Electrochemical Behaviour of Nd–Fe–B and Sm–Fe–N Polymer-Bonded Magnets and Their Metal Components in Various Electrolytes
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials, Sample Preparation, and Chemicals
2.2. Electrochemical Measurements
2.3. Microstructural and Chemical Characterisation
3. Results and Discussion
3.1. Microstructural Characterisation
3.2. Electrochemical Behaviour and Surface Analysis of the Nd–Fe–B
3.2.1. Potentiodynamic Polarisation Measurements for Nd–Fe–B
3.2.2. SEM/EDS Analysis for Nd–Fe–B
3.2.3. XPS Analysis for Nd–Fe–B
3.3. Electrochemical Behaviour and Surface Analysis of the Sm–Fe–N
3.3.1. Potentiodynamic Polarisation Measurements for Sm–Fe–N
3.3.2. SEM/EDS Analysis for Sm–Fe–N
3.3.3. XPS Analysis for Sm–Fe–N
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutfleish, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Adv. Mater. 2011, 23, 821–842. [Google Scholar] [CrossRef]
- Gorbachev, E.A.; Kozlyakova, E.S.; Trusov, L.A.; Sleptsova, A.E.; Zykin, M.A.; Kazin, P.E. Design of modern magnetic materials with giant coercivity. Russ. Chem. Rev. 2021, 90, 1287–1329. [Google Scholar] [CrossRef]
- Cui, J.; Ormerod, J.; Parker, D.; Ott, R.; Palasyuk, A.; Mccall, S.; Paranthaman, M.P.; Kesler, M.S.; McGuire, M.A.; Nlebedim, I.C.; et al. Manufacturing Processes for Permanent Magnets: Part I—Sintering and Casting. JOM 2022, 74, 1279–1395. [Google Scholar] [CrossRef]
- Crozier-Bioud, T.; Momeni, V.; Gonzales-Gutierrez, J.; Kukla, C.; Luca, S.; Polere, S. Current challenges in NdFeB permanent magnets manufacturing by Powder Injection Molding (PIM): A review. Mater. Today Phys. 2023, 34, 101082. [Google Scholar] [CrossRef]
- Croat, J.J. Chapter 6—Compression bonded NdFeB permanent magnets. In Modern Permanent Magnets; Woodhead Publishing: Cambridge, MA, USA, 2022. [Google Scholar]
- Yan, G.; McGuiness, P.J.; Farr, J.P.G.; Harris, I.R. Environmental degradation of NdFeB magnets. J. Alloys Compd. 2009, 478, 188–192. [Google Scholar] [CrossRef]
- Ni, J.J.; Ma, T.Y.; Cui, X.G.; Wu, Y.R.; Yan, M. Improvement of corrosion resistance and magnetic properties of Nd–Fe–B sintered magnets by Al85Cu15 intergranular addition. J. Alloys Compd. 2010, 502, 346–350. [Google Scholar] [CrossRef]
- Schultz, L.; El-Aziz, A.M.; Barkleit, G.; Mummert, K. Corrosion behaviour of Nd–Fe–B permanent magnetic alloys. Mater. Sci. Eng. A 1999, 267, 307–313. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, S.H.; Kim, Y.D. Mechanical properties of (Nd,Dy)–Fe–B magnets sintered via cyclic sintering. Mater. Sci. Eng. A 2012, 535, 325–329. [Google Scholar] [CrossRef]
- Shinba, Y.; Konno, T.J.; Ishikawa, K.; Hiraga, K. Transmission electron microscopy study on Nd-rich phase and grain boundary structure of Nd–Fe–B sintered magnets. J. Appl. Phys. 2005, 97, 53504. [Google Scholar] [CrossRef]
- Poženel Kovačič, T.; Kovačević, N.; Milošev, I. Corrosion of sintered NdFeB permanent magnets. J. Electrochem. Soc. 2025, 172, 71501. [Google Scholar] [CrossRef]
- Song, L.Y.W.; Zhang, H.; Yang, H.X.; Song, Z.L. A comparative study on the corrosion behavior of NdFeB magnets in different electrolyte solutions. Mater. Corros. 2008, 59, 794–801. [Google Scholar] [CrossRef]
- Xu, J.L.; Zhong, Z.C.; Huang, Z.X.; Luo, J.M. Corrosion resistance of the titania particles enhanced acrylic resin composite coatings on sintered NdFeB permanent magnets. J. Alloys Compd. 2013, 570, 28–33. [Google Scholar] [CrossRef]
- Zhang, H.; Song, Y.W.; Song, Z.L. Electrodeposited nickel/alumina composite coating on NdFeB permanent magnets. Mater. Corros. 2008, 59, 324–328. [Google Scholar] [CrossRef]
- Gurappa, I. Corrosion characteristics of permanent magnets in acidic environments. J. Alloys Compd. 2003, 360, 236–242. [Google Scholar] [CrossRef]
- El-Moneim, A.A.; Gebert, A. Electrochemical characterization of galvanically coupled single phases and nanocrystalline NdFeB-based magnets in NaCl solutions. J. Appl. Electrochem. 2003, 33, 795–805. [Google Scholar] [CrossRef]
- Isotahdon, E.; Huttunen-Saarivirta, E.; Kuokkala, V.-T.; Paju, M. Corrosion behaviour of sintered Nd–Fe–B magnets. Mater. Chem. Phys. 2012, 135, 762–771. [Google Scholar] [CrossRef]
- Ni, J.; Yan, M.; Ma, T.; Zhang, W. Magnetic and anticorrosion properties of two-powder (Pr, Nd)12.6Fe81.3B6.1-type sintered magnets with additions of (Pr, Nd)32.5Fe62.0Cu5.5. Mater. Chem. Phys. 2015, 151, 126–132. [Google Scholar] [CrossRef]
- Yan, M.; Ni, J.; Ma, T.; Ahmad, Z.; Zhang, P. Corrosion behavior of Al100−xCux (15 ≤ x ≤ 45) doped Nd–Fe–B magnets. Mater. Chem. Phys. 2011, 126, 195–199. [Google Scholar] [CrossRef]
- Popescu, A.-M.; Calderon-Moreno, J.M.; Yanushkevish, K.; Aplevich, A.; Demidenko, O.; Neacsu, E.I.; Constanin, V. Corrosion behaviour of NdFeB magnets in different aqueous solutions. J. Braz. Chem. Soc. 2024, 35, e-20230089. [Google Scholar]
- Takagi, S.; Morii, K.; Iriyama, T.; Tominaga, K.; Wada, N.; Hida, E. Evaluation of Practicality for Fully Dense Isotropic Sm-Fe-N Magnets Made by Shock-Wave Consolidation Method. IEEEXplore 2023, 59, 2101205. [Google Scholar]
- Coey, J.M.D.; Stamenov, P.; Porter, S.B.; Venkatesan, M.; Zhang, R.; Iriyama, T. Sm-Fe-N revisited; remanence enhancement in melt-spun Nitroquench material. J Magn. Magn. Mater. 2019, 480, 186–192. [Google Scholar] [CrossRef]
- Ma, X.B.; Li, L.Z.; Liu, S.Q.; Hu, B.Y.; Han, J.Z.; Wang, C.S.; Du, L.H.; Yang, Y.C.; Yang, J.B. Anisotropic Sm–Fe–N particles prepared by surfactant-assisted grinding method. J. Alloy Compds. 2014, 612, 110–113. [Google Scholar] [CrossRef]
- Kelly, R.G.; Scully, J.R.; Shoesmith, D.; Buchheit, R.G. Electrochemical Techniques in Corrosion Science and Engineering; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Perkin-Elmer, Physical Electronics Division: Eden Prairie, MN, USA, 1995. [Google Scholar]
- Mizoguchi, T.; Sakai, I.; Niu, H.; Inomata, K. Magnetic properties of Nd-Fe-B magnets with both Co and Al addition. IEEE Trans. Magn. 1987, 23, 2281–2283. [Google Scholar] [CrossRef]
- Maahn, E. Corrosion of cast iron in concentrated sulphuric acid under potentiostatic conditions. Br. Corros. J. 1966, 1, 350–354. [Google Scholar] [CrossRef]
- Mischler, S.; Rosset, E.; Stachowiak, G.W.; Landolt, D. Effect of sulphuric acid concentration on the rate of tribocorrosion of iron. Wear 1993, 167, 101–108. [Google Scholar] [CrossRef]
- Panossian, Z.; de Almeida, N.L.; de Sousa, R.M.F.; de Souza Pimenta, G.; Schmidt Marques, L.B. Corrosion of carbon steel pipes and tanks by concentrated sulfuric acid: A review. Corros. Sci. 2012, 58, 1–11. [Google Scholar] [CrossRef]
- Nakajima, N.; Maekawa, T. Anodic behaviors of iron and its oxides in dilute sulfuric acid and alkaline solutions. Trans. Jpn. Inst. Met. 1966, 7, 280–285. [Google Scholar] [CrossRef]
- Sherif, E.-S.M. A Comparative Study on the Electrochemical Corrosion Behavior of Iron and X-65 Steel in 4.0 wt % Sodium Chloride Solution after Different Exposure Intervals. Molecules 2014, 19, 9962–9974. [Google Scholar] [CrossRef]
- Oh, S.J.; Cook, D.C.; Townsend, H.E. Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact. 1998, 112, 59–66. [Google Scholar] [CrossRef]
- You, Z.; Lai, Y.; Zeng, H.; Yang, Y. Influence of water and sodium chloride content on corrosion behavior of cast iron in silty clay. Constr. Build. Mater. 2020, 238, 117762. [Google Scholar] [CrossRef]
- Sherif, E.-S.M. Comparative study on the inhibition of iron corrosion in aerated stagnant 3.5 wt % sodium chloride solutions by 5-phenyl-1H-tetrazole and 3-amino-1,2,4-triazole. Ind. Eng. Chem. Res. 2013, 52, 14507–14513. [Google Scholar] [CrossRef]
- Li, W.; Nobe, K.; Pearlstein, A.J. Potential/current oscillations and anodic film characteristics of iron in concentrated chloride solutions. Corros. Sci. 1990, 31, 615–620. [Google Scholar] [CrossRef]
- Sherif, E.-S.M.; Erasmus, R.M.; Comins, J.D. In situ Raman spectroscopy and electrochemical techniques for studying corrosion and corrosion inhibition of iron in sodium chloride solutions. Electrochim. Acta 2010, 55, 3657–3663. [Google Scholar] [CrossRef]
- Hasan, B.O.; Sadek, S.A. Corrosion behavior of carbon steel in oxygenated sodium sulphate solution under different operating conditions. Adv. Chem. Eng. 2013, 2, 61–71. [Google Scholar]
- MacDougall, B.; Bardwell, J.A. Passivation of iron in sulfate, perchlorate, and borate solutions: Role of borate in the passivation process. J. Electrochem. Soc. 1988, 135, 2437–2441. [Google Scholar] [CrossRef]
- Mayne, J.E.O.; Menter, J.W.; Pryor, M.J. The mechanism of inhibition of the corrosion of iron by sodium hydroxide solution. J. Chem. Soc. 1950, 3229–3236. [Google Scholar] [CrossRef]
- Mayne, J.E.O.; Menter, J.W. The mechanism of inhibition of the corrosion of iron by sodium hydroxide solution. Part II. J. Chem. Soc. 1954, 99–103. [Google Scholar] [CrossRef]
- DorMohammadi, H.; Pang, Q.; Murkute, P.; Árnadóttir, L.; Isgor, O.B. Investigation of iron passivity in highly alkaline media using reactive-force field molecular dynamics. Corros. Sci. 2019, 157, 31–40. [Google Scholar] [CrossRef]
- Evans, U.R. Metallic Corrosion, Passivity and Protection; Edward Arnold & Co.: London, UK, 1964. [Google Scholar]
- Jovancicevic, V.; Kainthla, R.C.; Tang, Z.; Yang, B.; Bockris, J.O. The passive film on iron: An ellipsometric-spectroscopic study. Langmuir 1987, 3, 388–395. [Google Scholar] [CrossRef]
- Sueptitz, R.; Uhlemann, M.; Gebert, A.; Schultz, L. Corrosion, passivation and breakdown of passivity of neodymium. Corros. Sci. 2010, 52, 886–891. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; National Association of Corrosion Engineers: Houston, TX, USA, 1974. [Google Scholar]
- Ruiz, E.J.; Ortega-Borges, R.; Godínez, L.A.; Chapman, T.W.; Meas-Vong, Y. Mechanism of the electrochemical deposition of samarium-based coatings. Electrochim. Acta 2006, 52, 914–920. [Google Scholar] [CrossRef]
- Ping, D.H.; Hono, K.; Hidaka, T.; Yamamoto, T.; Fukuno, A. Microstructural characterization of α-Fe/Sm–Fe–N nanocomposite hard magnets. J. Magn. Magn. Mater. 2004, 277, 337–343. [Google Scholar] [CrossRef]
- Engerroff, J.A.B.; Baldissera, A.B.; Magalhães, M.D.; Lamarão, P.H.; Wendhausen, P.A.P.; Ahrens, C.H.; Mascheroni, J.M. Additive manufacturing of Sm-Fe-N magnets. J. Rare Earths 2019, 37, 1078–1082. [Google Scholar] [CrossRef]
Element | Composition (at. %) | ||
---|---|---|---|
Nd–Fe alloy | |||
Spectrum 1 | Spectrum 2 | Spectrum 3 | |
Fe | 100 | 90 | 71 |
Nd | − | 10 | 29 |
Sm–Fe alloy | |||
Spectrum 4 | Spectrum 5 | Spectrum 6 | |
Fe | 86 | 75 | 61 |
Sm | − | 9 | 21 |
C | 14 | 16 | 18 |
Nd–Fe–B magnet | |||
Spectrum 7 | Spectrum 8 | Spectrum 9 | |
Fe | 67 | 50 | 1 |
Nd | 10 | 8 | <0.5 |
Co | 6 | 4 | − |
C | 17 | 23 | 86 |
S | − | <1 | 13 |
O | − | 14 | − |
Sm–Fe–N magnet | |||
Spectrum 10 | Spectrum 11 | Spectrum 12 | |
Fe | 63 | 56 | <1 |
Sm | 7 | 7 | − |
N | 16 | 11 | − |
Co | 4 | − | − |
C | 10 | 14 | 86 |
S | − | − | 13 |
O | − | 12 | <0.5 |
Element | Composition (at. %) | |||
---|---|---|---|---|
0.01 M H2SO4 | ||||
Spectrum 1 | Spectrum 2 | Spectrum 3 | Spectrum 4 | |
Fe | 65 | 2 | 27 | 44 |
Nd | 10 | <0.5 | 3 | 7 |
Co | 7 | − | 11 | 11 |
C | 10 | 84 | 27 | 16 |
S | − | 14 | 4 | 3 |
O | 8 | − | 28 | 19 |
0.1 M NaCl | ||||
Spectrum 5 | Spectrum 6 | Spectrum 7 | Spectrum 8 | |
Fe | 66 | 4 | 52 | 32 |
Nd | 11 | <1 | 9 | 6 |
Co | 6 | − | 4 | 5 |
C | 12 | 77 | 15 | 32 |
S | − | 14 | − | 16 |
O | 5 | 4 | 17 | 9 |
Cl | − | <0.5 | 3 | <1 |
0.1 M NaOH | ||||
Spectrum 9 | Spectrum 10 | Spectrum 11 | Spectrum 12 | |
Fe | 69 | <0.5 | 62 | 44 |
Nd | 11 | <0.5 | 10 | 7 |
Co | 5 | − | 5 | 3 |
C | 15 | 87 | 17 | 29 |
S | − | 12 | − | 2 |
O | − | − | 6 | 15 |
Element | Composition (at. %) | |||||||
---|---|---|---|---|---|---|---|---|
0.01 M H2SO4 | ||||||||
Spectrum 1 | Spectrum 2 | Spectrum 3 | Spectrum 4 | |||||
Fe | 54 | <1 | 38 | 8 | ||||
Sm | 6 | <0.5 | 4 | <1 | ||||
N | 7 | − | − | − | ||||
Co | 3 | − | 3 | − | ||||
C | 12 | 86 | 26 | 69 | ||||
S | 1 | 11 | 4 | 8 | ||||
O | 17 | 2 | 25 | 14 | ||||
0.1 M NaCl | ||||||||
Spectrum 5 | Spectrum 6 | Spectrum 7 | Spectrum 8 | Spectrum 9 | Spectrum 10 | |||
Fe | 57 | 4 | 31 | 28 | 3 | 18 | ||
Sm | 7 | <0.5 | 4 | 3 | <0.5 | 1 | ||
N | 9 | − | − | − | − | − | ||
Co | 3 | − | − | − | − | − | ||
C | 13 | 78 | − | 26 | 65 | 21 | ||
S | − | 11 | − | 3 | 14 | 9 | ||
O | 11 | 7 | 59 | 38 | 17 | 26 | ||
Cl | − | − | 6 | 2 | <1 | 25 | ||
0.1 M NaOH | ||||||||
Spectrum 11 | Spectrum 12 | Spectrum 13 | Spectrum 14 | |||||
Fe | 64 | 4 | 59 | 48 | ||||
Sm | 7 | <1 | 4 | 14 | ||||
N | 15 | − | − | − | ||||
Co | 4 | − | − | − | ||||
C | 10 | 84 | 25 | 16 | ||||
S | − | 8 | 1 | <1 | ||||
O | − | 3 | 11 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lešić, N.; Kovač, J.; Milošev, I. Electrochemical Behaviour of Nd–Fe–B and Sm–Fe–N Polymer-Bonded Magnets and Their Metal Components in Various Electrolytes. Corros. Mater. Degrad. 2025, 6, 42. https://doi.org/10.3390/cmd6030042
Lešić N, Kovač J, Milošev I. Electrochemical Behaviour of Nd–Fe–B and Sm–Fe–N Polymer-Bonded Magnets and Their Metal Components in Various Electrolytes. Corrosion and Materials Degradation. 2025; 6(3):42. https://doi.org/10.3390/cmd6030042
Chicago/Turabian StyleLešić, Nikolina, Janez Kovač, and Ingrid Milošev. 2025. "Electrochemical Behaviour of Nd–Fe–B and Sm–Fe–N Polymer-Bonded Magnets and Their Metal Components in Various Electrolytes" Corrosion and Materials Degradation 6, no. 3: 42. https://doi.org/10.3390/cmd6030042
APA StyleLešić, N., Kovač, J., & Milošev, I. (2025). Electrochemical Behaviour of Nd–Fe–B and Sm–Fe–N Polymer-Bonded Magnets and Their Metal Components in Various Electrolytes. Corrosion and Materials Degradation, 6(3), 42. https://doi.org/10.3390/cmd6030042