Environmental Noise Evolution during COVID-19 State of Emergency: Evidence of Peru’s Need for Action Plans
Abstract
:1. Introduction
2. Methodology
2.1. Measurement Area
2.2. Mobility Restriction Stages during the Research Period
2.3. Measurement Method
3. Results
3.1. SPL Evolution. Comparison to Existing Regulations and to Values Prior to the CSI
3.2. Impact of Traffic Flow Evolution on the SPL
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- WHO. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19–11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19 (accessed on 11 March 2020).
- MINSA. Coronavirus en el Perú: Casos Confirmados Gobierno del Perú. Available online: https://www.gob.pe/8662-coronavirus-en-el-peru-casos-confirmados (accessed on 20 September 2021).
- Chinazzi, M.; Davis, J.T.; Ajelli, M.; Gioannini, C.; Litvinova, M.; Merler, S.; Pastore, A.; Rossi, L.; Sun, K.; Xiong, X.; et al. The Effect of Travel Restrictions on the Spread of the 2019 Novel Coronavirus (2019-NCoV) Outbreak. Science 2020, 368, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, H.; Wangb, L.; Yangc, Y. Human Mobility Restrictions and the Spread of the Novel Coronavirus (2019-NCoV) in China. J. Public Econ. 2020, 191, 104272. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, M.U.G.; Yang, C.; Gutierrez, B.; Wu, C.; Klein, B.; Pigott, D.M.; Data, O.C.-; Group, W.; Plessis, L.; Faria, N.R.; et al. The Effect of Human Mobility and Control Measures on the COVID-19 Epidemic in China. Sci. First Release 2020, 1–29, 493–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, H.; Liu, Y.; Li, Y.; Wu, C.; Chen, B.; Kraemer, M.U.G.; Li, B.; Cai, J.; Xu, B.; Yang, Q.; et al. An Investigation of Transmission Control Measures during the First 50 Days of the COVID-19 Epidemic in China. Science 2020, 642, 638–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zambrano-Monserrate, M.A.; Ruano, M.A.; Sanchez-Alcalde, L. Indirect Effects of COVID-19 on the Environment. Sci. Total Environ. 2020, 728, 138813. [Google Scholar] [CrossRef]
- Asdrubali, F.; Brambilla, G. Noise Mapping Special Issue: The Noise Climate at the Time of SARS-CoV-2 Virus/COVID-19 Disease. Noise Mapp. 2021, 8, 204–206. [Google Scholar] [CrossRef]
- Tobías, A. Evaluation of the Lockdowns for the SARS-CoV-2 Epidemic in Italy and Spain after One Month Follow Up. Sci. Total Environ. 2020, 725, 138539. [Google Scholar] [CrossRef]
- Kerimray, A.; Baimatova, N.; Ibragimova, O.; Bukenov, B.; Kenessov, B.; Plotitsyn, P.; Karaca, F. Assessing air quality changes in large cities during COVID-19 lockdowns: The impacts of traffic-free urban conditions in Almaty, Kazakhstan. Sci. Total Environ. 2020, 730, 139179. [Google Scholar] [CrossRef]
- Dantas, G.; Siciliano, B.; França, B.B.; da Silva, C.M.; Arbilla, G. The Impact of COVID-19 Partial Lockdown on the Air Quality of the City of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729, 139085. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Carnevale Miino, M. Lockdown for COVID-2019 in Milan: What Are the Effects on Air Quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef]
- Basu, B.; Murphy, E.; Molter, A.; Basu, A.S.; Sannigrahi, S.; Belmonte, M.; Pilla, F. Investigating changes in noise pollution due to the COVID-19 lockdown: The case of Dublin, Ireland. Sustain. Cities Soc. 2020, 65, 102597. [Google Scholar] [CrossRef]
- Andersen, A.L.; Hansen, E.T.; Johannesen, N.; Sheridan, A. Pandemic, Shutdown and Consumer Spending: Lessons from Scandinavian Policy Responses to COVID-19. Gen. Econ. 2020, 2005, 04630. [Google Scholar] [CrossRef]
- Rumpler, R.; Venkataraman, S.; Göransson, P. An observation of the impact of CoViD-19 recommendation measures monitored through urban noise levels in central Stockholm, Sweden. Sustain. Cities Soc. 2020, 63, 102469. [Google Scholar] [CrossRef] [PubMed]
- Amoatey, P.; Al-Harthy, I.; Al-Jabri, K.; Al-Mamun, A.; Baawain, M.S.; Al-Mayahi, A. Impact of COVID-19 Pandemic on Aircraft Noise Levels, Annoyance, and Health Effects in an Urban Area in Oman. Environ. Sci. Pollut. Res. 2022, 29, 23407–23418. [Google Scholar] [CrossRef] [PubMed]
- Caniato, M.; Bettarello, F.; Gasparella, A. Indoor and Outdoor Noise Changes Due to the COVID-19 Lockdown and Their Effects on Individuals’ Expectations and Preferences. Sci. Rep. 2021, 11, 16533. [Google Scholar] [CrossRef]
- Terry, C.; Rothendler, M.; Zipf, L.; Dietze, M.C.; Primack, R.B. Effects of the COVID-19 pandemic on noise pollution in three protected areas in metropolitan Boston (USA). Biol. Conserv. 2021, 256, 109039. [Google Scholar] [CrossRef]
- Yang, W.; Kang, J. Acoustic comfort evaluation in urban open public spaces. Appl. Acoust. 2005, 66, 211–229. [Google Scholar] [CrossRef]
- WHO. WHO Environmental Noise Guidelines for the European Region; WHO Regional Office for Europe, Ed.; WHO Regional Office for Europe: Marmorvej, Denmark, 2018. [Google Scholar]
- Zambrano-Monserrate, M.A.; Ruano, M.A. Does environmental noise affect housing rental prices in developing countries? Evidence from Ecuador. Land Use Policy 2019, 87, 104059. [Google Scholar] [CrossRef]
- Bendtsen, H. The Nordic Prediction Method for Road Traffic Noise. Sci. Total Environ. 1999, 235, 331–338. [Google Scholar] [CrossRef]
- Xiao, H.; Eilon, Z.C.; Ji, C.; Tanimoto, T. COVID-19 Societal Response Captured by Seismic Noise in China and Italy. Seism. Res. Lett. 2020, 91, 2757–2768. [Google Scholar] [CrossRef]
- Yabe, S.; Imanishi, K.; Nishida, K. Two-step seismic noise reduction caused by COVID-19 induced reduction in social activity in metropolitan Tokyo, Japan. Earth Planets Space 2020, 72, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Das, S.; Singh, D.; Maurya, A.K. Effect of COVID-19 lockdown on noise pollution levels in an Indian city: A case study of Kanpur. Environ. Sci. Pollut. Res. 2021, 28, 46007–46019. [Google Scholar] [CrossRef] [PubMed]
- Zambon, G.; Confalonieri, C.; Angelini, F.; Benocci, R. Effects of COVID-19 outbreak on the sound environment of the city of Milan, Italy. Noise Mapp. 2021, 8, 116–128. [Google Scholar] [CrossRef]
- Asensio, C.; Pavón, I.; de Arcas, G. Changes in noise levels in the city of Madrid during COVID-19 lockdown in 2020. J. Acoust. Soc. Am. 2020, 148, 1748–1755. [Google Scholar] [CrossRef]
- Gevú, N.; Carvalho, B.; Fagerlande, G.C.; Niemeyer, M.L.; Cortês, M.M.; Torres, J.C.B. Rio de Janeiro noise mapping during the COVID-19 pandemic period. Noise Mapp. 2021, 8, 162–171. [Google Scholar] [CrossRef]
- Ojeda, J.; Ruiz, S. Seismic noise variability as an indicator of urban mobility during the COVID-19 pandemic in the Santiago metropolitan region, Chile. Solid Earth 2021, 12, 1075–1085. [Google Scholar] [CrossRef]
- Said, G.; Arias, A.; Carilli, L.; Stasi, A. Urban noise measurements in the City of Buenos Aires during the mandatory quarantine. J. Acoust. Soc. Am. 2020, 148, 3149–3152. [Google Scholar] [CrossRef]
- DECRETO SUPREMO N 085-2003-PCM: Reglamento de Estándares Nacionales de Calidad Ambiental para Ruido. Available online: https://sinia.minam.gob.pe/normas/reglamento-estandares-nacionales-calidad-ambiental-ruido (accessed on 20 May 2022).
- OEFA. La Contaminación Sonora En Lima y Callao; OEFA: Nyon, Switzerland, 2016; pp. 148–162. [Google Scholar]
- García-Rivero, A.E.; Yuli-Posadas, R.; Romero, W.R.; Sánchez-Ccoyllo, O.; Bulege-Gutierrez, W.; Tasayco, H.G.G.; Fernández-Gusmán, V. Daytime perimeter environmental noise in the vicinity of four hospitals in the city of Lima, Peru. Noise Mapp. 2020, 7, 239–247. [Google Scholar] [CrossRef]
- Urban Population (% of Total Population)–Peru Data. Available online: https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?locations=PE (accessed on 17 February 2022).
- INEI. Instituto Nacional de Estadistica e Informatica. Available online: https://m.inei.gob.pe/estadisticas/indice-tematico/poblacion-y-vivienda/ (accessed on 16 February 2022).
- Licitra, G.; Ascari, E.; Brambilla, G. Comparative Analysis of Methods to Estimate Urban Noise Exposure of Inhabitants. Acta Acust. United Acust. 2012, 98, 659–666. [Google Scholar] [CrossRef]
- Sotiropoulou, A.; Karagiannis, I.; Vougioukas, E.; Ballis, A.; Bouki, A. Measurements and Prediction of Road Traffic Noise along High-Rise Building Facądes in Athens. Noise Mapp. 2020, 7, 1–13. [Google Scholar] [CrossRef]
- Municipalidad Metropolitana Lima. Ordenanza 341. El Peruano, 2001; 213501–213512.
- MINAM. Protocolo Nacional de Monitoreo de Ruido Ambiental. 2013. Available online: https://www.minam.gob.pe/wp-content/uploads/2014/02/RM-N%C2%BA-227-2013-MINAM.pdf (accessed on 20 September 2021).
- El Peruano. Diario Oficial El Peruano. Available online: https://diariooficial.elperuano.pe/Normas (accessed on 20 September 2021).
- Rodríguez Flores, R.G. Aplicación Del Modelo TNM (Trafic Noise Model) Para La Predicción Del Nivel de Ruido En La Avenida Brasil; Universidad Nacional del Callao: Lima, Peru, 2018. [Google Scholar]
Zones | Values in LAeq, T * (dBA) | |
---|---|---|
Day | Night | |
(07:01 a.m.–10:00 p.m.) | (10:01 p.m.–07:00 a.m.) | |
Special Protected | 50 | 40 |
Residential | 60 | 50 |
Commercial | 70 | 60 |
Industrial | 80 | 70 |
Date | Compulsory Social Immobilization | Economic Activity Resumption | |||
---|---|---|---|---|---|
I-Reference | Schedule (h) | Total Hours | Starting Date | E-Reference | |
18 March 2020 | Immb 1 | 20:00 a 5:00 * | 9 | 18 March 2020 | Phase 0 |
30 March 2020 | Immb 2 | 18:00 a 5:00 * | 11 | ||
10 April 2020 | Immb 3 | 18:00 a 4:00 * | 10 | ||
4 May 2020 | Phase 1 | ||||
10 May 2020 | Immb 4 | 20:00 a 4:00 * | 8 | ||
23 May 2020 | Immb 5 | 21:00 a 4:00 * | 7 | ||
4 June 2020 | Phase 2 | ||||
26 June 2020 | Immb 6 | 22:00 a 4:00 * | 6 | ||
1 July 2020 | Phase 3 | ||||
Phase 0: | Authorisation only for essential activities (hospitals, pharmacies, markets, supermarkets, fire brigades, police, waste collection, night watching, electricity sector, etc.). | ||||
Phase 1: | Large mining, industrial fishing, projects in the transport sector, industry sector, restaurant delivery services, building maintenance, and household goods commerce. | ||||
Phase 2: | Medium and small mining, beverage and related industry, sale and maintenance of vehicles, professional, scientific, and technical services. | ||||
Phase 3: | Remaining activities in the mining and construction sector, stores with a capacity of 50%, restaurants with a capacity of 40%, other business activities with a capacity of 50% |
Measurement Number | Date | Social Immobilization Evolution | ||
---|---|---|---|---|
Days | Week | I-Reference | ||
1 | 18 March | 1 | 1 | Immb 1 |
2 | 19 March | 2 | 1 | Immb 1 |
3 | 21 March | 4 | 1 | Immb 1 |
4 | 23 March | 6 | 2 | Immb 1 |
5 | 27 March | 10 | 2 | Immb 1 |
6 | 11 June | 86 | 13 | Immb 3 |
7 | 30 June | 105 | 16 | Immb 6 |
8 | 02 July | 107 | 16 | Immb 6 |
Date | Leq day (07:01—22:00 h) dBA | Leq night (22:01—07:00 h) dBA | Immobilization and Economic Activity References | ||||
---|---|---|---|---|---|---|---|
Leq | Lmax | Lmin | Leq | Lmax | Lmin | ||
18 March | 64.1 | 92.0 | 43.7 | 56.3 | 90.1 | 35.3 | Immb1-Ph0 |
19 March | 63.4 | 93.3 | 40.9 | 56.6 | 91.2 | 36.2 | Immb1-Ph0 |
21 March | 64.7 | 95.2 | 39.8 | 56.5 | 89.7 | 36.0 | Immb1-Ph0 |
23 March | 62.5 | 96.1 | 40.4 | 56.5 | 89.9 | 35.8 | Immb1-Ph0 |
27 March | 63.5 | 97.6 | 41.3 | 56.4 | 90.3 | 36.0 | Immb1-Ph0 |
11 June | 69.1 | 96.0 | 40.0 | 56.8 | 89.8 | 35.8 | Immb3-Ph2 |
30 June | 69.9 | 98.4 | 39.5 | 59.5 | 88.6 | 35.9 | Immb6-Ph2 |
02 June | 71.6 | 99.0 | 38.6 | 63.5 | 87.7 | 34.1 | Immb6-Ph3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, R.; Machimbarrena, M.; Tarrero, A.I. Environmental Noise Evolution during COVID-19 State of Emergency: Evidence of Peru’s Need for Action Plans. Acoustics 2022, 4, 479-491. https://doi.org/10.3390/acoustics4020030
Rodríguez R, Machimbarrena M, Tarrero AI. Environmental Noise Evolution during COVID-19 State of Emergency: Evidence of Peru’s Need for Action Plans. Acoustics. 2022; 4(2):479-491. https://doi.org/10.3390/acoustics4020030
Chicago/Turabian StyleRodríguez, Rubén, María Machimbarrena, and Ana I. Tarrero. 2022. "Environmental Noise Evolution during COVID-19 State of Emergency: Evidence of Peru’s Need for Action Plans" Acoustics 4, no. 2: 479-491. https://doi.org/10.3390/acoustics4020030
APA StyleRodríguez, R., Machimbarrena, M., & Tarrero, A. I. (2022). Environmental Noise Evolution during COVID-19 State of Emergency: Evidence of Peru’s Need for Action Plans. Acoustics, 4(2), 479-491. https://doi.org/10.3390/acoustics4020030