Soundscape Approach in the Seaport of Ancona: A Case Study
Abstract
:1. Introduction
1.1. Background
- 1.
- Keynotes: Sounds present more frequently to which we no longer pay attention, such as the natural ones of wind, birds, and animals, in general. Furthermore, many common urban sounds have to be considered keynotes: for example, sounds produced by road traffic, domestic air conditioning systems, and industrial plants.
- 2.
- Soundsignal: emergency sirens, bells, alarm clocks, horns, etc., are sounds heard in the foreground with a strong semantic character and are easily assimilated to a condition of annoyance.
- 3.
- Soundmarks: These are the so-called sound imprints that are closely linked to a territory. They represent the acoustic identity of a place and, due to their importance, they should be protected alongside animals in danger of extinction and the dignity of the human being.
1.2. Contribution of This Work
2. Materials and Methods
2.1. Seaport Noise: Legislation and Implementation
2.2. Binaural Recordings and Video Recordings
2.3. Subjective Evaluation: Questionnaires and Listening Test
- In the introduction section, the finality and method to compile the questionnaire were explained to the subjects. In particular, most attention was given regarding the modality of the playback of the noise seaport recording. Participants were asked to reproduce the track only with headphones.
- In the first section, the subjects were asked to write down information of a cognitive type, for example: “how much do you frequent the place”, “how much you are addicted to it in terms of time”, “how much would you like to live there, if it were not for the surrounding conditions (work, obsession with the place, perhaps, life in general’)”⋯
- For the second section of nine, the subjects were asked to evaluate their overall impression of each of the eight clusters under examination. A video of the landscape suitably mixed with the binaural recording was presented to the listeners. All preference ratings were made on a 5-point numerical scale (1—not at all and 5—extremely).
2.4. Statistical Analysis and Mathematical Model
- If S > 1.75:
- If S < 1.75:
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C1 | Cluster one |
C2 | Cluster two |
C3 | Cluster three |
C4 | Cluster four |
C5 | Cluster five |
C6 | Cluster six |
C7 | Cluster seven |
C8 | Cluster eight |
SPL | Sound pressure level |
Leq dx | Sound pressure level measured by right ear |
Leq sx | Sound pressure level measured by left ear |
phone dx | Loudness level measured by right ear |
phone sx | Loudness level measured by left ear |
sharp dx | Sharpness level measured by right ear |
sharp sx | Sharpness level measured by left ear |
fs dx | Fluctuation strength level measured by right ear |
fs sx | Fluctuation strength level measured by left ear |
r dx | Roughness level measured by right ear |
r sx | Roughness level measured by left ear |
SQI | Sound quality index |
PA | Psychoacoustic annoyance index |
PA | Psychoacoustic annoyance index of Ancona’s seaport |
Appendix A
References
- Murray Schafer, R. The New Soundscape; BMI Canada Limited: Don Mills, Toronto, ON, Canada, 1969. [Google Scholar]
- Jonah, B.A.; Bradley, J.S.; Dawson, N.E. Predicting individual subjective responses to traffic noise. J. Appl. Psychol. 1981, 66, 490–501. [Google Scholar] [CrossRef]
- Genuit, K. Background and Practical Examples of Sound Design. Acust.-Acta Acust. 1997, 83, 805–812. [Google Scholar]
- Zhang, M.; Kang, J. Towards the Evaluation, Description, and Creation of Soundscapes in Urban Open Spaces. Environ. Plan. Plan. Des. 2007, 34, 68–86. [Google Scholar] [CrossRef]
- Adams, M.D.; Bruce, N.S.; Davies, W.J.; Cain, R.; Jennings, P.; Carlyle, A.; Cusack, P.; Hume, K.; Plack, C. Soundwalking as a Methodology for Understanding Soundscapes; Acoustics Research Centre, University of Salford: Salford, UK, 2008; Volume 30, pp. 131–135. [Google Scholar]
- Jo, H.I.; Jeon, J.Y. Effect of the appropriateness of sound environment on urban soundscape assessment. Build. Environ. 2020, 179, 106975. [Google Scholar] [CrossRef]
- Kang, J.; Aletta, F.; Oberman, T.; Erfanian, M.; Kachlicka, M.; Lionello, M.; Mitchell, A. Towards soundscape indices. In Proceedings of the 23rd International Congress on Acoustics: Integrating 4th EAA Euroregio 2019, Aachen, Germany, 9–13 September 2019. [Google Scholar]
- Davies, W.J.; Adams, M.D.; Bruce, N.S.; Cain, R.; Carlyle, A.; Cusack, P.; Hall, D.A.; Hume, K.I.; Irwin, A.; Jennings, P.; et al. Perception of soundscapes: An interdisciplinary approach. Appl. Acoust. 2013, 74, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Jennings, P.; Cain, R. A framework for improving urban soundscapes. Appl. Acoust. 2013, 74, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Zwicker, E.; Fastl, H. Psychoacoustics: Facts and Models, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 715–724. [Google Scholar]
- Standard ISO 1996-1:2016; Acoustics—Description, Measurement and Assessment of Environmental Noise—Part 1: Basic Quantities and Assessment Procedures. International Organization for Standardization: Geneva, Switzerland, 2016.
- Standard ISO 532-1:2017; Acoustics—Methods for Calculating Loudness—Part 1: Zwicker Method. International Organization for Standardization: Geneva, Switzerland, 2017.
- Standard ISO 532-2:2017; Acoustics—Methods for Calculating Loudness—Part 2: Moore-Glasberg Method. International Organization for Standardization: Geneva, Switzerland, 2017.
- Standard ISO 12913-1:2014; Acoustics—Soundscape—Part 1: Definition and Conceptual Framework. International Organization for Standardization: Geneva, Switzerland, 2014.
- Kountouras, M.; Curcuruto, S.; Mazzocchi, E.; Sacchetti, F.; Vaccaro, L. Applicazione di Una Metodologia Soundscape Per l’ Integrazione Della Valutazione d’ Impatto Acustico; Associazione Italiana di Acustica: Ferrara, Italy, 2016. [Google Scholar]
- Gustavino, C. The Ideal Urban Soundscape: Investigating the Sound Quality of French Cities. Acta Acust. United Acust. 2006, 92, 945–951. [Google Scholar]
- Guo, J. The Assessment of Soundscape Quality in Urban Parks—A Case The Assessment of Soundscape Quality in Urban Parks—A Case Study in Penn Park. Master’s Thesis, University of Pennsylvania, Philadelphia, PA, USA, 2019. [Google Scholar]
- Brambilla, G. The potential of the soundscape approach for the protection and valorization of the rural landscape. Rivista Italiana di Acustica 2015, 39, 1–12. [Google Scholar]
- Aletta, F.; Guattari, C.; Evangelisti, L.; Asdrubali, F.; Oberman, T.; Kang, J. Exploring the compatibility of “Method A” and “Method B” data collection protocols reported in the ISO/TS 12913-2:2018 for urban soundscape via a soundwalk. Appl. Acoust. 2019, 155, 190–203. [Google Scholar] [CrossRef]
- Standard ISO/TS 12913-2:2018; Acoustics—Soundscape—Part 2: Data Collection and Reporting Requirements. International Organization for Standardization: Geneva, Switzerland, 2018.
- Mancini, S.; Mascolo, A.; Graziuso, G.; Guarnaccia, C. Soundwalk, Questionnaires and Noise Measurements in a University Campus: A Soundscape Study. Sustainability 2021, 13, 841. [Google Scholar] [CrossRef]
- Liu, J.; Kang, J.; Behm, H.; Luo, T. Effects of landscape on soundscape perception: Soundwalks in city parks. Landsc. Urban Plan. 2014, 123, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Chitra, B.; Jain, M.; Chundelli, F.A. Understanding the soundscape environment of an urban park through landscape elements. Environ. Technol. Innov. 2020, 19, 100998. [Google Scholar] [CrossRef]
- Pheasant, R.; Horoshenkov, K.; Watts, G.; Barrett, B. The acoustic and visual factors influencing the construction of tranquil space in urban and rural environments tranquil spaces-quiet places? J. Acoust. Soc. Am. 2008, 123, 1446–1457. [Google Scholar] [CrossRef]
- Liu, J.; Kang, J.; Luo, T.; Behm, H. Landscape effects on soundscape experience in city parks. Sci. Total. Environ. 2013, 454–455, 474–481. [Google Scholar] [CrossRef]
- Yang, W.; Kang, J. Acoustic comfort evaluation in urban open public spaces. Appl. Acoust. 2005, 66, 211–229. [Google Scholar] [CrossRef]
- Van Renterghem, T.; Vanhecke, K.; Filipan, K.; Sun, K.; De Pessemier, T.; De Coensel, B.; Joseph, W.; Botteldooren, D. Interactive soundscape augmentation by natural sounds in a noise polluted urban park. Landsc. Urban Plan. 2020, 194, 103705. [Google Scholar] [CrossRef]
- Smith, J.W.; Pijanowski, B.C. Human and policy dimensions of soundscape ecology. Glob. Environ. Chang. 2014, 28, 63–74. [Google Scholar] [CrossRef]
- Carles, J.L.; Barrio, I.L.; de Lucio, J.V. Sound influence on landscape values. Landsc. Urban Plan. 1999, 43, 191–200. [Google Scholar] [CrossRef]
- Standard DIRECTIVE 2002/49/EC; Directive 2002/49/ec of the European Parliament and of the Council of 25 June 2002 Relating to the Assessment and Management of Environmental Noise. European Communities: Brussels, Belgium, 2002.
- Smith, S.J. Performing the (Sound)World. Environ. Plan. Soc. Space 2000, 18, 615–637. [Google Scholar] [CrossRef]
- Raimbault, M.; Dubois, D. Urban soundscapes: Experiences and knowledge. Cities 2005, 22, 339–350. [Google Scholar] [CrossRef]
- Cain, R.; Jennings, P.; Poxon, J. The development and application of the emotional dimensions of a soundscape. Appl. Acoust. 2013, 74, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Payne, S.R. The production of a Perceived Restorativeness Soundscape Scale. Appl. Acoust. 2013, 74, 255–263. [Google Scholar] [CrossRef]
- Hall, D.A.; Irwin, A.; Edmondson-Jones, M.; Phillips, S.; Poxon, J.E. An exploratory evaluation of perceptual, psychoacoustic and acoustical properties of urban soundscapes. Appl. Acoust. 2013, 74, 248–254. [Google Scholar] [CrossRef]
- Axelsson, Ö.; Brown, L. Designing Soundscape for Sustainable Urban Development; City of Stockholm: Stockholm, Sweden, 2010. [Google Scholar]
- Truax, B. TBarry Blesser and Linda-Ruth Salter, Spaces Speak, Are You Listening? Experiencing Aural Architecture. Organised Sound 2007, 12, 185–186. [Google Scholar] [CrossRef]
- Legge Quadro Sull’Inquinamento Acustico. Recommendation Legge 26 Ottobre 1995, n. 447, 1995. Available online: https://www.bosettiegatti.eu/info/norme/statali/1995_0447.htm (accessed on 1 May 2022).
- Spagnolo, R. Manuale di Acustica Applicata; Collana Tesi e ricerca: Ingegneria; UTET Università: Messina, Italy, 2014. [Google Scholar]
- Zwicker, E. Procedure for calculating loudness of temporally variable sounds. J. Acoust. Soc. Am. 1977, 62, 676–682. [Google Scholar] [CrossRef]
- Standard ISO 226:2003; Acoustics—Normal Equal Loudness Level Contours. International Organization for Standardization: Geneva, Switzerland, 2003.
- Gierlich, H. The application of binaural technology. Appl. Acoust. 1992, 36, 219–243. [Google Scholar] [CrossRef]
- MÞller, H. Fundamentals of binaural technology. Appl. Acoust. 1992, 36, 171–218. [Google Scholar] [CrossRef] [Green Version]
- Gauthier, P.A.; Scullion, W.; Berry, A. Sound quality prediction based on systematic metric selection and shrinkage: Comparison of stepwise, lasso, and elastic-net algorithms and clustering preprocessing. J. Sound Vib. 2017, 400, 134–153. [Google Scholar] [CrossRef]
- Shin, S.H.; Ih, J.G.; Hashimoto, T.; Hatano, S. Sound quality evaluation of the booming sensation for passenger cars. Appl. Acoust. 2009, 70, 309–320. [Google Scholar] [CrossRef]
- Recommendation ITU-R BT.2020 (10/2015); Parameter Values for Ultra-High Definition Television Systems for Production and International Programme Exchange. International Telecommunication Union: Geneva, Switzerland; North American Broadcasters Association (NABA): Toronto, OT, Canada, 2020.
- Liu, J.; Kang, J. Soundscape design in city parks: Exploring the relationships between soundscape composition parameters and physical and psychoacoustic parameters. J. Environ. Eng. Landsc. Manag. 2015, 23, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.Y.; Hong, J.Y.; Lee, P.J. Soundwalk approach to identify urban soundscapes individually. J. Acoust. Soc. Am. 2013, 134, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Marry, S.; Defrance, J. Analysis of the perception and representation of sonic public spaces through on site survey, acoustic indicators and in-depth interviews. Appl. Acoust. 2013, 74, 282–292. [Google Scholar] [CrossRef]
- Recommendation ITU BS.1116-3 (02/2015); Methods for the Subjective Assessment of Small Impairments in Audio Systems. International Telecommunication Union: Geneva, Switzerland; North American Broadcasters Association (NABA): Toronto, OT, Canada, 2015.
- Recommendation ITU BS.1534-3 (10/2015); Methods for the Subjective Assessment of Small Impairments in Audio Systems. International Telecommunication Union: Geneva, Switzerland; North American Broadcasters Association (NABA): Toronto, OT, Canada, 2015.
- Aletta, F. Soundscape assessment: Towards a validated translation of perceptual attributes in different languages. INTER-NOISE NOISE-CON Congr. Conf. Proc. 2020, 14, 3137–3146. [Google Scholar]
- Di Loreto, S.; Serpilli, F.; Lori, V.; Squartini, S. Sound quality evaluation of kitchen hoods. Appl. Acoust. 2020, 168, 107415. [Google Scholar] [CrossRef]
- Bowman, N. The articulation index and its application to room acoustics design. J. Sound Vib. 1974, 32, 109-IN3. [Google Scholar] [CrossRef]
- Widmann, U. A psychoacoustic annoyance concept for application in sound quality. J. Acoust. Soc. Am. 1997, 101, 3078. [Google Scholar] [CrossRef]
- Lopez-Ballester, J.; Pastor-Aparicio, A.; Segura-Garcia, J.; Felici-Castell, S.; Cobos, M. Computation of Psycho-Acoustic Annoyance Using Deep Neural Networks. Appl. Sci. 2019, 15, 3136. [Google Scholar] [CrossRef] [Green Version]
- Chee, J. Pearson’s Product Moment Correlation: Sample Analysis; Technical Report; University of Hawaii at Mānoa School of Nursing: Honolulu, HI, USA, 2015. [Google Scholar]
- Howard, D.; Angus, J. Acoustics and Psychoacoustics, 5th ed.; Routledge: London, UK, 2017; pp. 1–510. [Google Scholar]
- Rehan, R.M. The phonic identity of the city urban soundscape for sustainable spaces. HBRC J. 2016, 12, 337–349. [Google Scholar] [CrossRef] [Green Version]
Cluster | SPL (dBA) | Loudness (Phone) | Sharpness (Acum) | Fluctation Strength (Vacil) | Roughness (Asper) | |
---|---|---|---|---|---|---|
C1 | L | 34.9 | 52.33 | 1.11 | 0.33 | 1.17 |
R | 37.7 | 54.98 | 1.10 | 0.41 | 1.58 | |
C2 | L | 31.8 | 49.04 | 1.04 | 0.18 | 2.46 |
R | 33.1 | 47.99 | 0.66 | 0.18 | 2.54 | |
C3 | L | 53.8 | 67.50 | 1.38 | 1.10 | 1.80 |
R | 51.2 | 62.68 | 1.01 | 0.62 | 1.42 | |
C4 | L | 33.1 | 48.83 | 0.68 | 0.31 | 0.44 |
R | 34.8 | 50.94 | 0.67 | 0.43 | 0.34 | |
C5 | L | 26.0 | 49.46 | 1.11 | 0.31 | 2.96 |
R | 26.2 | 47.81 | 1.00 | 0.25 | 2.71 | |
C6 | L | 31.3 | 53.52 | 1.19 | 0.17 | 1.07 |
R | 32.6 | 54.69 | 1.14 | 0.40 | 1.16 | |
C7 | L | 39.8 | 59.09 | 1.25 | 0.67 | 1.94 |
R | 40.0 | 59.50 | 1.13 | 0.67 | 1.76 | |
C8 | L | 36.8 | 53.01 | 1.43 | 0.43 | 0.98 |
R | 38.8 | 54.63 | 1.05 | 0.67 | 1.36 |
Cluster | Loudness [Free 5%] (Sone) | Loudness [Free 50%] (Sone) | Loudness [Free 90%] (Sone) | |
---|---|---|---|---|
C1 | L | 2.670 | 2.026 | 1.723 |
R | 3.284 | 2.617 | 2.257 | |
C2 | L | 1.768 | 1.443 | 1.288 |
R | 1.979 | 1.655 | 1.428 | |
C3 | L | 2.062 | 1.692 | 1.503 |
R | 2.374 | 1.882 | 1.673 | |
C4 | L | 6.899 | 4.502 | 3.720 |
R | 5.286 | 4.345 | 3.907 | |
C5 | L | 2.467 | 0.907 | 0.684 |
R | 2.209 | 0.845 | 0.688 | |
C6 | L | 1.892 | 1.506 | 1.333 |
R | 2.273 | 1.649 | 1.450 | |
C7 | L | 4.071 | 3.059 | 2.664 |
R | 4.007 | 3.130 | 2.677 | |
C8 | L | 3.589 | 1.310 | 0.802 |
R | 5.162 | 1.369 | 0.984 |
Cluster | Sample Mean | Sample Standard Deviation | Confidence Level Value 1 − = 0.95 | Confidence Interval (Normal) | |
---|---|---|---|---|---|
C1 | Pleasant | 4.30 | 1.07 | 0.05 | 0.24 |
Annoying | 3.73 | 1.15 | 0.05 | 0.26 | |
Vibrant | 3.62 | 1.42 | 0.05 | 0.32 | |
Calm | 4.07 | 1.08 | 0.05 | 0.25 | |
Uneventful | 4.19 | 1.08 | 0.05 | 0.25 | |
Monotonous | 1.39 | 0.81 | 0.05 | 0.18 | |
Eventful | 3.58 | 1.46 | 0.05 | 0.33 | |
Chaotic | 1.28 | 0.69 | 0.05 | 0.16 | |
C2 | Pleasant | 3.05 | 1.26 | 0.05 | 0.29 |
Annoying | 2.24 | 1.20 | 0.05 | 0.27 | |
Vibrant | 3.30 | 1.30 | 0.05 | 0.30 | |
Calm | 2.57 | 1.26 | 0.05 | 0.29 | |
Uneventful | 2.80 | 1.17 | 0.05 | 0.27 | |
Monotonous | 2.31 | 1.20 | 0.05 | 0.27 | |
Eventful | 2.68 | 1.55 | 0.05 | 0.35 | |
Chaotic | 1.85 | 1.03 | 0.05 | 0.23 | |
C3 | Pleasant | 2.66 | 1.01 | 0.05 | 0.23 |
Annoying | 2.49 | 1.00 | 0.05 | 0.23 | |
Vibrant | 2.92 | 1.00 | 0.05 | 0.23 | |
Calm | 2.78 | 1.14 | 0.05 | 0.26 | |
Uneventful | 3.16 | 1.26 | 0.05 | 0.29 | |
Monotonous | 2.76 | 1.32 | 0.05 | 0.30 | |
Eventful | 2.84 | 1.28 | 0.05 | 0.29 | |
Chaotic | 1.96 | 1.05 | 0.05 | 0.24 | |
C4 | Pleasant | 3.34 | 1.21 | 0.05 | 0.28 |
Annoying | 2.53 | 1.16 | 0.05 | 0.26 | |
Vibrant | 3.32 | 1.24 | 0.05 | 0.28 | |
Calm | 2.95 | 1.30 | 0.05 | 0.30 | |
Uneventful | 3.01 | 1.31 | 0.05 | 0.30 | |
Monotonous | 2.78 | 1.38 | 0.05 | 0.31 | |
Eventful | 3.08 | 1.28 | 0.05 | 0.29 | |
Chaotic | 2.01 | 1.08 | 0.05 | 0.25 | |
C5 | Pleasant | 1.95 | 0.93 | 0.05 | 0.21 |
Annoying | 2.24 | 0.93 | 0.05 | 0.21 | |
Vibrant | 2.76 | 1.31 | 0.05 | 0.30 | |
Calm | 1.73 | 1.01 | 0.05 | 0.23 | |
Uneventful | 2.03 | 1.05 | 0.05 | 0.24 | |
Monotonous | 2.23 | 1.37 | 0.05 | 0.31 | |
Eventful | 1.93 | 1.21 | 0.05 | 0.28 | |
Chaotic | 2.95 | 1.38 | 0.05 | 0.32 | |
C6 | Pleasant | 2.95 | 1.32 | 0.05 | 0.30 |
Annoying | 2.59 | 1.39 | 0.05 | 0.32 | |
Vibrant | 2.97 | 1.35 | 0.05 | 0.31 | |
Calm | 3.01 | 1.21 | 0.05 | 0.28 | |
Uneventful | 3.03 | 1.23 | 0.05 | 0.28 | |
Monotonous | 2.14 | 1.13 | 0.05 | 0.26 | |
Eventful | 2.47 | 1.16 | 0.05 | 0.26 | |
Chaotic | 2.22 | 1.14 | 0.05 | 0.26 | |
C7 | Pleasant | 3.54 | 1.27 | 0.05 | 0.29 |
Annoying | 3.34 | 1.25 | 0.05 | 0.29 | |
Vibrant | 3.11 | 1.30 | 0.05 | 0.30 | |
Calm | 3.51 | 1.24 | 0.05 | 0.28 | |
Uneventful | 3.36 | 1.28 | 0.05 | 0.29 | |
Monotonous | 2.05 | 1.07 | 0.05 | 0.24 | |
Eventful | 3.53 | 1.17 | 0.05 | 0.27 | |
Chaotic | 1.96 | 0.93 | 0.05 | 0.21 | |
C8 | Pleasant | 2.92 | 1.41 | 0.05 | 0.32 |
Annoying | 2.38 | 1.32 | 0.05 | 0.30 | |
Vibrant | 3.03 | 1.54 | 0.05 | 0.35 | |
Calm | 2.78 | 1.46 | 0.05 | 0.33 | |
Uneventful | 3.04 | 1.45 | 0.05 | 0.33 | |
Monotonous | 2.20 | 1.02 | 0.05 | 0.23 | |
Eventful | 2.30 | 1.12 | 0.05 | 0.26 | |
Chaotic | 2.49 | 1.36 | 0.05 | 0.31 |
Leq_dx | Leq_sx | Phone_dx | Phone_sx | Sharp_dx | Sharp_sx | fs_dx | fs_sx | r_dx | r_sx | |
---|---|---|---|---|---|---|---|---|---|---|
Pleasant | 0.75 | 0.83 | 0.87 | 0.84 | 0.81 | 0.85 | 0.44 | 0.34 | 0.49 | 0.56 |
Annoying | 0.34 | 0.23 | 0.59 | 0.27 | 0.75 | 0.78 | 0.40 | 0.17 | 0.90 | 0.94 |
Vibrant | 0.69 | 0.78 | 0.50 | 0.41 | 0.10 | 0.23 | 0.09 | 0.31 | 0.67 | 0.62 |
Calm | 0.63 | 0.68 | 0.76 | 0.70 | 0.49 | 0.15 | 0.56 | 0.23 | 0.89 | 0.86 |
Uneventful | 0.56 | 0.39 | 0.59 | 0.22 | 0.31 | −0.02 | 0.46 | 0.11 | 0.71 | 0.75 |
Monotonous | 0.33 | 0.44 | 0.07 | 0.33 | −0.69 | −0.22 | 0.14 | 0.49 | −0.66 | −0.17 |
Eventful | 0.75 | 0.66 | 0.78 | 0.56 | 0.21 | −0.03 | 0.49 | 0.52 | 0.73 | 0.65 |
Chaotic | −0.52 | −0.39 | −0.39 | −0.17 | 0.14 | 0.29 | −0.06 | −0.08 | −0.36 | −0.11 |
Subjective Response | Sse | r_Square | DFE | Rmse |
---|---|---|---|---|
Pleasant | 0.21 | 0.82 | 3 | 0.36 |
Eventful | 1.29 | 0.76 | 2 | 0.56 |
Vibrant | 1.71 | 0.81 | 2 | 0.47 |
Calm | 0.70 | 0.86 | 3 | 0.48 |
Annoying | 0.65 | 0.80 | 3 | 0.46 |
Location | PA (Port) | SQI (Sound Quality Index) |
---|---|---|
C1 | 6.6 | 6.9 |
C2 | 6.0 | 5.3 |
C3 | 4.9 | 9.9 |
C4 | 7.6 | 5.6 |
C5 | 5.1 | 4.7 |
C6 | 6.5 | 6.3 |
C7 | 3.9 | 9.2 |
C8 | 8.5 | 7.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Loreto, S.; Serpilli, F.; Lori, V. Soundscape Approach in the Seaport of Ancona: A Case Study. Acoustics 2022, 4, 492-516. https://doi.org/10.3390/acoustics4020031
Di Loreto S, Serpilli F, Lori V. Soundscape Approach in the Seaport of Ancona: A Case Study. Acoustics. 2022; 4(2):492-516. https://doi.org/10.3390/acoustics4020031
Chicago/Turabian StyleDi Loreto, Samantha, Fabio Serpilli, and Valter Lori. 2022. "Soundscape Approach in the Seaport of Ancona: A Case Study" Acoustics 4, no. 2: 492-516. https://doi.org/10.3390/acoustics4020031
APA StyleDi Loreto, S., Serpilli, F., & Lori, V. (2022). Soundscape Approach in the Seaport of Ancona: A Case Study. Acoustics, 4(2), 492-516. https://doi.org/10.3390/acoustics4020031