# On the Incipient Indicial Lift of Thin Wings in Subsonic Flow: Acoustic Wave Theory with Unsteady Three-Dimensional Effects

## Abstract

**:**

## 1. Introduction

## 2. Governing Physics: From Nonlinear Compressible to Linear Incompressible Flow

## 3. Incompressible Potential Flow: Lifting-Line Theory

#### 3.1. Thin Aerofoils: Two-Dimensional Wake Inflow and Chordwise Gust Penetration

#### 3.2. Thin Wings: Three-Dimensional Downwash Angle and Spanwise Gust Penetration

#### 3.2.1. Elliptical Wings: Curved Taper

#### 3.2.2. Trapezoidal Wings: Swept Taper

## 4. Compressible Potential Flow: Acoustic Wave Theory

#### 4.1. Thin Aerofoils: Two-Dimensional Acoustic Waves Propagation and Chordwise Gust Penetration

#### 4.2. Thin Wings: Three-Dimensional Downwash Angle, Spanwise Gust Penetration, and Mean Wing Section

#### 4.2.1. Elliptical Wings: Curved Taper

#### 4.2.2. Trapezoidal Wings: Swept Taper

## 5. Results and Discussion

## 6. Conclusions

## Funding

## Conflicts of Interest

## Acronyms

AOA | Angle of Attack |

CFD | Computational Fluid Dynamics |

FSI | Fluid–Structure Interaction |

MDO | Multidisciplinary Design Optimisation |

PDE | Partial Differential Equation |

ROM | Reduced-Order Model |

SEG | Sharp-Edged Gust |

## Symbols

a | sound speed |

A | wing area |

${B}_{n}^{1}$ | Bessel’s functions of first type and n-th order |

c | wing section chord |

${c}_{p}$ | isobaric heat capacity |

${c}_{v}$ | isochoric heat capacity |

${C}_{\gamma}$ | wing section circulation coefficient |

${C}_{\gamma /\alpha}$ | wing section circulation derivative |

${C}_{\mathsf{\Gamma}}$ | wing circulation coefficient |

${C}_{\mathsf{\Gamma}/\alpha}$ | wing circulation derivative |

${C}_{l}$ | wing section lift coefficient |

${C}_{l/\alpha}$ | wing section lift derivative |

${C}_{L}$ | wing lift coefficient |

${C}_{L/\alpha}$ | wing lift derivative |

${C}_{p}$ | pressure coefficient |

${C}_{E}$ | Sears’s circulation-deficiency function |

${C}_{S}$ | Sears’s lift-deficiency function |

${C}_{T}$ | Theodorsen’s lift-deficiency function |

e | edge-velocity factor |

E | airflow internal energy |

f | wing area impingement factor |

g | downwash gradient factor |

H | airflow enthalpy |

${H}_{n}^{2}$ | Hankel’s functions of second type and n-th order |

I | complete elliptic integral of the second kind |

k | reduced frequency |

l | wing semi-span |

M | Mach number |

$\mathit{n}$ | normal vector |

N | expansion terms |

p | airflow pressure |

r | mean chord ratio |

R | gas constant |

s | non-dimensional elliptic integral argument |

$\mathit{s}$ | space vector |

S | airflow entropy |

t | time |

T | airflow temperature |

U | horizontal free-stream |

x | chordwise coordinate |

y | spanwise coordinate |

z | vertical coordinate |

Greek | |

$\alpha $ | angle of attack |

$\beta $ | airflow compressibility factor |

$\varphi $ | airflow disturbance potential |

$\phi $ | airflow velocity potential |

$\eta $ | wing aspect ratio |

$\kappa $ | shape factor (downwash tuning) |

$\gamma $ | airflow heat capacity ratio |

$\mathsf{\Gamma}$ | wing section circulation |

$\iota $ | wing span impingement fraction |

$\lambda $ | wing taper ratio |

$\mathsf{\Lambda}$ | sweep angle |

$\mathit{\nu}$ | airflow velocity vector |

$\psi $ | spanwise angle |

$\rho $ | airflow density |

$\varsigma $ | sound-travelled distance |

$\tau $ | reduced time |

$\upsilon $ | non-dimensional wake development |

$\omega $ | angular frequency |

$\mathit{\omega}$ | airflow vorticity vector |

Superscripts | |

${\chi}^{\perp}$ | angle of attack step |

${\chi}^{\Vert}$ | gust front parallel to leading edge |

${\chi}^{\u22a3}$ | gust front normal to reference airspeed |

$\stackrel{\xb4}{\chi}$ | airflow normal to aerodynamic axis |

$\stackrel{\u02c7}{\chi}$ | circulatory |

$\widehat{\chi}$ | non-circulatory |

$\overline{\chi}$ | steady |

Subscripts | |

${\chi}_{a}$ | average |

${\chi}_{FC}$ | foremost cone |

${\chi}_{G}$ | gust |

${\chi}_{i}$ | induced |

${\chi}_{LE}$ | leading edge |

${\chi}_{r}$ | root |

${\chi}_{RC}$ | rearmost cone |

${\chi}_{s}$ | section |

${\chi}_{t}$ | tip |

${\chi}_{TE}$ | trailing edge |

${\chi}_{w}$ | wing |

${\chi}_{0}$ | initial |

${\chi}_{\infty}$ | unperturbed |

## Appendix A

## Appendix B

## References

- Alexandrov, N.; Hussaini, M. Multidisciplinary Design Optimization: State of the Art; SIAM: Philadelphia, PA, USA, 1997. [Google Scholar]
- Martins, J.; Lambe, A. Multidisciplinary Design Optimization: A Survey of Architectures. AIAA J.
**2013**, 51, 2049–2075. [Google Scholar] [CrossRef] [Green Version] - Tobak, M. On the Use of the Indicial-Function Concept in the Analysis of Unsteady Motions of Wings and Wing-Tail Combinations. In NACA-TR-1188; NACA: Washington, DC, USA, 1954. [Google Scholar]
- Lomax, H. Indicial Aerodynamics. In Manual on Aeroelasticity; AGARD-R-578-71; AGARD: London, UK, 1971. [Google Scholar]
- Quarteroni, A.; Rozza, G. Reduced Order Methods for Modeling and Computational Reduction; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Silva, W. AEROM: NASA’s Unsteady Aerodynamic and Aeroelastic Reduced-Order Modeling Software. Aerospace
**2018**, 5, 41. [Google Scholar] [CrossRef] [Green Version] - Livne, E. Integrated Aeroservoelastic Optimization: Status and Direction. J. Aircr.
**1999**, 36, 122–145. [Google Scholar] [CrossRef] - Livne, E. Future of Airplane Aeroelasticity. J. Aircr.
**2003**, 40, 1066–1092. [Google Scholar] [CrossRef] - Stanford, B.K. Role of Unsteady Aerodynamics During Aeroelastic Optimization. AIAA J.
**2015**, 53, 3826–3831. [Google Scholar] [CrossRef] - Katz, J.; Plotkin, A. Low Speed Aerodynamics; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Anderson, J.D. Fundamentals of Aerodynamics; McGraw-Hill: New York, NY, USA, 2007. [Google Scholar]
- NOAA. U.S. Standard Atmosphere. In NOOA-S/T 76-1562; NASA: Washington, DC, USA, 1976. [Google Scholar]
- LeVeque, R.J. Numerical Methods for Conservation Laws; Springer: Basel, Switzerland, 1992. [Google Scholar]
- Karamcheti, K. Principles of Ideal-Fluid Aerodynamics; Wiley: New York, NY, USA, 1967. [Google Scholar]
- Thornhill, C.K. The Numerical Method of Characteristics for Hyperbolic Problems in Three Independent Variables. In ARC-RM-2615; ARC: London, UK, 1952. [Google Scholar]
- Lomax, H.; Heaslet, M.A. The Indicial Lift and Pitching Moment for a Sinking or Pitching Two-Dimensional Wing Flying at Subsonic or Supersonic Speeds. In NACA-TN-2403; NACA: Washington, DC, USA, 1951. [Google Scholar]
- Lomax, H.; Heaslet, M.A.; Fuller, F.D.; Sluder, L. Two- and Three-Dimensional Unsteady Lift Problems in High-Speed Flight. In NACA-TR-1077; NACA: Washington, DC, USA, 1952. [Google Scholar]
- Glauert, H. The Effect of Compressibility on the Lift of an Aerofoil. Proc. R. Soc. Lond. Ser. A
**1928**, 118, 113–119. [Google Scholar] - Gothert, B.H. Plane and Three-Dimensional Flow at High Subsonic Speeds. In NACA-TM-1105; NACA: Washington, DC, USA, 1946. [Google Scholar]
- Leishman, J. Principles of Helicopter Aerodynamics; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Heaslet, M.A.; Lomax, H.; Spreiter, J.R. Linearized Compressible-Flow Theory for Sonic Flight Speeds. In NACA-TR-956; NACA: Washington, DC, USA, 1950. [Google Scholar]
- Bendiksen, O.O. Review of Unsteady Transonic Aerodynamics: Theory and Applications. Prog. Aerosp. Sci.
**2011**, 47, 135–167. [Google Scholar] [CrossRef] - Bisplinghoff, R.; Ashley, H.; Halfman, R. Aeroelasticity; Dover: Mineola, NY, USA, 1996. [Google Scholar]
- Bisplinghoff, R.; Ashley, H. Principles of Aeroelasticity; Dover: Mineola, NY, USA, 2013. [Google Scholar]
- Mazelsky, B. Numerical Determination of Indicial Lift of a Two-Dimensional Sinking Airfoil at Subsonic Mach Numbers from Oscillatory Lift Coefficients with Calculations for Mach Number 0.7. In NACA-TN-2562; NACA: Washington, DC, USA, 1951. [Google Scholar]
- Mazelsky, B. Determination of Indicial Lift and Moment of a Two-Dimensional Pitching Airfoil at Subsonic Mach Numbers from Oscillatory Coefficients with Numerical Calculations for a Mach Number of 0.7. In NACA-TN-2613; NACA: Washington, DC, USA, 1952. [Google Scholar]
- Mazelsky, B. Numerical Determination of Indicial Lift and Moment Functions for a Two-Dimensional Sinking and Pitching Airfoil at Mach Numbers 0.5 and 0.6. In NACA-TN-2739; NACA: Washington, DC, USA, 1952. [Google Scholar]
- Beddoes, T.S. Practical Computation of Unsteady Lift. Vertica
**1984**, 8, 55–71. [Google Scholar] - Leishman, J.G. Indicial Lift Approximations for Two-Dimensional Subsonic Flow as Obtained from Oscillatory Measurements. J. Aircr.
**1993**, 30, 340–351. [Google Scholar] [CrossRef] - Leishman, J.G. Subsonic Unsteady Aerodynamics Caused by Gusts Using the Indicial Method. J. Aircr.
**1996**, 33, 869–879. [Google Scholar] [CrossRef] - Soviero, P.; Hernandes, F. Compressible Unsteady Vortex Lattice Method for Arbitrary Two-Dimensional Motion of Thin Profiles. J. Aircr.
**2007**, 44, 1494–1498. [Google Scholar] [CrossRef] - Mateescu, D. Theoretical Solutions for Unsteady Compressible Subsonic Flows Past Oscillating Rigid and Flexible Airfoils. Math. Eng. Sci. Aerosp.
**2011**, 2, 1–27. [Google Scholar] - Lomax, H. Lift Development on Unrestrained Rectangular Wings Entering Gusts at Subsonic and Supersonic Speeds. In NACA-TR-1162; NACA: Washington, DC, USA, 1953. [Google Scholar]
- Jones, W.P. Oscillating Wings in Compressible Subsonic Flow. In ARC-RM-2855; ARC: London, UK, 1957. [Google Scholar]
- Miranda, I.; Soviero, P. Indicial Response of Thin Wings in a Compressible Subsonic Flow. In Proceedings of the 18th International Congress of Mechanical Engineering, Ouro Preto, Brazil, 6–11 November 2005. [Google Scholar]
- Hernandes, F.; Soviero, P. Unsteady Aerodynamic Coefficients Obtained by a Compressible Vortex Lattice Method. J. Aircr.
**2009**, 46, 1291–1301. [Google Scholar] [CrossRef] - Albano, E.; Rodden, W. A Doublet-Lattice Method for Calculating Lift Distributions on Oscillating Surfaces in Subsonic Flows. AIAA J.
**1969**, 7, 279–285. [Google Scholar] [CrossRef] - Rodden, W.; Taylor, P.; McIntosh, S. Further Refinement of the Subsonic Doublet-Lattice Method. J. Aircr.
**1998**, 35, 720–727. [Google Scholar] [CrossRef] - Morino, L. A General Theory of Unsteady Compressible Potential Aerodynamics. In NASA-CR-2464; NASA: Washington, DC, USA, 1974. [Google Scholar]
- Morino, L.; Chen, L.; Suciu, E. Steady and Oscillatory Subsonic and Supersonic Aerodynamics around Complex Configurations. AIAA J.
**1975**, 13, 368–374. [Google Scholar] [CrossRef] - Bindolino, G.; Mantegazza, P. Improvements on a Green’s Function Method for the Solution of Linearized Unsteady Potential Flows. J. Aircr.
**1987**, 24, 355–361. [Google Scholar] [CrossRef] - Marzocca, P.; Librescu, L.; Kim, D.H.; Lee, I.; Schober, S. Development of an Indicial Function Approach for the Two-Dimensional Incompressible/Compressible Aerodynamic Load Modelling. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
**2007**, 221, 453–463. [Google Scholar] [CrossRef] - Chung, T. Computational Fluid Dynamics; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Parameswaran, V.; Baeder, J.D. Indicial Aerodynamics in Compressible Flow-Direct Computational Fluid Dynamic Calculations. J. Aircr.
**1997**, 34, 131–133. [Google Scholar] [CrossRef] - Raveh, D.E. Reduced-Order Models for Nonlinear Unsteady Aerodynamics. AIAA J.
**2001**, 39, 1417–1429. [Google Scholar] [CrossRef] - Gennaretti, M.; Mastroddi, F. Study of Reduced-Order Models for Gust-Response Analysis of Flexible Fixed Wings. J. Aircr.
**2004**, 41, 304–313. [Google Scholar] [CrossRef] - Ghoreyshi, M.; Jirasek, A.; Cummings, R. Computational Investigation into the Use of Response Functions for Aerodynamic-Load Modeling. AIAA J.
**2012**, 50, 1314–1327. [Google Scholar] [CrossRef] - Ghoreyshi, M.; Jirasek, A.; Cummings, R. Reduced Order Unsteady Aerodynamic Modeling for Stability and Control Analysis Using Computational Fluid Dynamics. Prog. Aerosp. Sci.
**2014**, 71, 167–217. [Google Scholar] [CrossRef] [Green Version] - Farhat, C.; Lesoinne, M.; LeTallec, P. Load and Motion Transfer Algorithms for Fluid/Structure Interaction Problems with Non-Matching Discrete Interfaces: Momentum and Energy Conservation, Optimal Discretization and Application to Aeroelasticity. Comput. Methods Appl. Mech. Eng.
**1998**, 157, 95–114. [Google Scholar] [CrossRef] - Cizmas, P.; Gargoloff, J. Mesh Generation and Deformation Algorithm for Aeroelasticity Simulations. J. Aircr.
**2008**, 45, 1062–1066. [Google Scholar] [CrossRef] [Green Version] - Berci, M.; Cavallaro, R. A Hybrid Reduced-Order Model for the Aeroelastic Analysis of Flexible Subsonic Wings—A Parametric Assessment. Aerospace
**2018**, 5, 76. [Google Scholar] [CrossRef] [Green Version] - Berci, M.; Torrigiani, F. A Multifidelity Sensitivity Study of Subsonic Wing Flutter for Hybrid Approaches in Aircraft Multidisciplinary Design and Optimisation. Aerospace
**2020**, 7, 161. [Google Scholar] [CrossRef] - Berci, M.; Gaskell, P.H.; Hewson, R.W.; Toropov, V.V. Multifidelity Metamodel Building as a Route to Aeroelastic Optimization of Flexible Wings. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
**2011**, 225, 2115–2137. [Google Scholar] [CrossRef] - Berci, M.; Toropov, V.V.; Hewson, R.W.; Gaskell, P.H. Multidisciplinary Multifidelity Optimisation of a Flexible Wing Aerofoil with Reference to a Small UAV. Struct. Multidiscip. Optim.
**2014**, 50, 683–699. [Google Scholar] [CrossRef] - Wieseman, C.D. Methodology for Matching Experimental and Computational Aerodynamic Data. In NASA-TM-100592; NASA: Washington, DC, USA, 1988. [Google Scholar]
- Brink-Spalink, J.; Bruns, J.M. Correction of Unsteady Aerodynamic Influence Coefficients Using Experimental or CFD Data. In Proceedings of the 41st Structures, Structural Dynamics, and Materials Conference and Exhibit, Atlanta, GA, USA, 3–6 April 2000. [Google Scholar]
- Sucipto, T.; Berci, M.; Krier, J. Gust Response of a Flexible Typical Section via High- and (Tuned) Low-Fidelity Simulations. Comput. Struct.
**2013**, 122, 202–216. [Google Scholar] [CrossRef] - Berci, M.; Mascetti, S.; Incognito, A.; Gaskell, P.H.; Toropov, V.V. Dynamic Response of Typical Section Using Variable-Fidelity Fluid Dynamics and Gust-Modeling Approaches - with Correction Methods. J. Aerosp. Eng.
**2014**, 27, 1–20. [Google Scholar] [CrossRef] - Whitham, G. Linear and Nonlinear Waves; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Jones, R.T. Classical Aerodynamic Theory. In NASA-RP-1050; NASA: Washington, DC, USA, 1979. [Google Scholar]
- Gulcat, U. Fundamentals of Modern Unsteady Aerodynamics; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Dowell, E. A Modern Course in Aeroelasticity; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Wright, J.; Cooper, J. Introduction to Aircraft Aeroelasticity and Loads; Wiley: Chichester, UK, 2014. [Google Scholar]
- Berci, M.; Righi, M. An Enhanced Analytical Method for the Subsonic Indicial Lift of Two-Dimensional Aerofoils—With Numerical Cross-Validation. Aerosp. Sci. Technol.
**2017**, 67, 354–365. [Google Scholar] [CrossRef] - Righi, M.; Berci, M. On Elliptical Wings in Subsonic Flow: Indicial Lift Generation via CFD Simulations-with Parametric Analytical Approximations. ASD J.
**2019**, 7, 1–17. [Google Scholar] - Da Ronch, A.; Ventura, A.; Righi, M.; Franciolini, M.; Berci, M.; Kharlamov, D. Extension of Analytical Indicial Aerodynamics to Generic Trapezoidal Wings in Subsonic Flow. Chin. J. Aeronaut.
**2018**, 31, 617–631. [Google Scholar] [CrossRef] - Ames Research Staff. Equations, Tables and Charts for Compressible Flow. In NACA-TR-1135; NASA: Washington, DC, USA, 1953. [Google Scholar]
- Liepmann, H.W.; Roshko, A. Elements of Gasdynamics; Dover: Mineola, NY, USA, 2001. [Google Scholar]
- Bungartz, H.; Schafer, M. Fluid-Structure Interaction: Modelling, Simulation, Optimization; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Basu, B.C.; Hancock, G.J. The Unsteady Motion of a Two-Dimensional Aerofoil in Incompressible Inviscid Flow. J. Fluid Mech.
**1978**, 87, 159–178. [Google Scholar] [CrossRef] - Hoblit, F.M. Gust Loads on Aircraft: Concepts and Applications; AIAA: Reston, VA, USA, 1988. [Google Scholar]
- Berci, M.; Vigevano, L. Sonic Boom Propagation Revisited: A Nonlinear Geometrical Acoustic Model. Aerosp. Sci. Technol.
**2012**, 23, 280–295. [Google Scholar] [CrossRef] - Kussner, H.G. General Airfoil Theory. In NACA-TM-979; NACA: Washington, DC, USA, 1941. [Google Scholar]
- Reissner, E. On the General Theory of Thin Airfoil for Nonuniform Motion. In NACA-TN-946; NACA: Washington, DC, USA, 1944. [Google Scholar]
- Multhopp, H. Methods for Calculating the Lift Distribution of Wings (Subsonic Lifting-Surface Theory). In ARC-RM-2884; ARC: London, UK, 1950. [Google Scholar]
- Prandtl, L. Applications of Modern Hydrodynamics to Aeronautics. In NACA-TR-116; NASA: Washington, DC, USA, 1921. [Google Scholar]
- Peters, D.A. Two-Dimensional Incompressible Unsteady Airfoil Theory—An Overview. J. Fluids Struct.
**2008**, 24, 295–312. [Google Scholar] [CrossRef] - Glauert, H. The Elements of Aerofoil and Airscrew Theory; Cambridge University Press: Cambridge, UK, 1926. [Google Scholar]
- Ahmadi, A.R.; Widnall, S.E. Unsteady Lifting-Line Theory as a Singular-Perturbation Problem. J. Fluid Mech.
**1985**, 153, 59–81. [Google Scholar] [CrossRef] - Sclavounos, P.D. An Unsteady Lifting-Line Theory. J. Eng. Math.
**1987**, 21, 201–226. [Google Scholar] [CrossRef] - Guermond, J.L.; Sellier, A. A Unified Unsteady Lifting-Line Theory. J. Fluid Mech.
**1991**, 229, 427–451. [Google Scholar] [CrossRef] - Kutta, W.M. Auftriebskräfte in Strömenden Flüssigkeiten. Illus. Aeronaut. Mitt.
**1902**, 6, 133–135. [Google Scholar] - Joukowski, N.E. Sur les Tourbillons Adjionts. Traraux Sect. Phys. Soc. Imp. Amis Sci. Nat.
**1906**, 13, 261–284. [Google Scholar] - Newman, J.N. Marine Hydrodynamics; MIT Press: Cambridge, MA, USA, 1977. [Google Scholar]
- Jones, R.T. The Unsteady Lift of a Finite Wing. In NACA-TN-682; NACA: Washington, DC, USA, 1939. [Google Scholar]
- Jones, R.T. The Unsteady Lift of a Wing of Finite Aspect Ratio. In NACA-TR-681; NACA: Washington, DC, USA, 1940. [Google Scholar]
- Jones, R.T. Correction of the Lifting-Line Theory for the Effect of the Chord. In NACA-TN-817; NACA: Washington, DC, USA, 1941. [Google Scholar]
- Epps, B.P.; Roesler, B.T. Vortex Sheet Strength in the Sears, Küssner, Theodorsen, and Wagner Aerodynamics Problems. AIAA J.
**2018**, 56, 889–904. [Google Scholar] [CrossRef] - Berci, M. On Aerodynamic Models for Flutter Analysis: A Systematic Overview and Comparative Assessment. Appl. Mech.
**2021**, 2, 29. [Google Scholar] [CrossRef] - Berci, M. Lift-Deficiency Functions of Elliptical Wings in Incompressible Potential Flow: Jones’ Theory Revisited. J. Aircr.
**2016**, 53, 599–602, Erratum in**2017**, 54, 1–2. [Google Scholar] [CrossRef] - Wood, K.D. Aspect Ratio Corrections. J. Aeronaut. Sci.
**1943**, 10, 270–272. [Google Scholar] [CrossRef] - Jones, R.T. Operational Treatment of the Nonuniform-Lift Theory in Airplane Dynamics. In NACA-TN-667; NACA: Washington, DC, USA, 1938. [Google Scholar]
- Sears, W.R. Operational Methods in the Theory of Airfoils in Non-Uniform Motion. J. Frankl. Inst.
**1940**, 230, 95–111. [Google Scholar] [CrossRef] - Quarteroni, A.; Sacco, R.; Saleri, F. Numerical Mathematics; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Fung, Y. An Introduction to the Theory of Aeroelasticity; Dover: Mineola, NY, USA, 1993. [Google Scholar]
- Dimitriadis, G. Introduction to Nonlinear Aeroelasticity; Wiley: Chichester, UK, 2017. [Google Scholar]
- Jones, W.P. Theoretical Determination of the Aerodynamic Inertias of an Elliptic Plate in Still Air. In ARC-RM-1953; ARC: London, UK, 1942. [Google Scholar]
- Jones, W.P. Aerodynamic Forces on Wings in Non-Uniform Motion. In ARC-RM-2117; ARC: London, UK, 1945. [Google Scholar]
- Dore, B.D. The Unsteady Forces on Finite Wings in Transient Motion. In ARC-RM-3456; ARC: London, UK, 1964. [Google Scholar]
- James, E.C. Lifting-Line Theory for an Unsteady Wing as a Singular Perturbation Problem. J. Fluid Mech.
**1975**, 70, 753. [Google Scholar] [CrossRef] - Queijo, M.J.; Wells, W.R.; Keskar, D.A. Approximate Indicial Lift Function for Tapered, Swept Wings in Incompressible Flow. In NACA-TP-1241; NASA: Washington, DC, USA, 1978. [Google Scholar]
- Devinant, P. An Approach for Unsteady Lifting-Line Time-Marching Numerical Computation. Int. J. Numer. Methods Fluids
**1998**, 26, 177–197. [Google Scholar] [CrossRef] - Devinant, P.; Gallois, T. Swept and Curved Wings: A Numerical Approach based on Generalized Lifting-Line Theory. Comput. Mech.
**2002**, 29, 322–331. [Google Scholar] [CrossRef] - Sugar-Gabor, O. A General Numerical Unsteady Non-Linear Lifting-Line Model for Engineering Aerodynamics Studies. Aeronaut. J.
**1998**, 122, 1199–1228. [Google Scholar] [CrossRef] [Green Version] - Boutet, J.; Dimitriadis, G. Unsteady Lifting Line Theory Using the Wagner Function for the Aerodynamic and Aeroelastic Modeling of 3D Wings. Aerospace
**2018**, 5, 92. [Google Scholar] [CrossRef] [Green Version] - Bird, H.J.A.; Ramesh, K. Unsteady Lifting-Line Theory and the Influence of Wake Vorticity on Aerodynamic Loads. Theor. Comput. Fluid Dyn.
**2021**, 35, 609–631. [Google Scholar] [CrossRef] - Cicala, P. Comparison of Theory with Experiment in the Phenomenon of Wing Flutter. In NACA-TM-887; NACA: Washington, DC, USA, 1939. [Google Scholar]
- Jones, W.P.; Skan, S.W. Calculations of Derivatives for Rectangular Wings of Finite Span by Cicala’s Method. In ARC-RM-1920; ARC: London, UK, 1940. [Google Scholar]
- Jones, W.P. The Virtual Inertias of a Tapered Wing in Still Air. In ARC-RM-1946; ARC: London, UK, 1941. [Google Scholar]
- Jones, W.P. Calculation of Additional Mass and Inertia Coefficients for Rectangular Plates in Still Air. In ARC-RM-1947; ARC: London, UK, 1941. [Google Scholar]
- Jones, W.P. Theoretical Air-Load and Derivative Coefficients for Rectangular Wings. In ARC-RM-2142; ARC: London, UK, 1943. [Google Scholar]
- Jones, W.P. Aerodynamic Forces on Wings in Simple Harmonic Motion. In ARC-RM-2026; ARC: London, UK, 1945. [Google Scholar]
- Schade, T.; Krienes, K. The Oscillating Circular Airfoil on the Basis of Potential Theory. In NACA-TM-1098; NACA: Washington, DC, USA, 1947. [Google Scholar]
- Reissner, E. Effect of Finite Span on the Airload Distributions for Oscillating Wings I: Aerodynamic Theory of Oscillating Wings of Finite Span. In NACA-TN-1194; NACA: Washington, DC, USA, 1947. [Google Scholar]
- Reissner, E. Effect of Finite Span on the Airload Distributions for Oscillating Wings II: Methods of Calculation and Examples of Application. In NACA-TN-1195; NACA: Washington, DC, USA, 1947. [Google Scholar]
- Kochin, N.E. Steady Vibrations of Wing of Circular Planform. In NACA-TM-1324; NACA: Washington, DC, USA, 1953. [Google Scholar]
- Lehrian, D.E. Calculation of Stability Derivatives Oscillating Wings. In ARC-RM-2922; ARC: London, UK, 1953. [Google Scholar]
- Watkins, C.E.; Runyan, H.L.; Woolston, D.S. On the Kernel Function of the Integral Equation Relating the Lift and Downwash Distribution of Oscillating Finite Wings in Subsonic Flow. In NACA-TN-3131; NACA: Washington, DC, USA, 1954. [Google Scholar]
- Watkins, C.E.; Runyan, H.L.; Woolston, D.S. On the Kernel Function of the Integral Equation Relating the Lift and Downwash Distribution of Oscillating Finite Wings in Subsonic Flow. In NACA-TR-1234; NACA: Washington, DC, USA, 1955. [Google Scholar]
- Lehrian, D.E. Initial Lift of Finite Aspect-Ratio Wings due to a Sudden Change of Incidence. In ARC-RM-3023; ARC: London, UK, 1955. [Google Scholar]
- Lehrian, D.E. Calculating Derivatives for Rectangular Wings Oscillating in Compressible Subsonic Flow. In ARC-RM-3068; ARC: London, UK, 1956. [Google Scholar]
- Drischler, J.A. Approximate Indicial Lift Functions for Several Wings of Finite Span in Incompressible Flow as Obtained from Oscillatory Lift Coefficients. In NACA-TN-3639; NACA: Washington, DC, USA, 1956. [Google Scholar]
- Carson, Y.E. Calculation of Flutter Characteristics for Finite Span Swept or Unswept Wings at Subsonic and Supersonic Speeds by a Modified Strip Analysis. In NACA-RM-L57L10; NACA: Washington, DC, USA, 1958. [Google Scholar]
- Watkins, C.E.; Woolston, D.S.; Cunningham, H.J. A Systematic Kernel Function Procedure for Determining Aerodynamic Forces on Oscillating or Steady Finite Wings at Subsonic Speeds. In NACA-TR-R-48; NACA: Washington, DC, USA, 1960. [Google Scholar]
- Acum, W.E.A.; Garner, H.C. The Estimation of Oscillatory Wing and Control Derivatives. In ARC-CP-623; ARC: London, UK, 1964. [Google Scholar]
- Hauptman, A.; Miloh, T. Aerodynamic Coefficients of a Thin Elliptic Wing in Unsteady Motion. AIAA J.
**1987**, 25, 769–774. [Google Scholar] [CrossRef] - Chiocchia, G.; Tordella, D.; Prössdorf, S. The Lifting Line Equation for a Curved Wing in Oscillatory Motion. ZAMM-J. Appl. Math. Mech.
**1997**, 77, 295–315. [Google Scholar] [CrossRef] - Rodden, W. Theoretical and Computational Aeroelasticity; Crest Publishing: Los Angeles, CA, USA, 2011. [Google Scholar]
- Richardson, J.R. A Method for Calculating the Lifting Forces on Wings (Unsteady Subsonic and Supersonic Lifting Surface Theory). In ARC-RM-3157; ARC: London, UK, 1955. [Google Scholar]
- Van Holten, T. Some Notes on Unsteady Lifting-Line Theory. J. Fluid Mech.
**1976**, 77, 561. [Google Scholar] [CrossRef] - Wagner, H. Uber die Entstehung des Dynamischen Auftriebes von Tragflugeln. ZAMM-J. Appl. Math. Mech.
**1925**, 5, 17–35. [Google Scholar] [CrossRef] [Green Version] - Kussner, H.G. Zusammenfassender Bericht uber den Instationaren Auftrieb von Flugeln. Luftfahrtforschung
**1936**, 13, 410–424. [Google Scholar] - Theodorsen, T. General Theory of Aerodynamic Instability and the Mechanism of Flutter. In NACA-TR-496; NACA: Washington, DC, USA, 1935. [Google Scholar]
- Von Karman, T.; Sears, W.R. Airfoil Theory for Non-Uniform Motion. J. Aeronaut. Sci.
**1938**, 5, 379–390. [Google Scholar] [CrossRef] - Sears, W.R.; Kuethe, A.M. The Growth of the Circulation of an Airfoil Flying through a Gust. J. Aeronaut. Sci.
**1939**, 6, 376–378. [Google Scholar] [CrossRef] - Garrick, L.E. On some Reciprocal Relations in the Theory of Nonstationary Flows. In NACA-TR-629; NACA: Washington, DC, USA, 1938. [Google Scholar]
- Heaslet, M.A.; Spreiter, J.R. Reciprocity Relations in Aerodynamics. In NACA-TR-1119; NACA: Washington, DC, USA, 1953. [Google Scholar]
- Weissinger, J. The Lift Distribution of Swept-Back Wings. In NACA-TM-1120; NACA: Washington, DC, USA, 1947. [Google Scholar]
- Peirce, B.O. A Short Table of Integrals; Ginn and Company: Boston, MA, USA, 1929. [Google Scholar]
- Diederich, F. A Plan-Form Parameter for Correlating Certain Aerodynamic Characteristics of Swept Wings. In NACA-TN-2335; NACA: Washington, DC, USA, 1951. [Google Scholar]
- Laitone, E.V. Lift-Curve Slope for Finite-Aspect-Ratio Wings. J. Aircr.
**1989**, 26, 789–790. [Google Scholar] [CrossRef] - Kida, T. An Asymptotic Expression of Lift Slope of Elliptic Wing with High Aspect Ratio. ZAMM-J. Appl. Math. Mech.
**1982**, 62, 491–493. [Google Scholar] [CrossRef] - Hauptman, A. Exact and Asymptotic Expressions of the Lift Slope Coefficient of an Elliptical Wing. AIAA J.
**1987**, 25, 1261–1262. [Google Scholar] [CrossRef] - Hodges, D.H.; Pierce, G.A. Introduction to Structural Dynamics and Aeroelasticity; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Berci, M. Semi-Analytical Static Aeroelastic Analysis and Response of Flexible Subsonic Wings. Appl. Math. Comput.
**2015**, 267, 148–169. [Google Scholar] [CrossRef] - Possio, C. L’Azione Aerodinamica sul Profilo Oscillante in un Fluido Compressibile a Velocità Iposonora. L’Aerotecnica
**1938**, 18, 441–458. [Google Scholar] - Frazer, R. Possio’s Subsonic Derivative Theory and its Application to Flexural-Torsional Wing Flutter. In ARC-RM-2553; ARC: London, UK, 1951. [Google Scholar]
- Timman, R.A.; Van de Vooren, I.; Greidanus, J.H. Aerodynamics Coefficients of an Oscillating Airfoil in Two-Dimensional Subsonic Flow. J. Aeronaut. Sci.
**1951**, 18, 797–802. [Google Scholar] [CrossRef] - Reissner, E. On the Application of Mathieu Functions in the Theory of Subsonic Compressible Flow Past Oscillating Airfoils. In NACA-TN-2363; NACA: Washington, DC, USA, 1951. [Google Scholar]
- Balakrishnan, A.V. Unsteady Aerodynamics - Subsonic Compressible Inviscid Case. In NASA-CR-1999-206583; NASA: Washington, DC, USA, 1999. [Google Scholar]
- Lin, J.; Iliff, K.W. Aerodynamic Lift and Moment Calculations Using a Closed-Form Solution of the Possio Equation. In NASA-TM-2000-209019; NASA: Washington, DC, USA, 2000. [Google Scholar]
- Balakrishnan, A. Possio Integral Equation of Aeroelasticity Theory. J. Aerosp. Eng.
**2003**, 16, 139–154. [Google Scholar] [CrossRef] - Polyakov, P.L. Solvability of the Generalized Possio Equation in 2D Subsonic Aeroelasticity. Comput. Methods Funct. Theory
**2007**, 7, 55–76. [Google Scholar] [CrossRef] [Green Version] - Tewari, A. Adaptive Aeroservoelastic Control; Wiley: Chichester, UK, 2016. [Google Scholar]
- Abbott, I.; von Doenhoff, A. Theory of Wing Sections: Including a Summary of Aerofoil Data; Dover: New York, NY, USA, 1945. [Google Scholar]
- Jordan, P.F. Exact Solutions for Lifting Surfaces. AIAA J.
**1973**, 11, 1123–1129. [Google Scholar] [CrossRef] - Kellaway, W. A Lifting Surface Theory Method for Treating Swept or Slender Wings in Attached Subsonic Flow. In ARC-RM-3760; ARC: London, UK, 1973. [Google Scholar]
- Medan, R.T. Steady, Subsonic, Lifting Surface Theory For Wings With Swept, Partial Span, Trailing Edge Control Surfaces. In NASA-TN-D-7251; NASA: Washington, DC, USA, 1973. [Google Scholar]
- Medan, R.T. Improvements to the Kernel Function Method of Steady, Subsonic Lifting Surface Theory. In NASA-TM-X-62327; NASA: Washington, DC, USA, 1974. [Google Scholar]
- Helmbold, H.B. Der Unverwundene Ellipsenflügel als Tragende Fläche. Jahrbuch der Deutschen Luftfahrtforschung
**1942**, I, 111–113. [Google Scholar] - Vanderplaats, G. Numerical Optimization Techniques for Engineering Design: With Applications; McGraw Hill: New York, NY, USA, 1984. [Google Scholar]
- Kida, T. A Theoretical Treatment of Lifting Surface Theory of an Elliptic Wing. ZAMM-J. Appl. Math. Mech.
**1980**, 60, 645–651. [Google Scholar] [CrossRef] - Hauptman, A.; Miloh, T. On the Exact Solution of the Linearized Lifting-Surface Problem of an Elliptic Wing. Q. J. Mech. Appl. Math.
**1986**, 39, 41–66. [Google Scholar] [CrossRef] - Theodorsen, T. Theory of Wing Sections of Arbitrary Shape. In NACA-TR-411; NACA: Washington, DC, USA, 1931. [Google Scholar]
- Schrenk, O. A Simple Approximation Method for Obtaining the Spanwise Lift Distribution. In NACA-TM-948; NACA: Washington, DC, USA, 1940. [Google Scholar]
- Falkner, H.C. The Calculation of Aerodynamic Loading on Surfaces of Any Shape. In ARC-RM-1910; ARC: London, UK, 1943. [Google Scholar]
- Jones, W.P. Theoretical Determination of the Pressure Distribution on a Finite Wing in Steady Motion. In ARC-RM-2145; ARC: London, UK, 1943. [Google Scholar]
- Swanson, R.S.; Crandall, S.M. Lifting-Surface-Theory Aspect-Ratio Corrections to the Lift and Hinge-Moment Parameters for Full-Span Elevators on Horizontal Tail Surfaces. In NACA-TN-1175; NACA: Washington, DC, USA, 1947. [Google Scholar]
- Garner, H.C. Methods of Approaching an Accurate Three-Dimensional Potential Solution for a Wing. In ARC-RM-2721; ARC: London, UK, 1948. [Google Scholar]
- Hancock, G.J. Method for the Determination of the Pressure Distribution over a Finite Thin Wing at a Steady Low Speed. In ARC-CP-128; ARC: London, UK, 1953. [Google Scholar]
- Van Dyke, M. Lifting-Line Theory as a Singular-Perturbation Problem. J. Appl. Math. Mech.
**1964**, 28, 90–102. [Google Scholar] [CrossRef] - Kida, T.; Miyai, Y. An Alternative Treatment of Lifting-Line Theory as a Perturbation Problem. Z. Angew. Math. Phys.
**1978**, 29, 591–607. [Google Scholar] [CrossRef] - Guermond, J.L. A Generalized Lifting-Line Theory for Curved and Swept Wings. J. Fluid Mech.
**1990**, 211, 497–513. [Google Scholar] [CrossRef] - Prossdorf, S.; Tordella, D. On an Extension of Prandtl’s Lifting-Line Theory to Curved Wings. IMPACT Comput. Sci. Eng.
**1991**, 3, 192–212. [Google Scholar] [CrossRef] - Rasmussen, M.; Smith, D. Lifting-Line Theory for Arbitrarily Shaped Wings. J. Aircr.
**1999**, 36, 340–348. [Google Scholar] [CrossRef] - Phillips, W.; Snyder, D. Modern Adaptation of Prandtl’s Classic Lifting-Line Theory. J. Aircr.
**2000**, 37, 662–670. [Google Scholar] [CrossRef] - Phillips, W.; Hunsaker, D.F.; Niewoehner, R.J. Estimating the Subsonic Aerodynamic Center and Moment Components for Swept Wings. J. Aircr.
**2008**, 45, 1033–1043. [Google Scholar] [CrossRef] [Green Version] - Phillips, W.; Hunsaker, D.F. Lifting-Line Predictions for Induced Drag and Lift in Ground Effect. J. Aircr.
**2013**, 50, 1226–1233. [Google Scholar] [CrossRef] [Green Version] - Caprace, D.G.; Chatelain, P.; Winckelmans, G. Lifting Line with Various Mollifications: Theory and Application to an Elliptical Wing. AIAA J.
**2019**, 57, 17–28. [Google Scholar] [CrossRef] - Reid, J.T.; Hunsaker, D.F. General Approach to Lifting-Line Theory, Applied to Wings with Sweep. J. Aircr.
**2021**, 58, 334–346. [Google Scholar] [CrossRef] - Stewartson, K. A Note on Lifting Line Theory. Q. J. Mech. Appl. Math.
**1960**, 13, 49–56. [Google Scholar] [CrossRef] - Glauert, H. The Force and Moment on an Oscillating Aerofoil. In ARC-RM-1242; ARC: London, UK, 1929. [Google Scholar]
- Jones, W.P. Aerodynamic Forces on an Oscillating Aerofoil Aileron-Tab Combination. In ARC-RM-1948; ARC: London, UK, 1941. [Google Scholar]
- Theodorsen, T.; Garrick, L.E. Nonstationary Flow About a Wing-Aileron-Tab Combination Including Aerodynamic Balance. In NACA-TR-736; NACA: Washington, DC, USA, 1942. [Google Scholar]
- Radok, J.R.M. The Theory of Aerofoils in Unsteady Motion. Aeronaut. Q.
**1952**, 3, 297–320. [Google Scholar] [CrossRef] - Woods, L.C. The Lift and Moment Acting on a Thick Aerofoil in Unsteady Motion. Philos. Trans. R. Soc. Lond.-Ser. A. Math. Phys. Sci.
**1954**, 247, 131–162. [Google Scholar] - Williams, D.E. On the Integral Equations of Two-Dimensional Subsonic Flutter Derivative Theory. In ARC-RM-3057; ARC: London, UK, 1955. [Google Scholar]
- Van De Vooren, A.I. Unsteady Aerofoil Theory. Adv. Appl. Mech.
**1958**, 5, 35–89. [Google Scholar] - Hewson-Browne, R.C. The Oscillation of a Thick Aerofoil in an Incompressible Flow. Q. J. Mech. Appl. Math.
**1963**, 16, 79–92. [Google Scholar] [CrossRef] - Giesing, J.P. Nonlinear Two-Dimensional Unsteady Potential Flow with Lift. J. Aircr.
**1968**, 5, 135–143. [Google Scholar] [CrossRef] - Ericsson, L.E.; Reding, J.P. Unsteady Airfoil Stall, Review and Extension. J. Aircr.
**1971**, 8, 609–616. [Google Scholar] [CrossRef] - Kemp, N.H.; Homicz, G. Approximate Unsteady Thin-Airfoil Theory for Subsonic Flow. AIAA J.
**1976**, 14, 1083–1089. [Google Scholar] [CrossRef] - Zeiler, T.A. Results of Theodorsen and Garrick Revisited. J. Aircr.
**2000**, 37, 918–920. [Google Scholar] [CrossRef] - Mateescu, D.; Abdo, M. Theoretical Solutions for Unsteady Flows Past Oscillating Flexible Airfoils Using Velocity Singularities. J. Aircr.
**2003**, 40, 153–163. [Google Scholar] [CrossRef] - Kayran, A. Kussner’s Function in the Sharp Edged Gust Problem—A Correction. J. Aircr.
**2006**, 43, 1596–1599. [Google Scholar] [CrossRef] - Johnston, C.O.; Mason, W.H.; Han, C. Unsteady Thin Airfoil Theory Revisited for a General Deforming Airfoil. J. Mech. Sci. Technol.
**2010**, 24, 2451–2460. [Google Scholar] [CrossRef] - McGowan, G.Z.; Granlund, K.; Ol, M.V.; Gopalarathnam, A.; Edwards, J.R. Investigations of Lift-Based Pitch-Plunge Equivalence for Airfoils at Low Reynolds Numbers. AIAA J.
**2011**, 49, 1511–1524. [Google Scholar] [CrossRef] - Ramesh, K.; Gopalarathnam, A.; Edwards, J.R.; Ol, M.V.; Granlund, K. An Unsteady Airfoil Theory Applied to Pitching Motions Validated against Experiment and Computation. Theor. Comput. Fluid Dyn.
**2013**, 27, 843–864. [Google Scholar] [CrossRef] - Berci, M.; Gaskell, P.H.; Hewson, R.W.; Toropov, V.V. A Semi-Analytical Model for the Combined Aeroelastic Behaviour and Gust Response of a Flexible Aerofoil. J. Fluids Struct.
**2013**, 38, 3–21. [Google Scholar] [CrossRef] - Liu, T.; Wang, S.; Zhang, X.; He, G. Unsteady Thin-Airfoil Theory Revisited: Application of a Simple Lift Formula. AIAA J.
**2015**, 53, 1492–1502. [Google Scholar] [CrossRef] - Perry, B. Comparison of Theodorsen’s Unsteady Aerodynamic Forces with Doublet Lattice Generalized Aerodynamic Forces. In NACA-TM–2017-219667; NASA: Washington, DC, USA, 2017. [Google Scholar]
- Riso, C.; Riccardi, G.; Mastroddi, F. Semi-Analytical Unsteady Aerodynamic Model of a Flexible Thin Airfoil. J. Fluids Struct.
**2018**, 80, 288–315. [Google Scholar] [CrossRef] - Jones, A.R.; Cetiner, O. Overview of Unsteady Aerodynamic Response of Rigid Wings in Gust Encounters. AIAA J.
**2021**, 59, 731–736. [Google Scholar] [CrossRef] - Jones, W.P. Summary of Formulae and Notations Used in Two-Dimensional Derivative Theory. In ARC-RM-1958; ARC: London, UK, 1942. [Google Scholar]
- Duncan, W.J. Some Notes on Aerodynamic Derivatives. In ARC-RM-2115; ARC: London, UK, 1945. [Google Scholar]
- Temple, G. The Representation of Aerodynamic Derivatives. In ARC-RM-2114; ARC: London, UK, 1945. [Google Scholar]

**Figure 1.**The indicial circulatory lift for elliptical thin wing in incompressible flow: AOA (

**left**) and SEG (

**right**).

**Figure 2.**The indicial airload derivatives (

**left**) and approximate incipient behaviours (

**right**) for thin aerofoil in incompressible flow.

**Figure 3.**The approximate downwash gradient (

**left**) and incipient angle (

**right**) from a unit AOA step for thin elliptical wings in incompressible flow.

**Figure 4.**The incipient indicial lift for elliptical thin wings in incompressible flow: AOA (

**left**) and SEG (

**right**).

**Figure 5.**The gust penetration delay for thin elliptical and trapezoidal wings: taper (

**left**) and sweep (

**right**) effects along the span.

**Figure 6.**The Mach effect on the incipient indicial lift for thin aerofoil in compressible flow: AOA (

**left**) and SEG (

**right**), with $\mathsf{\Lambda}={0}^{\circ}$.

**Figure 7.**The sweep effect on the incipient indicial lift for thin aerofoil in compressible flow: AOA (

**left**) and SEG (

**right**), with ${M}_{\infty}=0.5$.

**Figure 8.**The incipient indicial lift for elliptical wing in compressible flow: AOA (

**left**) and SEG (

**right**), with $\eta =6$.

**Figure 9.**The incipient indicial lift for elliptical wing in compressible flow: AOA (

**left**) and SEG (

**right**), with $\eta =8$.

**Figure 10.**The incipient indicial lift for elliptical wing in compressible flow: AOA (

**left**) and SEG (

**right**), with $\eta =12$.

**Figure 11.**The incipient indicial lift for elliptical wing in compressible flow: AOA (

**left**) and SEG (

**right**), with $\eta =20$.

**Figure 12.**The incipient indicial lift for rectangular straight wing in compressible flow: AOA (

**left**) and SEG (

**right**), with $\eta =8$ and $\mathsf{\Lambda}={0}^{\circ}$.

**Figure 13.**The incipient indicial lift for rectangular swept wing in compressible flow: AOA (

**left**) and SEG (

**right**), with $\eta =8$ and $\mathsf{\Lambda}={30}^{\circ}$.

**Figure 14.**The incipient indicial lift for rectangular straight wing in compressible flow: AOA (

**left**) and SEG (

**right**), with $\eta =20$ and $\mathsf{\Lambda}={0}^{\circ}$.

**Figure 15.**The incipient indicial lift for rectangular swept wing in compressible flow: AOA (

**left**) and SEG (

**right**), with $\eta =20$ and $\mathsf{\Lambda}={30}^{\circ}$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Berci, M.
On the Incipient Indicial Lift of Thin Wings in Subsonic Flow: Acoustic Wave Theory with Unsteady Three-Dimensional Effects. *Acoustics* **2022**, *4*, 26-52.
https://doi.org/10.3390/acoustics4010003

**AMA Style**

Berci M.
On the Incipient Indicial Lift of Thin Wings in Subsonic Flow: Acoustic Wave Theory with Unsteady Three-Dimensional Effects. *Acoustics*. 2022; 4(1):26-52.
https://doi.org/10.3390/acoustics4010003

**Chicago/Turabian Style**

Berci, Marco.
2022. "On the Incipient Indicial Lift of Thin Wings in Subsonic Flow: Acoustic Wave Theory with Unsteady Three-Dimensional Effects" *Acoustics* 4, no. 1: 26-52.
https://doi.org/10.3390/acoustics4010003