Measurement of Ultrasound Parameters of Bovine Cancellous Bone as a Function of Frequency for a Range of Porosities via Through-Transmission Ultrasonic Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Cancellous Bone
2.2. Ultrasonic Measurement
2.3. Water Saturation Method of Bone Porosity Measurement
2.4. QCT Bone Porosity Measurement
3. Results and Discussion
3.1. Validation of Experimental Method Using Polyethylene Disks
3.2. Calculation of Ultrasound Parameters for Cancellous Bone Samples
3.3. Relationship between Porosity and Ultrasonic Parameters of Bone Samples
3.4. Role of Pore Size Distribution on Ultrasound Parameters of Bone Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marcus, R.; Bouxsein, M. Understanding osteoporosis. West. J. Med. 2008, 155, 53–60. [Google Scholar]
- Peck, W.A. Consensus development conference: Diagnosis, prophylaxis, and treatment of osteoporosis. Am. J. Med. 1993, 94, 646–650. [Google Scholar]
- Frost, M.L.; Blake, G.M.; Fogelman, I. Quantitative Ultrasound and Bone Mineral Density Are Equally Strongly Associated with Risk Factors for Osteoporosis. J. Bone Miner. Res. 2001, 16, 406–416. [Google Scholar] [CrossRef]
- Njeh, C.F.; Boivin, C.M.; Langton, C.M. The role of ultrasound in the assessment of osteoporosis: A review. Osteoporosis Int. 1997, 7, 1433–2965. [Google Scholar] [CrossRef] [PubMed]
- Langton, C.M.; Palmer, S.B.; Porter, R.W. The Measurement of Broadband Ultrasonic Attenuation in Cancellous Bone. Eng. Med. 1984, 13, 89–91. [Google Scholar] [CrossRef] [Green Version]
- Turner, C.H.; Peacock, M.; Timmerman, L.; Neal, J.M.; Johnston, C.C. Calcaneal ultrasonic measurements discriminate hip fracture independently of bone mass. Osteoporos. Int. 2001, 5, 130–135. [Google Scholar] [CrossRef]
- Kaufman, J.J.; Einhorn, T.A. Ultrasound assessment of bone. J. Bone Miner. Res. 1998, 8, 517–525. [Google Scholar] [CrossRef]
- Nicholson, P.H.F.; Müller, R.; Lowet, G.; Cheng, X.G.; Hildebrand, T.; Rüegsegger, P.; Vander, P.G.; Dequeker, J.; Boonen, S. Do quantitative ultrasound measurements reflect structure independently of density in human vertebral cancellous bone? Bone 1997, 23, 425–431. [Google Scholar] [CrossRef]
- Njeh, C.F.; Hodgskinson, R.; Currey, J.D.; Langton, C.M. Orthogonal relationships between ultrasonic velocity and material properties of bovine cancellous bone. Med. Eng. Phys. 1996, 18, 373–381. [Google Scholar] [CrossRef]
- Tavakoli, M.B.; Evans, J.A. Dependence of the velocity and attenuation of ultrasound in bone on the mineral content. Phys. Med. Biol. 1991, 36, 1529–1537. [Google Scholar] [CrossRef]
- Harrar, K.; Hamami, L.; Akkoul, S.; Lespessailles, E.; Jennane, R. Osteoporosis assessment using Multilayer Perceptron neural networks. In Proceedings of the 2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA), Istanbul, Turkey, 15–18 October 2012; pp. 217–221. [Google Scholar]
- Chaffaı, S.; Peyrin, F.; Nuzzo, S.; Porcher, R.; Berger, G.; Laugier, P. Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: Relationships to density and microstructure. Bone 2002, 30, 229–237. [Google Scholar] [CrossRef]
- Hans, D.; Schott, A.M.; Meunier, P.J. Ultrasonic assessment of bone: A review. Eur. J. Med. 1993, 3, 157–163. [Google Scholar]
- Wear, K.A. Mechanisms of interaction of ultrasound with cancellous bone: A review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2019, 67, 454–482. [Google Scholar] [CrossRef] [PubMed]
- Hodaei, M.; Maghoul, P.; Popplewell, N. An overview of the acoustic studies of bone-like porous materials, and the effect of transverse acoustic waves. Int. J. Eng. Sci. 2020, 147, 103189. [Google Scholar] [CrossRef]
- Fields, A.J.; Lee, G.L.; Liu, X.S.; Jekir, M.G.; Guo, X.E.; Keaveny, T.M. Influence of vertical trabeculae on the compressive strength of the human vertebra. J. Bone Miner. Res. 2020, 147, 103189. [Google Scholar] [CrossRef] [Green Version]
- Seeman, E. Age- and Menopause-Related Bone Loss Compromise Cortical and Trabecular Microstructure. J. Gerontol. Ser. A 2013, 68, 1218–1225. [Google Scholar] [CrossRef] [Green Version]
- Harrar, K.; Jennane, R. Quantification of trabecular bone porosity on X-ray images. J. Ind. Intell. Inf. 2015, 3, 280–285. [Google Scholar] [CrossRef]
- Hosokawa, A.; Otani, T. Ultrasonic wave propagation in bovine cancellous bone. J. Acoust. Soc. Am. 1997, 101, 558–562. [Google Scholar] [CrossRef]
- Clarke, A.J.; Evans, J.A.; Truscott, J.G.; Milner, R.; Smith, M.A. A phantom for quantitative ultrasound of trabecular bone. Phys. Med. Biol. 1994, 39, 1677. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.L.; Grimm, M.J.; Wehrli, F.W.; Foster, K.R.; Chung, H.W. Prediction of frequency and pore size dependent attenuation of ultrasound in trabecular bone using Biot theory. In Mechanics of Poroelastic Media; Selvadurai, A.P.S., Ed.; Springer: Dordrecht, The Netherlands, 1996; pp. 263–271. [Google Scholar]
- Hans, D.; Fuerst, T.; Duboeuf, F. Quantitative ultrasound bone measurement. Eur. Radiol. 1997, 7, S43. [Google Scholar] [CrossRef]
- Hodgskinson, R.; Njeh, C.F.; Whitehead, M.A.; Langton, C.M. The nonlinear relationship between BUA and porosity in cancellous bone. Phys. Med. Biol. 1996, 41, 2411–2420. [Google Scholar] [CrossRef]
- Serpe, L.; Rho, J.Y. Assessment of bone density using ultrasonic backscatter. J. Biomech. 1996, 29, 963–966. [Google Scholar] [CrossRef]
- Strelitzki, R.; Evans, J.A.; Clarke, A.J. The influence of porosity and pore size on the ultrasonic properties of bone investigated using a phantom material. Osteoporos. Int. 1997, 7, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Wear, K.A. Group velocity, phase velocity, and dispersion in human calcaneus in vivo. J. Acoust. Soc. Am. 2007, 121, 2431–2437. [Google Scholar] [CrossRef]
- Nicholson, P.H.F.; Lowet, G.; Langton, C.M.; Dequeker, J.; Van der Perre, G. A comparison of time-domain and frequency-domain approaches to ultrasonic velocity measurement in trabecular bone. Phys. Med. Biol. 1996, 41, 2421. [Google Scholar] [CrossRef]
- Wear, K.A. The dependencies of phase velocity and dispersion on trabecular thickness and spacing in trabecular bone-mimicking phantoms. J. Acoust. Soc. Am. 2005, 118, 1186–1192. [Google Scholar] [CrossRef]
- Wear, K.A. The dependencies of phase velocity and dispersion on volume fraction in cancellous-bone-mimicking phantoms. J. Acoust. Soc. Am. 2009, 125, 1197–1201. [Google Scholar] [CrossRef] [PubMed]
- Haiat, G.; Naili, S. Independent scattering model and velocity dispersion in trabecular bone: Comparison with a multiple scattering model. Biomech. Model. Mechanobiol. 2011, 10, 95–108. [Google Scholar] [CrossRef]
- Bauer, A.Q.; Marutyan, K.R.; Holland, M.R.; Miller, J.G. Negative dispersion in bone: The role of interference in measurements of the apparent phase velocity of two temporally overlapping signals. J. Acoust. Soc. Am. 2011, 123, 2407–2414. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C.C.; Marutyan, K.R.; Holland, M.R.; Wear, K.A.; Miller, J.G. Interference between wave modes may contribute to the apparent negative dispersion observed in cancellous bone. J. Acoust. Soc. Am. 2008, 124, 1781–1789. [Google Scholar] [CrossRef] [PubMed]
- Hughes, E.R.; Leighton, T.G.; Petley, G.W.; White, P.R. Ultrasonic propagation in cancellous bone: A new stratified model. Ultrasound Med. Biol. 1999, 25, 811–821. [Google Scholar] [CrossRef]
- Pal, S.; Saha, S.; Reddy, G.N. Frequency Dependence of Ultrasonic Characteristics of Cancellous Bone. In Biomedical Engineering I; Saha, S., Ed.; Publishing House: Oxford, UK, 1982; pp. 352–356. [Google Scholar]
- Fry, F.J.; Barger, J.E. Acoustical properties of the human skull. J. Acoust. Soc. Am. 1978, 63, 1576–1590. [Google Scholar] [CrossRef]
- Lee, K.I.; Roh, H.S.; Yoon, S.W. Acoustic wave propagation in bovine cancellous bone: Application of the Modified Biot-Attenborough model. J. Acoust. Soc. Am. 2003, 114, 2284–2293. [Google Scholar] [CrossRef]
- Cardoso, L.; Teboul, F.; Laurent, S.; Christian, O.; Meunier, A. In vitro acoustic waves propagation in human and bovine cancellous bone. J. Bone Miner. Res. 2003, 18, 1803–1812. [Google Scholar] [CrossRef]
- Nicholson, P.H.F.; Strelitzki, R.; Cleveland, R.O.; Bouxsein, M.L. Scattering of ultrasound in cancellous bone: Predictions from a theoretical model. J. Biomech. 2000, 33, 503–506. [Google Scholar] [CrossRef]
- Hosokawa, A.; Otani, T. Acoustic anisotropy in bovine cancellous bone. J. Acoust. Soc. Am. 1998, 103, 2718–2722. [Google Scholar] [CrossRef] [PubMed]
- Haire, T.J.; Langton, C.M. Biot theory: A review of its application to ultrasound propagation through cancellous bone. Bone 1999, 24, 291–295. [Google Scholar] [CrossRef]
- Sebaa, N.; Fellah, Z.E.A.; Fellah, M.; Ogam, E.; Wirgin, A.; Mitri, F.G.; Depollier, C.; Lauriks, W. Ultrasonic characterization of human cancellous bone using the Biot theory: Inverse problem. J. Acoust. Soc. Am. 2006, 120, 1816–1824. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, A. Numerical analysis of variability in ultrasound propagation properties induced by trabecular microstructure in cancellous bone. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2009, 56, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Wu, J. Determination of velocity and attenuation of shear waves using ultrasonic spectroscopy. J. Acoust. Soc. Am. 1996, 99, 2871–2875. [Google Scholar] [CrossRef]
- Lubbers, J.; Graaff, R. A simple and accurate formula for the sound velocity in water. Ultrasound Med. Biol. 1998, 24, 1065–1068. [Google Scholar] [CrossRef]
- Kline, R.A. Measurement of attenuation and dispersion using an ultrasonic spectroscopy technique. J. Acoust. Soc. Am. 1984, 76, 498–504. [Google Scholar] [CrossRef]
- O’Donnell, M.; Jaynes, E.T.; Miller, J.G. Kramers-Kronig relationship between ultrasonic attenuation and phase velocity. J. Acoust. Soc. Am. 1981, 69, 696–701. [Google Scholar] [CrossRef]
Sample | Pore Size (mm) | Porosity % |
---|---|---|
1 | 0.009–0.841 | 60.99 |
2 | 0.009–0.896 | 66.45 |
3 | 0.009–0.946 | 70.18 |
4 | 0.010–1.026 | 72.51 |
5 | 0.009–1.144 | 76.03 |
6 | 0.009–1.255 | 78.36 |
7 | 0.009–1.432 | 79.09 |
8 | 0.009–1.506 | 80.51 |
9 | 0.009–1.691 | 82.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karki, A.; Wu, J. Measurement of Ultrasound Parameters of Bovine Cancellous Bone as a Function of Frequency for a Range of Porosities via Through-Transmission Ultrasonic Spectroscopy. Acoustics 2022, 4, 406-418. https://doi.org/10.3390/acoustics4020025
Karki A, Wu J. Measurement of Ultrasound Parameters of Bovine Cancellous Bone as a Function of Frequency for a Range of Porosities via Through-Transmission Ultrasonic Spectroscopy. Acoustics. 2022; 4(2):406-418. https://doi.org/10.3390/acoustics4020025
Chicago/Turabian StyleKarki, Alina, and Junru Wu. 2022. "Measurement of Ultrasound Parameters of Bovine Cancellous Bone as a Function of Frequency for a Range of Porosities via Through-Transmission Ultrasonic Spectroscopy" Acoustics 4, no. 2: 406-418. https://doi.org/10.3390/acoustics4020025
APA StyleKarki, A., & Wu, J. (2022). Measurement of Ultrasound Parameters of Bovine Cancellous Bone as a Function of Frequency for a Range of Porosities via Through-Transmission Ultrasonic Spectroscopy. Acoustics, 4(2), 406-418. https://doi.org/10.3390/acoustics4020025