# On the Robustness and Efficiency of the Plane-Wave-Enriched FEM with Variable q-Approach on the 2D Room Acoustics Problem

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Background

#### 1.2. Study Purpose

## 2. Theory

#### 2.1. Discretization of the Closed Sound Field Using Plane-Wave-Enriched FEM

#### 2.2. Setup of the Plane-Wave Number for q-Refinement

## 3. Numerical Experiments

#### 3.1. Problem Description and Numerical Setup

#### 3.2. Effectiveness of the Variable q-Approach against the Constant q-Approach

#### 3.3. Mesh and Room Geometry Effects on the Robustness of the PW-FEM Using the Variable q-Approach

#### 3.4. Performance Comparison with Classical Linear and Quadratic FEMs

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Savioja, L.; Svensson, U.P. Overview of geometrical room acoustic modeling techniques. J. Acous. Soc. Am.
**2015**, 138, 708–730. [Google Scholar] [CrossRef] [Green Version] - Sakuma, T.; Sakamoto, S.; Otsuru, T. (Eds.) Computational Simulation in Architectural and Environmental Acoustics—Methods and Applications of Wave-Based Computation; Springer: Tokyo, Japan, 2014. [Google Scholar]
- Okuzono, T.; Otsuru, T.; Tomiku, R.; Okamoto, N. A finite element method using dispersion reduced spline elements for room acoustics simulation. Appl. Acoust.
**2014**, 79, 1–8. [Google Scholar] [CrossRef] [Green Version] - Botteldooren, D. Finite-difference time-domain simulation of low-frequency room acoustics problems. J. Acoust. Soc. Am.
**1995**, 98, 3302–3308. [Google Scholar] [CrossRef] - Otsuru, T.; Okamoto, N.; Okuzono, T.; Sueyoshi, T. Applications of large-scale finite element sound field analysis onto room acoustics. In Proceedings of the 19th International Congress on Acoustics, Madrid, Spain, 2–7 September 2007. [Google Scholar]
- Okamoto, N.; Tomiku, R.; Otsuru, T.; Yasuda, Y. Numerical analysis of large-scale sound fields using iterative methods part II: Application of Krylov subspace methods to finite element analysis. J. Comput. Acoust.
**2007**, 15, 473–493. [Google Scholar] [CrossRef] - Aretz, M.; Vorländer, M. Combined wave and ray based room acoustic simulations of audio systems in car passenger compartments, Part II: Comparison of simulations and measurements. Appl. Acoust.
**2014**, 76, 52–65. [Google Scholar] [CrossRef] - Okuzono, T.; Sakagami, K. A frequency domain finite element solver for acoustic simulations of 3D rooms with microperforated panel absorbers. Appl. Acoust.
**2018**, 129, 1–12. [Google Scholar] [CrossRef] [Green Version] - Hoshi, K.; Hanyu, T.; Okuozno, T.; Sakagami, K.; Yairi, M.; Harada, S.; Takahashi, S.; Ueda, Y. Implementation experiment of a honeycomb-backed MPP sound absorber in a meeting room. Appl. Acoust.
**2020**, 157, 107000. [Google Scholar] [CrossRef] - Yasuda, Y.; Ueno, S.; Kadota, M.; Sekine, H. Applicability of locally reacting boundary conditions to porous material layer backed by rigid wall: Wave-based numerical study in non-diffuse sound field with unevenly distributed sound absorbing surfaces. Appl. Acoust.
**2016**, 113, 45–57. [Google Scholar] [CrossRef] - Yasuda, Y.; Saito, K.; Sekine, H. Effects of the convergence tolerance of iterative methods used in the boundary element method on the calculation results of sound fields in rooms. Appl. Acoust.
**2020**, 157, 106997. [Google Scholar] [CrossRef] - Sakamoto, S. Phase-error analysis of high-order finite-difference time-domain scheme and its influence on calculation results of impulse response in closed sound field. Acoust. Sci. Technol.
**2007**, 28, 295–309. [Google Scholar] [CrossRef] [Green Version] - Kowalczyk, K.; Walstijn, M. Formulation of locally reacting surfaces in FDTD/K-DWM modelling of acoustic spaces. Acta Acust. United Acust.
**2008**, 94, 891–906. [Google Scholar] [CrossRef] [Green Version] - Kowalczyk, K.; Van Walstijn, M. Room Acoustics Simulation Using 3-D Compact Explicit FDTD Schemes. IEEE Trans. Audio Speech Lang. Process.
**2010**, 19, 4–46. [Google Scholar] [CrossRef] [Green Version] - Sakamoto, S.; Nagatomo, H.; Ushiyama, A.; Tachibana, H. Calculation of impulse responses and acoustic parameters in a hall by the finite-difference time-domain method. Acoust. Sci. Technol.
**2008**, 29, 256–265. [Google Scholar] [CrossRef] [Green Version] - Hamilton, B.; Bilbao, S. FDTD methods for 3-D room acoustics simulation with high-order accuracy in space and time. IEEE Trans. Audio Speech Lang. Process.
**2017**, 25, 2112–2124. [Google Scholar] [CrossRef] - Okuzono, T.; Otsuru, T.; Tomiku, R.; Okamoto, N. Fundamental accuracy of time domain finite element method for sound field analysis of rooms. Appl. Acoust.
**2010**, 71, 940–946. [Google Scholar] [CrossRef] [Green Version] - Okuzono, T.; Yoshida, T.; Sakagami, K.; Otsuru, T. An explicit time-domain finite element method for room acoustics simulations: Comparison of the performance with implicit methods. Appl. Acoust.
**2015**, 104, 76–84. [Google Scholar] [CrossRef] - Okuzono, T.; Shimizu, N.; Sakagami, K. Predicting absorption characteristics of single-leaf permeable membrane absorbers using finite element method in a time domain. Appl. Acoust.
**2019**, 151, 172–182. [Google Scholar] [CrossRef] - Bilbao, S. Modeling of Complex Geometries and Boundary Conditions in Finite Difference/Finite Volume Time Domain Room Acoustics Simulation. IEEE Trans. Audio Speech Lang. Process.
**2013**, 21, 1524–1533. [Google Scholar] [CrossRef] [Green Version] - Bilbao, S.; Hamilton, B.; Botts, J.; Savioja, L. Finite volume time domain room acoustics simulation under general impedance boundary conditions. IEEE Trans. Audio Speech Lang. Process.
**2016**, 24, 161–173. [Google Scholar] [CrossRef] [Green Version] - Hornikx, M.; Hak, C.; Wenmaekers, R. Acoustic modelling of sports halls, two case studies. J. Build. Perform. Simul.
**2015**, 8, 26–38. [Google Scholar] [CrossRef] [Green Version] - Hornikx, M.; Krijnen, T.; van Harten, L. openPTSD: The open source pseudo-spectral time-domain method for acoustic propagation. Comput. Phys. Commun.
**2016**, 203, 298–308. [Google Scholar] [CrossRef] - Simonaho, S.P.; Lähivaara, T.; Huttunen, T. Modeling of acoustic wave propagation in time-domain using the discontinuous Galerkin method—A comparison with measurements. Appl. Acoust.
**2012**, 73, 173–183. [Google Scholar] [CrossRef] - Wang, H.; Sihar, I.; Pagán, Muńoz, R.; Hornikx, M. Room acoustics modelling in the time-domain with the nodal discontinuous Galerkin method. Acoust. Soc. Am.
**2019**, 145, 2650–2663. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Wang, H.; Hornikx, M. Time-domain impedance boundary condition modeling with the discontinuous Galerkin method for room acoustics simulations. J. Acoust. Soc. Am.
**2020**, 147, 2534–2546. [Google Scholar] [CrossRef] [PubMed] - Pind, F.; Jeong, C.H.; Hesthaven, J.S.; Engsig-Karup, A.P.; Strømann-Andersen, J. A phenomenological extended-reaction boundary model for time-domain wave-based acoustic simulations under sparse reflection conditions using a wave splitting method. Appl. Acoust.
**2021**, 172, 107596. [Google Scholar] [CrossRef] - Mehra, R.; Raghuvanshi, N.; Savioja, L.; Lin, M.C.; Manocha, D. An efficient GPU-based time domain solver for the acoustic wave equation. Appl. Acoust.
**2012**, 73, 83–94. [Google Scholar] [CrossRef] [Green Version] - Rabisse, K.; Ducourneau, J.; Faiz, A.; Trompette, N. Numerical modelling of sound propagation in rooms bounded by walls with rectangular irregularities and frequency-dependent impedance. J. Sound Vib.
**2019**, 440, 291–314. [Google Scholar] [CrossRef] - Melenk, J.M.; Babuška, I. Partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Eng.
**1996**, 139, 289–314. [Google Scholar] [CrossRef] [Green Version] - Babuška, I.; Melenk, J.M. The partition of unity method. Int. J. Numer. Meth. Eng.
**1997**, 40, 727–758. [Google Scholar] [CrossRef] - Laghrouche, O.; Mohamed, M.S. Locally enriched finite elements for the Helmholtz equation in two dimensions. Comput. Struct.
**2010**, 88, 469–1473. [Google Scholar] [CrossRef] - Mohamed, M.S.; Laghrouche, O.; El-Kacimi, A. Some numerical aspects of the PUFEM for efficient solution of 2D Helmholtz problems. Comput. Struct.
**2010**, 88, 1484–1491. [Google Scholar] [CrossRef] - Mohamed, M.S. Numerical Aspects of the PUFEM for Efficient Solution of Helmholtz Problems. Ph.D. Thesis, Heriot–Watt University, Edinburgh, UK, 2010. [Google Scholar]
- Dinachandra, M.; Raju, S. Plane wave enriched Partition of Unity Isogeometric Analysis (PUIGA) for 2D-Helmholtz problems. Comput. Methods Appl. Mech. Eng.
**2018**, 335, 380–402. [Google Scholar] [CrossRef] - Diwan, G.C.; Mohamed, M.S. Pollution studies for high order isogeometric analysis and finite element for acoustic problems. Comput. Methods Appl. Mech. Eng.
**2019**, 350, 701–718. [Google Scholar] [CrossRef] - Okuzono, T.; Mohamed, M.S.; Sakagami, K. Potential of room acoustic solver with plane-wave-enriched finite element method. Appl. Sci.
**2020**, 10, 1969. [Google Scholar] [CrossRef] [Green Version] - Chazot, J.D.; Nennig, B.; Perrey-Debain, E. Performances of the partition of unity finite element method for the analysis of two-dimensional interior sound fields with absorbing materials. J. Sound Vib.
**2013**, 332, 1918–1929. [Google Scholar] [CrossRef] - Chazot, J.D.; Perrey-Debain, E. The partition of unity finite element method for the simulation of waves in air and poroelastic media. J. Acoust. Soc. Am.
**2014**, 135, 724–733. [Google Scholar] [CrossRef] [Green Version] - Tamaru, K.; Okuzono, T.; Mukae, S.; Sakagami, K. Exploration of efficient numerical integration rule for wide-band room-acoustics simulations by plane-wave-enriched finite-element method. Acoust. Sci. Technol.
**2020**, 42, 231–240. [Google Scholar] [CrossRef] - Hiptmair, R.; Moiola, A.; Perugia, I. Survey of Trefftz methods for the Helmholtz equation. In Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations; Springer: Cham, Switzerland, 2016; pp. 237–278. [Google Scholar]
- Mukae, S.; Okuzono, T.; Tamaru, K.; Sakagami, K. Modeling microperforated panels and permeable membranes for a room acoustic solver with plane-wave-enriched FEM. Appl. Acoust.
**2022**, 185, 108383. [Google Scholar] [CrossRef] - Maa, D.Y. Microperforated-panel wideband absorbers. Noise Control Eng. J.
**1987**, 29, 77–84. [Google Scholar] [CrossRef] - Sakagami, K.; Funahashi, K.; Somatomo, Y.; Okuzono, T.; Nishikawa, C.; Toyoda, M. An experimental study on the absorption characteristics of a three-dimensional permeable membrane space sound absorber. Noise Control Eng. J.
**2015**, 63, 300–307. [Google Scholar] [CrossRef] [Green Version] - Craggs, A. A finite element model for rigid porous absorbing materials. J. Sound Vib.
**1978**, 61, 101–111. [Google Scholar] [CrossRef] - Craggs, A. Coupling of finite element acoustic absorption models. J. Sound Vib.
**1979**, 66, 605–613. [Google Scholar] [CrossRef] - Easwaran, V.; Munjal, M.L. Finite element analysis of wedges used in anechoic chambers. J. Sound Vib.
**1993**, 160, 333–350. [Google Scholar] [CrossRef] - Allard, J.F.; Atalla, N. Sound propagation in porous materials having a rigid frame. In Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2009; pp. 73–109. [Google Scholar]
- Allard, J.F.; Atalla, N. Finite element modeling of poroelastic materials. In Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2009; pp. 309–349. [Google Scholar]
- Bettess, P.; Shirron, J.; Laghrouche, O.; Peseux, B.; Sugimoto, R.; Trevelyan, J. A numerical integration scheme for special finite elements for the Helmholtz equation. Int. J. Numer. Meth. Eng.
**2003**, 56, 531–552. [Google Scholar] [CrossRef] [Green Version] - Banerjee, S.; Sukumar, N. Exact integration scheme for planewave-enriched partition of unity finite element method to solve the Helmholtz problem. Comput. Methods Appl. Mech. Eng.
**2017**, 317, 619–648. [Google Scholar] [CrossRef] [Green Version] - Guddati, M.N.; Yue, B. Modified integration rules for reducing dispersion error in finite element methods. Comput. Methods Appl. Mech. Eng.
**2004**, 193, 275–287. [Google Scholar] [CrossRef]

**Figure 1.**An example of q-refinement using the Constant q- and Variable q-approach: (

**a**) the difference between Constant q and Variable q in the element patch composed of a 0.1 m × 0.1 m square element, two 0.5 m × 0.1 m rectangular elements, and a 0.5 m × 0.5 m square element; (

**b**) the change in the adding plane-wave number in the Variable q-approach at frequencies up to 4 kHz for the case with C = 8 when using ${h}_{\mathrm{max},i}^{\Omega}$ = 0.5 m and 0.1 m.

**Figure 2.**Two office room models with 21 sound-receiving points: (

**a**) office room with the rib-type acoustic diffuser (Model A) and (

**b**) more simply shaped office room without the acoustic diffuser (Model B). The room model includes three BCs: weakly absorbing surface ${\Gamma}_{\mathrm{z},1}$, frequency-dependent absorbing surface ${\Gamma}_{\mathrm{z},\mathrm{m}}$ assuming a honeycomb-backed MPP sound absorber, and vibration boundary ${\Gamma}_{\mathrm{v}}$ assuming a loudspeaker. The absorption characteristics of the MPP absorber are also shown.

**Figure 4.**Comparisons of the frequency responses at R1 among the PW-FEM using the Variable q-approach and the Constant q-approach and the reference solution: (

**a**) Mesh 1, (

**b**) Mesh 2, and (

**c**) Mesh 3.

**Figure 5.**A comparison of the SPL distribution at 1 kHz among (

**a**) the reference solution, (

**b**) the PW-FEM using the Constant q-approach, and (

**c**) the PW-FEM using the Variable q-approach.

**Figure 6.**A comparison of the absolute errors using the Variable q-approach and the Constant q-approach.

**Figure 7.**Comparisons of the absolute errors at eight frequencies as a function of C for Model A and Model B with three meshes, Mesh 1–Mesh 3: (

**a**) 63 Hz, (

**b**) 125 Hz, (

**c**) 250 Hz, (

**d**) 500 Hz, (

**e**) 1 kHz, (

**f**) 2 kHz, (

**g**) 3 kHz, and (

**h**) 4 kHz.

**Figure 8.**A comparison of the SPL distribution at 4 kHz of the reference solution and the PW-FEM using Mesh 2 with $C=9$ and $C=11$ and the SPL difference from the reference solution.

**Figure 9.**A comparison of the absolute errors of the PW-FEM using Mesh 1, Mesh 2, and Mesh 3 and the classical linear and quadratic FEMs.

**Figure 10.**Comparisons of the waveforms at R1 between (

**a**) the reference solution (Ref) and the PW-FEM (Mesh 3) at time t = 0–0.02 s, (

**b**) the Ref and the PW-FEM (Mesh 3) at time t = 0.3–0.32 s, (

**c**) the Ref and the quadratic FEM at time t = 0–0.02 s, and (

**d**) the Ref and the quadratic FEM at time t = 0.3–0.32 s.

**Figure 12.**Comparisons of the CPU times on sequential calculation of the PW-FEM with Mesh 1, Mesh 2, and Mesh 3 and the classical linear and quadratic FEMs: (

**a**) CPU times in constructing the global stiffness and mass matrix, $\mathit{K}$ and $\mathit{M}$, (

**b**) CPU times in solving the linear system of equations, and (

**c**) CPU times in total.

**Figure 13.**Comparisons of (

**a**) the DOFs, (

**b**) the number of nonzero elements, and (

**c**) the peak memory consumption, of the PW-FEM with Mesh 1, Mesh 2, and Mesh 3 and the classical linear and quadratic FEMs.

Model A | Model B | |||||
---|---|---|---|---|---|---|

20 Hz–1.5 kHz | 1.5–3 kHz | 3–4 kHz | 20 Hz–1.5 kHz | 1.5–3 kHz | 3–4 kHz | |

${N}_{\mathrm{element}}$ | 324,900 | 1,299,600 | 5,198,400 | 323,900 | 1,295,600 | 5,182,400 |

${N}_{\mathrm{node}}$ | 326,240 | 1,302,280 | 5,203,760 | 325,140 | 1,298,080 | 5,187,360 |

h | 0.01 m | 0.005 m | 0.0025 m | 0.01 m | 0.005 m | 0.0025 m |

${n}_{\mathrm{w}}$ | 0.0006–0.044 | 0.022–0.044 | 0.022–0.029 | 0.0006–0.044 | 0.022–0.044 | 0.022–0.029 |

Model A | Model B | |||||
---|---|---|---|---|---|---|

Mesh 1 | Mesh 2 | Mesh 3 | Mesh 1 | Mesh 2 | Mesh 3 | |

${N}_{\mathrm{element}}$ | 828 | 1302 | 3259 | 808 | 1282 | 3239 |

${N}_{\mathrm{node}}$ | 909 | 1399 | 3403 | 869 | 1359 | 3363 |

${\Omega}_{\mathrm{max},i}$ | 0.1–0.5 m | 0.1–0.25 m | 0.1 m | 0.1–0.5 m | 0.1–0.25 m | 0.1 m |

${n}_{\mathrm{w}}$ | 0.006–5.88 | 0.006–2.94 | 0.006–1.18 | 0.006–5.88 | 0.006–2.94 | 0.006–1.18 |

Model A | ||
---|---|---|

20 Hz–2 kHz | 2–4 kHz | |

${N}_{\mathrm{element}}$ | 51,984 | 207,936 |

${N}_{\mathrm{node}}$ | 209,008 | 833,888 |

h | 0.025 m | 0.0125 m |

${n}_{\mathrm{w}}$ | 0.001–0.15 | 0.074–0.15 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mukae, S.; Okuzono, T.; Sakagami, K.
On the Robustness and Efficiency of the Plane-Wave-Enriched FEM with Variable *q*-Approach on the 2D Room Acoustics Problem. *Acoustics* **2022**, *4*, 53-73.
https://doi.org/10.3390/acoustics4010004

**AMA Style**

Mukae S, Okuzono T, Sakagami K.
On the Robustness and Efficiency of the Plane-Wave-Enriched FEM with Variable *q*-Approach on the 2D Room Acoustics Problem. *Acoustics*. 2022; 4(1):53-73.
https://doi.org/10.3390/acoustics4010004

**Chicago/Turabian Style**

Mukae, Shunichi, Takeshi Okuzono, and Kimihiro Sakagami.
2022. "On the Robustness and Efficiency of the Plane-Wave-Enriched FEM with Variable *q*-Approach on the 2D Room Acoustics Problem" *Acoustics* 4, no. 1: 53-73.
https://doi.org/10.3390/acoustics4010004