect Neurosci. 2016, 11, 884–891. [Google Scholar] [CrossRef]
- Johansen-Berg, H. Behavioural relevance of variation in white matter microstructure. Curr. Opin. Neurol. 2010, 23, 351–358. [Google Scholar] [CrossRef]
- Parkinson, C.; Wheatley, T. Relating anatomical and social connectivity: White matter microstructure predicts emotional empathy. Cereb.l Cortex 2014, 24, 614–625. [Google Scholar] [CrossRef]
- Johnstone, T.; van Reekum, C. Failure to regulate: Counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J. Neurosci. 2007, 27, 8877–8884. [Google Scholar] [CrossRef]
- Mas-Herrero, E.; Zatorre, R.; Rodriguez-Fornells, A.; Marco-Pallarés, J. Dissociation between musical and monetary reward responses in specific musical anhedonia. Curr. Biol. 2014, 24, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, S.; Thompson, W.F. The emergence of music from the Theory of Mind. Music. Sci Spec. Issue 2009, 13, 83–115. [Google Scholar] [CrossRef]
- Avram, M.; Gutyrchik, E.; Bao, Y.; Pöppel, E.; Reiser, M.; Blautzik, J. Neurofunctional correlates of esthetic and moral judgments. Neurosci. Lett. 2013, 534, 128–132. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reybrouck, M. Music Listening as Kangaroo Mother Care: From Skin-to-Skin Contact to Being Touched by the Music. Acoustics 2024, 6, 35-64. https://doi.org/10.3390/acoustics6010003
Reybrouck M. Music Listening as Kangaroo Mother Care: From Skin-to-Skin Contact to Being Touched by the Music. Acoustics. 2024; 6(1):35-64. https://doi.org/10.3390/acoustics6010003
Chicago/Turabian StyleReybrouck, Mark. 2024. "Music Listening as Kangaroo Mother Care: From Skin-to-Skin Contact to Being Touched by the Music" Acoustics 6, no. 1: 35-64. https://doi.org/10.3390/acoustics6010003
APA StyleReybrouck, M. (2024). Music Listening as Kangaroo Mother Care: From Skin-to-Skin Contact to Being Touched by the Music. Acoustics, 6(1), 35-64. https://doi.org/10.3390/acoustics6010003