Hydrogen Embrittlement Susceptibility of New Generation Advanced High-Strength Steels for Automotive Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Effect of Galvanic Corrosion upon Hydrogen Evolution
2.3. Hydrogen Diffusion
2.4. Embrittlement Indices, EI, and Slow Strain-Rate Test, SSRT
2.5. Fractography
3. Results and Discussion
3.1. Galvanic Corrosion and Hydrogen Evolution
3.2. Hydrogen Diffusion
3.3. Slow Strain-Rate Tests and Fractography
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lelliott, J.A. Hydrogen Embrittlement of Automotive Ultra-High-Strength Steels: Mechanism and Minimisation. Doctoral Thesis, Swansea University, Swansea, UK, 2021. [Google Scholar] [CrossRef]
- Kuziak, R.; Kawalla, R.; Waengler, S. Advanced high strength steels for automotive industry. Arch. Civ. Mech. Eng. 2008, 8, 103–117. [Google Scholar] [CrossRef]
- Broek, C.T. FutureSteelVehicle: Leading edge innovation for steel body structures. Ironmak. Steelmak. 2013, 39, 477–492. [Google Scholar] [CrossRef]
- European Union. Regulation (EU) No 333/2014 of the European Parliament and of the Council of 11 March 2014 Amending Regulation (EC) No 443/2009 to Define the Modalities for Reaching the 2020 Target to Reduce CO2 Emissions from New Passenger Cars. Off. J. Eur. Union 2014, 103, 15–21. Available online: https://eur-lex.europa.eu/eli/reg/2014/333/oj/eng (accessed on 29 January 2024).
- Tamarelli, C.M. AHSS 101: The Evolving Use of Advanced High Strength Steels for Automotive Applications; Steel Market Development Institute: Detroit, MI, USA, 2011. [Google Scholar]
- Higginson, R.L.; Sellars, C.M. Worked Examples in Quantitative Metallography; Maney Pub: Leeds, UK, 2003. [Google Scholar]
- Kumar, A.; Singh, S.B.; Ray, K.K. Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels. Mater. Sci. Eng. A 2008, 474, 270–282. [Google Scholar] [CrossRef]
- Xu, S.; Cao, R.; Gao, J.; Zhang, Y.; Zhao, H.; Wang, S.; Huang, Y.; Wu, G.; Wu, H.; Zhang, C.; et al. Effect of Cr on the phase transformation and interphase nanoprecipitation behaviours of high-strength microalloyed steels. Mater. Charact. 2024, 207, 113504. [Google Scholar] [CrossRef]
- Funakawa, Y.; Shiozaki, T.; Tomita, K.; Yamamoto, T.; Maeda, E. Development of High Strength Hot-rolled Sheet Steel Consisting of Ferrite and Nanometer-sized Carbides. ISIJ Int. 2004, 44, 1945–1951. [Google Scholar] [CrossRef]
- Yang, P.R.; Cai, M.H.; Wu, C.F.; Su, J.H.; Guo, X.P. Strain-rate dependent hot deformation behavior and mechanism of interphase- precipitated Ti-Mo-xNb steels: Physical modeling and characterization. Mater. Sci. Eng. A 2018, 729, 230–240. [Google Scholar] [CrossRef]
- Zhang, Y.; Miyamoto, G.; Furuhara, T. Enhanced hardening by multiple microalloying in low carbon ferritic steels with interphase precipitation. Scr. Mater. 2022, 212, 114558. [Google Scholar] [CrossRef]
- Katundi, D.; Tosun-Bayraktar, A.; Bayraktar, E.; Toueix, D. Corrosion behaviour of the welded steel sheets used in automotive industry. J. Achiev. Mater. Manuf. Eng. 2010, 38, 146–153. Available online: www.journalamme.org (accessed on 29 January 2024).
- Chalaftris, G.; Robinson, M.J. Hydrogen re-embrittlement of high strength steel by corrosion of cadmium and aluminium based sacrificial coatings. Corros. Eng. Sci. Technol. 2005, 40, 28–32. [Google Scholar] [CrossRef]
- Bockris, J.; McBreen, J.; Nanis, L. The Hydrogen Evolution Kinetics and Hydrogen Entry into α-Iron. J. Electrochem. Soc. 1965, 112, 1025–1031. [Google Scholar] [CrossRef]
- Williams, G.; McMurray, H.N. Localized corrosion of magnesium in chloride-containing electrolyte studied by a scanning vibrating electrode technique. J. Electrochem. Soc. 2008, 155, C340–C349. [Google Scholar] [CrossRef]
- Mcmurray, H.N.; Williams, D.; Worsley, D.A. Artifacts Induced by Large-Amplitude Probe Vibrations in Localized Corrosion Measured by SVET. J. Electrochem. Soc. 2003, 150, 12–567. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Prevention of Hydrogen Embrittlement in Steels. ISIJ Int. 2016, 56, 24–36. [Google Scholar] [CrossRef]
- Beachem, C.D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”). Metall. Trans. 1972, 3, 441–455. [Google Scholar] [CrossRef]
- Robertson, I.M.; Sofronis, P.; Nagao, A.; Martin, M.L.; Wang, S.; Gross, D.W.; Nygren, K.E. Hydrogen Embrittlement Understood. Metall. Mater. Trans. B 2015, 46, 1085–1103. [Google Scholar] [CrossRef]
- Johnson, W.H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids. Nature 1875, 11, 393. [Google Scholar] [CrossRef]
- Devanathan, M.A.V.; Stachurski, Z. The adsorption and diffusion of electrolytic hydrogen in palladium. Proc. R. Soc. Lond. A 1962, 270, 90–102. [Google Scholar]
- Meister, S. Grain and Particle Analysis with Line Intersection Method; Mathworks: Natick, MA, USA, 2012; Available online: https://uk.mathworks.com/matlabcentral/fileexchange/35203-grain-and-particle-analysis-with-line-intersection-method (accessed on 18 April 2020).
- Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench, Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”, 4th ed.; Morgan Kaufman: Burlington, MA, USA, 2009. [Google Scholar]
- Saai, A.; Hopperstad, O.S.; Granbom, Y.; Lademo, O.G. Influence of Volume Fraction and Distribution of Martensite Phase on the Strain Localization in Dual Phase Steels. Procedia Mater. Sci. 2014, 3, 900–905. [Google Scholar] [CrossRef]
- Bergström, Y.; Granbom, Y.; Sterkenburg, D. A Dislocation-Based Theory for the Deformation Hardening Behavior of DP Steels: Impact of Martensite Content and Ferrite Grain Size. J. Metall. 2010, 2010, 647198. [Google Scholar] [CrossRef]
- Sullivan, J.; Cooze, N.; Gallagher, C.; Lewis, T.; Prosek, T.; Thierry, D. In-situ monitoring of corrosion mechanisms and phosphate inhibitor surface deposition during corrosion of Zinc Magnesium Aluminium (ZMA) alloys using novel time-lapse microscopy. Faraday Discuss. 2015, 180, 361–379. Available online: http://rsc.li/fd-upcoming-meetings (accessed on 14 July 2020). [CrossRef] [PubMed]
- BS EN ISO 17081:2014; Method of Measurement of Hydrogen Permeation and Determination of Hydrogen Uptake and Transport in Metals by an Electrochemical Technique. B.S. Institute: London, UK, 2014.
- Henthorne, M. The slow strain rate stress corrosion cracking test—A 50 year retrospective. Corrosion 2016, 72, 1488–1518. [Google Scholar] [CrossRef]
- BS EN ISO 6892-1:2016; Metallic Materials. Tensile Testing. Method of Test at Room Temperature. B.S. Institute: London, UK, 2016. Available online: https://bsol.bsigroup.com/Bibliographic/BibliographicInfoData/000000000030268532 (accessed on 18 April 2020).
- Gong, K.; Sun, D.; Liu, X.; Li, J.; Wu, M.; Hu, M. Effects of hydrogen and strain rate on stress corrosion cracking mechanism of high strength pipeline steel. Mater. Today Commun. 2025, 44, 112172. [Google Scholar] [CrossRef]
- Hojo, T.; Kikuchi, R.; Waki, H.; Nishimura, F.; Ukai, Y.; Akiyama, E. Effect of strain rate on the hydrogen embrittlement property of ultra high-strength low alloy TRIP-aided steel. ISIJ Int. 2018, 58, 751–759. [Google Scholar] [CrossRef]
- Momotani, Y.; Shibata, A.; Terada, D.; Tsuji, N. Effect of strain rate on hydrogen embrittlement in low-carbon martensitic steel. Int. J. Hydrogen Energy 2017, 42, 3371–3379. [Google Scholar] [CrossRef]
- Momotani, Y.; Shibata, A.; Yonemura, T.; Bai, Y.; Tsuji, N. Effect of initial dislocation density on hydrogen accumulation behavior in martensitic steel. Scr. Mater. 2020, 178, 318–323. [Google Scholar] [CrossRef]
- Toribio, J.; Vergara, D.; Lorenzo, M. Influence of loading rate on the hydrogen-assisted micro-damage in bluntly notched samples of pearlitic steel. Metals 2016, 6, 11. [Google Scholar] [CrossRef]
- Xing, Y.; Yang, Z.; Zhao, Q.; Zhang, L. Hydrogen Permeation Behavior of X80 Steel under Constant and Slow Strain Rate Tension Stress. J. Mater. Eng. Perform. 2025, 34, 19154–19165. [Google Scholar] [CrossRef]
- Figueroa, D.; Robinson, M.J. Hydrogen transport and embrittlement in 300 M and AerMet100 ultra high strength steels. Corros. Sci. 2010, 52, 1593–1602. [Google Scholar] [CrossRef]
- Robinson, M.J.; Sharp, R.M. The Effect of Post-Exposure Heat Treatment on the Hydrogen Embrittlement of High Carbon Steel. Corrosion 1985, 41, 582–586. [Google Scholar] [CrossRef]
- Akiyama, E.; Li, S. Electrochemical hydrogen permeation tests under galvanostatic hydrogen charging conditions conventionally used for hydrogen embrittlement study. Corros. Rev. 2016, 34, 103–112. [Google Scholar] [CrossRef]
- Lan, L.; Kong, X.; Hu, Z.; Qiu, C.; Zhao, D.; Du, L. Hydrogen permeation behavior in relation to microstructural evolution of low carbon bainitic steel weldments. Corros. Sci. 2016, 112, 180–193. [Google Scholar] [CrossRef]
- Van den Eeckhout, E.; Depover, T.; Verbeken, K. The Effect of Microstructural Characteristics on the Hydrogen Permeation Transient in Quenched and Tempered Martensitic Alloys. Metals 2018, 8, 779. [Google Scholar] [CrossRef]
- Dadfarnia, M.; Sofronis, P.; Neeraj, T. Hydrogen interaction with multiple traps: Can it be used to mitigate embrittlement? Int. J. Hydrogen Energy 2011, 36, 10141–10148. [Google Scholar] [CrossRef]
- Iino, M. Trapping of hydrogen by sulfur-associated defects in steel. Metall. Trans. A 1985, 16, 401–409. [Google Scholar] [CrossRef]
- Depover, T.; Verbeken, K. The effect of TiC on the hydrogen induced ductility loss and trapping behavior of Fe-C-Ti alloys. Corros. Sci. 2016, 112, 308–326. [Google Scholar] [CrossRef]
- Depover, T.; Monbaliu, O.; Wallaert, E.; Verbeken, K. Effect of Ti, Mo and Cr based precipitates on the hydrogen trapping and embrittlement of Fe–C–X Q&T alloys. Int. J. Hydrogen Energy 2015, 40, 16977–16984. [Google Scholar] [CrossRef]
- Depover, T.; Laureys, A.; Escobar, D.P.; Van den Eeckhout, E.; Wallaert, E.; Verbeken, K. Understanding the Interaction between a Steel Microstructure and Hydrogen. Materials 2018, 11, 698. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, T.; Kwon, Y.J.; Mun, D.-J.; Yoo, J.-Y.; Lee, C.S. Effects of vanadium carbides on hydrogen embrittlement of tempered martensitic steel. Met. Mater. Int. 2016, 22, 364–372. [Google Scholar] [CrossRef]
- Takahashi, J.; Kawakami, K.; Kobayashi, Y.; Tarui, T. The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scr. Mater. 2010, 63, 261–264. [Google Scholar] [CrossRef]
- Chen, Y.S.; Haley, D.; Gerstl, S.S.; London, A.J.; Sweeney, F.; Wepf, R.A.; Rainforth, W.M.; Bagot, P.A.; Moody, M.P. Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel. Science 2017, 355, 1196–1199. [Google Scholar] [CrossRef]
- Martínez-Madrid, M.; Chan, S.L.I.; Charles, J.A.; López L, J.A.; Castaño, V. Effect of grain size and second phase particles on the hydrogen occlusivity of iron and steels. Mater. Res. Innov. 2000, 3, 263–270. [Google Scholar] [CrossRef]
- Maki, T. 2—Morphology and substructure of martensite in steels. In Phase Transformations in Steels; Pereloma, E., Edmonds, D.V., Eds.; Woodhead Publishing: Sawston, UK, 2012; pp. 34–58. [Google Scholar] [CrossRef]
- Takai, K.; Seki, J.; Homma, Y. Observation of Trapping Sites of Hydrogen and Deuterium in High-Strength Steels by Using Secondary Ion Mass Spectrometry. Mater. Trans. JIM 1995, 36, 1134–1139. [Google Scholar] [CrossRef]
- Hagi, H. Diffusion Coefficient of Hydrogen in Iron without Trapping by Dislocations and Impurities, Materials Transactions. JIM 1994, 35, 112–117. [Google Scholar] [CrossRef]
- Hagi, H.; Hayashi, Y. Effect of Dislocation Trapping on Hydrogen and Deuterium Diffusion in Iron. Trans. Jpn. Inst. Met. 1987, 28, 368–374. [Google Scholar] [CrossRef]
- Koyama, M.; Tasan, C.C.; Akiyama, E.; Tsuzaki, K.; Raabe, D. Hydrogen-assisted decohesion and localized plasticity in dual-phase steel. Acta Mater. 2014, 70, 174–187. [Google Scholar] [CrossRef]
- Takashima, K.; Nishimura, T.; Yokoyama, K.; Funakawa, Y. Role of Interface between Ferrite and Martensite in Hydrogen Embrittlement Behavior of Ultra-high Strength Dual-phase Steel Sheets. ISIJ Int. 2019, 59, 1676–1682. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, S.; Wan, J.; Liu, W. Effect of Nb–Ti multi-microalloying on the hydrogen trapping efficiency and hydrogen embrittlement susceptibility of hot-stamped boron steel. Mater. Sci. Eng. A 2020, 772, 138788. [Google Scholar] [CrossRef]
- Laureys, A.; Pinson, M.; Claeys, L.; De Seranno, T.; Depover, T.; Verbeken, K. Initiation of hydrogen induced cracks at secondary phase particles. Frat. Integrita Strutt. 2020, 14, 113–127. [Google Scholar] [CrossRef]
- Takahashi, J.; Kawakami, K.; Kobayashi, Y. Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel. Acta Mater. 2018, 153, 193–204. [Google Scholar] [CrossRef]
- Rodoni, E.; Verbeken, K.; Depover, T.; Iannuzzi, M. Effect of microstructure on the hydrogen embrittlement, diffusion, and uptake of dual-phase low alloy steels with varying ferrite-martensite ratios. Int. J. Hydrogen Energy 2024, 50, 53–65. [Google Scholar] [CrossRef]



















| Steel | C | Si | Mn | Cr | Mo | Nb | Ti | V | B |
|---|---|---|---|---|---|---|---|---|---|
| FM800 | 0.136 | 0.236 | 1.692 | 0.553 | 0.003 | 0.024 | 0.021 | 0.003 | 0.0002 |
| FNP800 | 0.0611 | 0.189 | 1.373 | 0.016 | 0.141 | 0.061 | 0.002 | 0.212 | 0.0002 |
| FM1000 | 0.149 | 0.041 | 2.222 | 0.548 | 0.005 | 0.014 | 0.026 | 0.006 | 0.0001 |
| FNP1000 | 0.1037 | 0.201 | 1.396 | 0.023 | 0.292 | 0.05 | 0.003 | 0.286 | 0.0002 |
| Product | Rp0.2 [MPa] | Rm [MPa] | Ag [%] | A50 [%] |
|---|---|---|---|---|
| FM800 | 488 (±2) | 782 (±4) | 12.5 (±0.1) | 19.7 (±0.3) |
| FNP800 | 747 (±12) | 826 (±5) | 9.3 (±0.3) | 17.2 (±1.5) |
| FM1000 | 700 (±5) | 1027 (±9) | 7.8 (±0.3) | 13.5 (±0.4) |
| FNP1000 | 862 (±8) | 982 (±3) | 8.2 (±0.1) | 16.7 (±0.3) |
| Product | Mean Embrittlement Index % | t-Statistic | p-Value | Power |
|---|---|---|---|---|
| FM800 | 50.30% (±3.5%) | 11.773 | 2.98 × 10−4 | 1 |
| FNP800 | 32.40% (±16.7%) | 2.168 | 0.096 | 0.38 |
| FM1000 | 75.60% (±0.6%) | 66.706 | 3.03 × 10−7 | 1 |
| FNP1000 | 43.80% (±11.5%) | 5.186 | 6.58 × 10−3 | 0.97 |
| Dry Condition | Hydrogen-Charged Condition | |||
|---|---|---|---|---|
| FM800 | ![]() | 100% | ![]() | 0% |
| 0% | 79% | |||
| 0% | 4% | |||
| 0% | 17% | |||
| FNP800 | ![]() | 100% | ![]() | 11% |
| 0% | 53% | |||
| 0% | 15% | |||
| 0% | 21% | |||
| FM1000 | ![]() | 99% | ![]() | 0% |
| 1% | 2% | |||
| 0% | 79% | |||
| 0% | 19% | |||
| FNP1000 | ![]() | 99% | ![]() | 14% |
| 1% | 38% | |||
| 0% | 16% | |||
| 0% | 30% | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lelliott, J.; Sackett, E.; McMurray, N.; Figueroa-Gordon, D. Hydrogen Embrittlement Susceptibility of New Generation Advanced High-Strength Steels for Automotive Applications. Corros. Mater. Degrad. 2025, 6, 61. https://doi.org/10.3390/cmd6040061
Lelliott J, Sackett E, McMurray N, Figueroa-Gordon D. Hydrogen Embrittlement Susceptibility of New Generation Advanced High-Strength Steels for Automotive Applications. Corrosion and Materials Degradation. 2025; 6(4):61. https://doi.org/10.3390/cmd6040061
Chicago/Turabian StyleLelliott, James, Elizabeth Sackett, Neil McMurray, and Douglas Figueroa-Gordon. 2025. "Hydrogen Embrittlement Susceptibility of New Generation Advanced High-Strength Steels for Automotive Applications" Corrosion and Materials Degradation 6, no. 4: 61. https://doi.org/10.3390/cmd6040061
APA StyleLelliott, J., Sackett, E., McMurray, N., & Figueroa-Gordon, D. (2025). Hydrogen Embrittlement Susceptibility of New Generation Advanced High-Strength Steels for Automotive Applications. Corrosion and Materials Degradation, 6(4), 61. https://doi.org/10.3390/cmd6040061









