The Microbiota and the Relationship with Colorectal Cancer: Surgical Complications—A Review
Abstract
:1. Introduction
2. Alterations of Intestinal Microbiota Following Colorectal Surgery
3. Anastomotic Leakage and Colorectal Microbiota
4. Infectious Complications
5. Postoperative Ileus
6. Postoperative Adhesions
7. Long-Term Outcomes
8. Conclusions and Future Perspectives
Funding
Conflicts of Interest
References
- Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021, 14, 101174. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ling, Z.; Li, L. The intestinal microbiota and colorectal cancer. Front. Immunol. 2020, 11, 3100. [Google Scholar] [CrossRef] [PubMed]
- Hislop, G. Trends and risk factors for colorectal cancer. Br. Columbia Med. J. 2022, 42, 131–135. [Google Scholar]
- Alexandra, G.; Alexandru, M.; Stefan, C.F.; Petruta-Maria, D.; Gabriel, B.M.; Dragos-Eugen, G.; Teodor, G.M. Blood group type association with head and neck cancer. Hematol. Rep. 2022, 14, 24–30. [Google Scholar] [CrossRef]
- Khalili, H.; Wolpin, B.M.; Huang, E.S.; Giovannucci, E.L.; Kraft, P.; Fuchs, C.S.; Chan, A.T. ABO blood group and risk of colorectal cancer. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1017–1020. [Google Scholar] [CrossRef] [Green Version]
- Malan-Muller, S.; Valles-Colomer, M.; Raes, J.; Lowry, C.A.; Seedat, S.; Hemmings, S.M.J. The Gut microbiome and mental health: Implications for anxiety- and trauma-related disorders. Omics. J. Integr. Biol. 2018, 22, 90–107. [Google Scholar] [CrossRef]
- Wen, L.; Duffy, A. Factors influencing the gut microbiota, inflammation, and type 2 diabetes. J. Nutr. 2017, 147, 1468S–1475S. [Google Scholar] [CrossRef] [Green Version]
- Järbrink-Sehgal, E.; Andreasson, A. The gut microbiota and mental health in adults. Curr. Opin. Neurobiol. 2020, 62, 102–114. [Google Scholar] [CrossRef]
- Graf, D.; Di Cagno, R.; Fåk, F.; Flint, H.J.; Nyman, M.; Saarela, M.; Watzl, B. Contribution of diet to the composition of the human gut microbiota. Microb. Ecol. Health Dis. Taylor Fr. 2015, 26, 26164. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E.; Lærke, H.N.; Hedemann, M.S.; Nielsen, T.S.; Ingerslev, A.K.; Gundelund Nielsen, D.S.; Theil, P.K.; Purup, S.; Hald, S.; Schioldan, A.G.; et al. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients 2018, 10, 1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozzi Cionci, N.; Baffoni, L.; Gaggìa, F.; Di Gioia, D. Therapeutic microbiology: The role of bifidobacterium breve as food supplement for the prevention/treatment of paediatric diseases. Nutrients 2018, 10, 1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazem, Y.I.; Mahmoud, M.H.; Essa, H.A.; Azmy, O.; Kandeel, W.A.; Al-Moghazy, M.; El-Attar, I.; Hasheesh, A.; Mehanna, N.S. Role of Bifidobacterium spp. intake in improving depressive mood and well-being and its link to kynurenine blood level: An interventional study. J. Complement. Integr. Med. 2021. Available online: https://www.degruyter.com/document/doi/10.1515/jcim-2021-0351/html (accessed on 2 February 2022). [CrossRef] [PubMed]
- Golfetto, L.; de Senna, F.D.; Hermes, J.; Beserra, B.T.S.; França, F.D.S.; Martinello, F. Lower bifidobacteria counts in adult patients with celiac disease on a gluten-free diet. Arq. Gastroenterol. 2014, 51, 139–143. [Google Scholar] [CrossRef]
- Ottman, N.; Geerlings, S.Y.; Aalvink, S.; de Vos, W.M.; Belzer, C. Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pract. Res. Clin. Gastroenterol. 2017, 31, 637–642. [Google Scholar] [CrossRef] [Green Version]
- Gloux, K.; Leclerc, M.; Iliozer, H.; L’Haridon, R.; Manichanh, C.; Corthier, G.; Nalin, R.; Blottière, H.M.; Doré, J. Development of high-throughput phenotyping of metagenomic clones from the human gut microbiome for modulation of eukaryotic cell growth. Appl. Environ. Microbiol. Am. Soc. Microbiol. 2007, 73, 3734–3737. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Yamamoto, R.; Takeuchi, T.; Cui, G.; Miyauchi, E.; Hojo, N.; Ikuta, K.; Ohno, H.; Shiroguchi, K. High-throughput identification and quantification of single bacterial cells in the microbiota. Nat. Commun. 2022, 13, 863. [Google Scholar] [CrossRef]
- Davidson, R.M.; Epperson, L.E. Microbiome sequencing methods for studying human diseases. In Disease Gene Identification; DiStefano, J.K., Ed.; Springer: New York, NY, USA, 2018; pp. 77–90. [Google Scholar] [CrossRef]
- Ghurye, J.S.; Cepeda-Espinoza, V.; Pop, M. Metagenomic assembly: Overview, challenges and applications. Yale J. Biol. Med. 2016, 89, 353–362. [Google Scholar]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Weber, C.F. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Long, X.; Wong, C.C.; Tong, L.; Chu, E.S.H.; Ho Szeto, C.; Go, M.Y.Y.; Coker, O.O.; Chan, A.W.H.; Chan, F.K.L.; Sung, J.J.Y.; et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat. Microbiol. 2019, 4, 2319–2330. [Google Scholar] [CrossRef] [PubMed]
- Baxter, N.T.; Ruffin, M.T.; Rogers, M.A.M.; Schloss, P.D. Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Med. 2016, 8, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellarin, M.; Warren, R.L.; Freeman, J.D.; Dreolini, L.; Krzywinski, M.; Strauss, J.; Barnes, R.; Watson, P.; Allen-Vercoe, E.; Moore, R.A.; et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012, 22, 299–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Feng, Q.; Wong, S.H.; Zhang, D.; Liang, Q.Y.; Qin, Y.; Tang, L.; Zhao, H.; Stenvang, J.; Li, Y.; et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2017, 66, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Tang, M.; Zeng, L.; Chu, Z.; Sheng, H.; Zhang, Y.; Zhou, Y.; Zhang, H.; Jiang, H.; Ye, M. Potential of fecal microbiota for detection and postoperative surveillance of colorectal cancer. BMC Microbiol. 2021, 21, 156. [Google Scholar] [CrossRef] [PubMed]
- Alhinai, E.A.; Walton, G.E.; Commane, D.M. The role of the gut microbiota in colorectal cancer causation. Int. J. Mol. Sci. 2019, 20, 5295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belkaid, Y.; Hand, T. Role of the microbiota in immunity and inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef] [Green Version]
- Zitvogel, L.; Daillère, R.; Roberti, M.P.; Routy, B.; Kroemer, G. Anticancer effects of the microbiome and its products. Nat. Rev. Microbiol. 2017, 15, 465–478. [Google Scholar] [CrossRef]
- Georgescu, M.-T.; Patrascu, T.; Serbanescu, L.G.; Anghel, R.M.; Gales, L.N.; Georgescu, F.T.; Mitrica, R.I.; Georgescu, D.E. When should we expect curative results of neoadjuvant treatment in locally advanced rectal cancer patients? Chirurgia 2021, 116, 16–23. [Google Scholar] [CrossRef]
- Georgescu, D.E.; Patrascu, T.; Georgescu, T.F.; Tulin, A.; Mosoia, L.; Bacalbasa, N.; Stiru, O.; Georgescu, M.-T. Diabetes mellitus as a prognostic factor for locally advanced rectal cancer. Vivo 2021, 35, 2495–2501. [Google Scholar] [CrossRef]
- Kuipers, E.J.; Grady, W.M.; Lieberman, D.; Seufferlein, T.; Sung, J.J.; Boelens, P.G.; van de Velde, C.J.H.; Watanabe, T. Colorectal cancer. Nat. Rev. Dis. Primer 2015, 1, 15065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breugom, A.J.; van Dongen, D.T.; Bastiaannet, E.; Dekker, F.W.; van der Geest, L.G.M.; Liefers, G.J.; Marinelli, A.W.K.S.; Mesker, W.E.; Portielje, J.E.A.; Steup, W.H.; et al. Association between the most frequent complications after surgery for stage I-III colon cancer and short-term survival, long-term survival, and recurrences. Ann. Surg. Oncol. 2016, 23, 2858–2865. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, Q.; Wang, C.; Tang, C.; Li, J. Dynamic alteration of the colonic microbiota in intestinal ischemia-reperfusion injury. PLoS ONE 2012, 7, e42027. [Google Scholar] [CrossRef] [PubMed]
- Shogan, B.D.; Smith, D.P.; Christley, S.; Gilbert, J.A.; Zaborina, O.; Alverdy, J.C. Intestinal anastomotic injury alters spatially defined microbiome composition and function. Microbiome 2014, 2, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohigashi, S.; Sudo, K.; Kobayashi, D.; Takahashi, T.; Nomoto, K.; Onodera, H. Significant changes in the intestinal environment after surgery in patients with colorectal cancer. J. Gastrointest. Surg. Off. J. Soc. Surg. Aliment. Tract. 2013, 17, 1657–1664. [Google Scholar] [CrossRef]
- Cong, J.; Zhu, H.; Liu, D.; Li, T.; Zhang, C.; Zhu, J.; Lv, H.; Liu, K.; Hao, C.; Tian, Z.; et al. A pilot study: Changes of gut microbiota in post-surgery colorectal cancer patients. Front. Microbiol. 2018, 9, 2777. [Google Scholar] [CrossRef]
- Deng, X.; Li, Z.; Li, G.; Li, B.; Jin, X.; Lyu, G. Comparison of microbiota in patients treated by surgery or chemotherapy by 16S rRNA sequencing reveals potential biomarkers for colorectal cancer therapy. Front. Microbiol. 2018, 9, 1607. [Google Scholar] [CrossRef]
- Kong, C.; Gao, R.; Yan, X.; Huang, L.; He, J.; Li, H.; You, J.; Qin, H. Alterations in intestinal microbiota of colorectal cancer patients receiving radical surgery combined with adjuvant CapeOx therapy. Sci. China Life Sci. 2019, 62, 1178–1193. [Google Scholar] [CrossRef]
- Liu, C.-J.; Zhang, Y.-L.; Shang, Y.; Wu, B.; Yang, E.; Luo, Y.-Y.; Li, X.-R. Intestinal bacteria detected in cancer and adjacent tissue from patients with colorectal cancer. Oncol Lett. 2019, 17, 1115–1127. [Google Scholar] [CrossRef] [Green Version]
- Rahbari, N.N.; Weitz, J.; Hohenberger, W.; Heald, R.J.; Moran, B.; Ulrich, A.; Holm, T.; Wong, W.D.; Tiret, E.; Moriya, Y.; et al. Definition and grading of anastomotic leakage following anterior resection of the rectum: A proposal by the International Study Group of Rectal Cancer. Surgery 2010, 147, 339–351. [Google Scholar] [CrossRef]
- Fecal Microbiota Transplantation (FMT) Treatment at IPPM Clinic. 2022. Available online: https://www.ippmclinic.com/en/fecal-transplantation (accessed on 10 February 2022).
- Meyer, J.; Naiken, S.; Christou, N.; Liot, E.; Toso, C.; Buchs, N.C.; Ris, F. Reducing anastomotic leak in colorectal surgery: The old dogmas and the new challenges. World J. Gastroenterol. 2019, 25, 5017–5025. [Google Scholar] [CrossRef] [PubMed]
- Van Praagh, J.B.; de Goffau, M.C.; Bakker, I.S.; Harmsen, H.J.M.; Olinga, P.; Havenga, K. Intestinal microbiota and anastomotic leakage of stapled colorectal anastomoses: A pilot study. Surg. Endosc. 2016, 30, 2259–2265. [Google Scholar] [CrossRef] [PubMed]
- Hamer, H.M.; Jonkers, D.M.A.E.; Bast, A.; Vanhoutvin, S.A.L.W.; Fischer, M.A.J.G.; Kodde, A.; Troost, F.J.; Venema, K.; Brummer, R.-J.M. Butyrate modulates oxidative stress in the colonic mucosa of healthy humans. Clin. Nutr. 2009, 28, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Van Praagh, J.B.; de Goffau, M.C.; Bakker, I.S.; van Goor, H.; Harmsen, H.J.M.; Olinga, P.; Klaas, H. Mucus microbiome of anastomotic tissue during surgery has predictive value for colorectal anastomotic leakage. Ann. Surg. 2019, 269, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, S.; Campisciano, G.; Iacuzzo, C.; Bonadio, L.; Zucca, A.; Cosola, D.; Comar, M.; de Manzini, N. Role of preoperative gut microbiota on colorectal anastomotic leakage: Preliminary results. Updat. Surg. 2020, 72, 1013–1022. [Google Scholar] [CrossRef]
- Mima, K.; Sakamoto, Y.; Kosumi, K.; Ogata, Y.; Miyake, K.; Hiyoshi, Y.; Ishimoto, T.; Iwatsuki, M.; Baba, Y.; Iwagami, S.; et al. Mucosal cancer-associated microbes and anastomotic leakage after resection of colorectal carcinoma. Surg. Oncol. 2020, 32, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Nurmi, J.T.; Puolakkainen, P.A.; Rautonen, N.E. Bifidobacterium lactis sp. 420 up-regulates cyclooxygenase (cox)-1 and down-regulates cox-2 gene expression in a caco-2 cell culture model. Nutr. Cancer. 2005, 51, 83–92. [Google Scholar] [CrossRef]
- Reisinger, K.W.; Schellekens, D.H.S.M.; Bosmans, J.W.A.M.; Boonen, B.; Hulsewé, K.W.E.; Sastrowijoto, P.; Joep, D.; Joep, G.; Martijn, P. Cyclooxygenase-2 is essential for colorectal anastomotic healing. Ann. Surg. 2017, 265, 547–554. [Google Scholar] [CrossRef]
- Shogan, B.D.; Carlisle, E.M.; Alverdy, J.C.; Umanskiy, K. Do we really know why colorectal anastomoses leak? J. Gastrointest. Surg. Off. J. Soc. Surg. Aliment. Tract. 2013, 17, 1698–1707. [Google Scholar] [CrossRef]
- Shogan, B.D.; Belogortseva, N.; Luong, P.M.; Zaborin, A.; Lax, S.; Bethel, C.; Ward, M.; Muldoon, J.P.; Singer, M. Collagen degradation and MMP9 activation by Enterococcus faecalis contributes to intestinal anastomotic leak. Sci. Transl. Med. 2015, 7, 286ra68. [Google Scholar] [CrossRef] [Green Version]
- Stumpf, M.; Klinge, U.; Wilms, A.; Zabrocki, R.; Rosch, R.; Junge, K.; Krones, C.; Schumpelick, V. Changes of the extracellular matrix as a risk factor for anastomotic leakage after large bowel surgery. Surgery 2005, 137, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Dubinsky-Pertzov, B.; Temkin, E.; Harbarth, S.; Fankhauser-Rodriguez, C.; Carevic, B.; Radovanovic, I.; Ris, F.; Kariv, Y.; Buchs, N.C.; Schiffer, E.; et al. Carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae and the risk of surgical site infection after colorectal surgery: A prospective cohort study. Clin. Infect. Dis. 2019, 68, 1699–1704. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Pal, K.; Jain, S.; Chatterjee, S.S.; Konar, J. Surgical site infection by methicillin resistant staphylococcus aureus-on decline? J. Clin. Diagn. Res. 2016, 10, DC32. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.W.; Lee, W.Y.; Park, Y.A.; Cho, Y.B.; Kim, H.C.; Yun, S.H.; Chun, H.K. Oncological outcome of surgical site infection after colorectal cancer surgery. Int. J. Colorectal. Dis. 2019, 34, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Aisu, N.; Tanimura, S.; Yamashita, Y.; Yamashita, K.; Maki, K.; Yoshida, Y.; Sasaki, T.; Takeno, S.; Hoshino, S. Impact of perioperative probiotic treatment for surgical site infections in patients with colorectal cancer. Exp. Ther. Med. 2015, 10, 966–972. [Google Scholar] [CrossRef] [Green Version]
- Alverdy, J.C.; Hyoju, S.K.; Weigerinck, M.; Gilbert, J.A. The gut microbiome and the mechanism of surgical infection. Br. J. Surg. 2017, 104, e14–e23. [Google Scholar] [CrossRef] [Green Version]
- Sikorska, H.; Smoragiewicz, W. Role of probiotics in the prevention and treatment of meticillin-resistant Staphylococcus aureus infections. Int. J. Antimicrob. Agents 2013, 42, 475–481. [Google Scholar] [CrossRef]
- Vesterlund, S.; Karp, M.; Salminen, S.; Ouwehand, A.C.Y. Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria. Microbiology 2006, 152, 1819–1826. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Pang, B.; Li, N.; Jin, H.; Li, J.; Wu, W.; Ai, C.; Jiang, C.; Shi, J. Therapeutic effect of Lactobacillus rhamnosus SHA113 on intestinal infection by multi-drug-resistant Staphylococcus aureus and its underlying mechanisms. Food Funct. 2020, 11, 6226–6239. [Google Scholar] [CrossRef]
- Poutahidis, T.; Kearney, S.M.; Levkovich, T.; Qi, P.; Varian, B.J.; Lakritz, J.R.; Ibrahim, Y.M.; Chatzigiagkos, A.; Alm, E.J.; Alm, S.E. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS ONE 2013, 8, e78898. [Google Scholar] [CrossRef] [Green Version]
- Alexandru, M.; Rodica, A.; Dragos-Eugen, G.; Mihai-Teodor, G. Assessing the spleen as an organ at risk in radiation therapy and its relationship with radiation-induced lymphopenia: A retrospective study and literature review. Adv. Radiat. Oncol. 2021, 6, 100761. [Google Scholar] [CrossRef] [PubMed]
- Vather, R.; Trivedi, S.; Bissett, I. Defining postoperative ileus: Results of a systematic review and global survey. J. Gastrointest. Surg. 2013, 17, 962–972. [Google Scholar] [CrossRef] [PubMed]
- Drake, T.M.; Ward, A.E. Pharmacological management to prevent ileus in major abdominal surgery: A systematic review and meta-analysis. J. Gastrointest. Surg. 2016, 20, 1253–1264. [Google Scholar] [CrossRef] [PubMed]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015, 161, 264–276. [Google Scholar] [CrossRef] [Green Version]
- De Vadder, F.; Grasset, E.; Mannerås Holm, L.; Karsenty, G.; Macpherson, A.J.; Olofsson, L.E.; Bäckhed, F. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc. Natl. Acad. Sci. USA 2018, 115, 6458–6463. [Google Scholar] [CrossRef] [Green Version]
- Harnsberger, C.R.; Maykel, J.A.; Alavi, K. Postoperative ileus. Clin. Colon. Rectal. Surg. 2019, 32, 166–170. [Google Scholar] [CrossRef]
- Jin, Y.; Geng, R.; Liu, Y.; Liu, L.; Jin, X.; Zhao, F.; Feng, J.; Wei, Y. Prediction of postoperative ileus in patients with colorectal cancer by preoperative gut microbiota. Front. Oncol. 2020, 10, 526009. [Google Scholar] [CrossRef]
- Shogan, B.D.; Chen, J.; Duchalais, E.; Collins, D.; Chang, M.; Krull, K.; Krezalek, M.A.; Larson, D.W.; Walther-Antonio, M.R.; Chia, N.; et al. Alterations of the rectal microbiome are associated with the development of postoperative ileus in patients undergoing colorectal surgery. J. Gastrointest. Surg. 2020, 24, 1663–1672. [Google Scholar] [CrossRef]
- Pohl, J.-M.; Gutweiler, S.; Thiebes, S.; Volke, J.K.; Klein-Hitpass, L.; Zwanziger, D.; Gunzer, M.; Jung, S.; Agace, W.W.; Kurts, C.; et al. Irf4-dependent CD103+CD11b+ dendritic cells and the intestinal microbiome regulate monocyte and macrophage activation and intestinal peristalsis in postoperative ileus. Gut 2017, 66, 2110–2120. [Google Scholar] [CrossRef] [Green Version]
- Arung, W.; Meurisse, M.; Detry, O. Pathophysiology and prevention of postoperative peritoneal adhesions. World J. Gastroenterol. 2011, 17, 4545–4553. [Google Scholar] [CrossRef]
- Rodgers, K.E.; Girgis, W.; Campeau, J.D.; di Zerega, G.S. Reduction of adhesion formation by intraperitoneal administration of anti-inflammatory peptide 2. J. Investig. Surg. Off. J. Acad. Surg. Res. 1997, 10, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Siegler, A.M.; Kontopoulos, V.; Wang, C.F. Prevention of postoperative adhesions in rabbits with ibuprofen, a nonsteroidal anti-inflammatory agent. Fertil. Steril. 1980, 34, 46–49. [Google Scholar] [CrossRef]
- Bothin, C.; Okada, M.; Midtvedt, T.; Perbeck, L. The intestinal flora influences adhesion formation around surgical anastomoses. Br. J. Surg. 2001, 88, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Oncel, M.; Kurt, N.; Remzi, F.H.; Sensu, S.S.; Vural, S.; Gezen, C.F.; Cincin, T.G.; Olcay, E. The effectiveness of systemic antibiotics in preventing postoperative, intraabdominal adhesions in an animal model. J. Surg. Res. 2001, 101, 52–55. [Google Scholar] [CrossRef]
- Reigstad, C.S.; Salmonson, C.E.; Rainey, J.F.; Szurszewski, J.H.; Linden, D.R.; Sonnenburg, J.L.; Farrugia, G.; Kashyap, P.C. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2015, 29, 1395–1403. [Google Scholar] [CrossRef] [Green Version]
- Hata, T.; Asano, Y.; Yoshihara, K.; Kimura-Todani, T.; Miyata, N.; Zhang, X.-T.; Takakura, S.; Aiba, Y.; Koga, Y.; Sudo, N. Regulation of gut luminal serotonin by commensal microbiota in mice. PLoS ONE 2017, 12, e0180745. [Google Scholar] [CrossRef]
- Flanagan, L.; Schmid, J.; Ebert, M.; Soucek, P.; Kunicka, T.; Liska, V.; Bruha, J.; Neary, P.; Dezeeuw, N.; Tommasino, M.; et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2014, 33, 1381–1390. [Google Scholar] [CrossRef]
- Wei, Z.; Cao, S.; Liu, S.; Yao, Z.; Sun, T.; Li, Y.; Li, J.; Zhang, D.; Zhou, Y. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients’ survival? A pilot study on relevant mechanism. Oncotarget 2016, 7, 46158–46172. [Google Scholar] [CrossRef] [Green Version]
- Sivan, A.; Corrales, L.; Hubert, N.; Williams, J.B.; Aquino-Michaels, K.; Earley, Z.M.; Benyamin, F.W.; Lei, Y.M.; Jabri, B.; Alegre, M.-L.; et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science 2015, 350, 1084–1089. [Google Scholar] [CrossRef] [Green Version]
- Ntomi, V.; Foukas, P.; Papaconstantinou, D.; Antonopoulou, I.; Pikoulis, A.; Panagiotides, I.; Pikoulis, E.; Syrigos, K. The clinical significance of PD-L1 in colorectal cancer (Review). Oncol. Rep. 2021, 45, 92. [Google Scholar] [CrossRef]
Postsurgical Complication | Microbial Agents | Impact |
---|---|---|
Anastomotic leakage (AL) | Ruminococcus, Blautia, Roseburia, Coprococcus, Acinetobacter Iwoffi, johnsonii | Negative |
Bacteroidaceae and Lachnospiraceae families | Negative without C-seal | |
Faecalibacterium prausnitzii | Positive | |
Enterococcus faecalis | Positive | |
Infectious complications | Clostridium butyricum, Bacillus mesentericus, Enterococcus faecalis | Positive |
E. coli, P. aeruginosa, Enterococcus spp. | Negative | |
Postoperative ileus | E. coli, Veillonella, Rastonia, Proteobaceria, Bacteroidetes | Negative |
Faecalibacterium, Actinobacteria, Firmicutes | Positive | |
Postoperative adhesions | E. coli, Lactobacillus | Negative |
Malignant transformation | Fusobacterium nucleatum, Bacteroides fragilis | Negative |
Bifidobacterium | Positive |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michire, A.; Anghel, R.; Draghia, P.M.; Burlacu, M.G.; Georgescu, T.F.; Georgescu, D.E.; Balcangiu-Stroescu, A.-E.; Vacaroiu, I.A.; Barbu, M.; Gaube, A. The Microbiota and the Relationship with Colorectal Cancer: Surgical Complications—A Review. Gastrointest. Disord. 2022, 4, 66-76. https://doi.org/10.3390/gidisord4020008
Michire A, Anghel R, Draghia PM, Burlacu MG, Georgescu TF, Georgescu DE, Balcangiu-Stroescu A-E, Vacaroiu IA, Barbu M, Gaube A. The Microbiota and the Relationship with Colorectal Cancer: Surgical Complications—A Review. Gastrointestinal Disorders. 2022; 4(2):66-76. https://doi.org/10.3390/gidisord4020008
Chicago/Turabian StyleMichire, Alexandru, Rodica Anghel, Petruta Maria Draghia, Mihnea Gabriel Burlacu, Teodor Florin Georgescu, Dragos Eugen Georgescu, Andra-Elena Balcangiu-Stroescu, Ileana Adela Vacaroiu, Maria Barbu, and Alexandra Gaube. 2022. "The Microbiota and the Relationship with Colorectal Cancer: Surgical Complications—A Review" Gastrointestinal Disorders 4, no. 2: 66-76. https://doi.org/10.3390/gidisord4020008
APA StyleMichire, A., Anghel, R., Draghia, P. M., Burlacu, M. G., Georgescu, T. F., Georgescu, D. E., Balcangiu-Stroescu, A. -E., Vacaroiu, I. A., Barbu, M., & Gaube, A. (2022). The Microbiota and the Relationship with Colorectal Cancer: Surgical Complications—A Review. Gastrointestinal Disorders, 4(2), 66-76. https://doi.org/10.3390/gidisord4020008