Quantitative Analysis of the Alkali Transport During Chemical Re-Alkalization Using Laser-Induced-Breakdown Spectroscopy
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the Concrete
2.2. Pre-Wetting of the Concrete
2.3. Application of the Repair Mortar
2.4. Analysis of the CRA
2.4.1. Indicator Tests
2.4.2. Laser-Induced-Breakdown Spectroscopy
2.5. Adaptation of the Diffusion Model to Predict dCRA
3. Results
3.1. Potassium Penetration over Time
3.2. Correlation of Indicator Tests and LIBS
3.3. Parametrization of the Investigation Results
- Alkali binding in the concrete;
- Structural changes in the mortar;
- Alkali depletion of the repair material.
3.4. Prediction of dCRA
4. Discussion
4.1. Comparison of the Results with Previous Studies
4.2. LIBS for the Analysis of CRA
4.3. Application Potential an Limitation of the Prediction Model
5. Conclusions
- During CRA, potassium accumulation in the concrete exceeds the concentration equilibrium between concrete and mortar, which indicates binding of potassium in the carbonated concrete. This enrichment occurs at the expense of the repair mortar, which becomes depleted of alkalis in the interface to the concrete.
- Using LIBS measurements, a diffusion coefficient D(RM) can be determined, which can be used to determine the deviation of the re-alkalization process from a process based on Fick’s second diffusion law. This deviation can be parameterized as a time-dependent attenuation factor β(t).
- By adapting the diffusion law through the attenuation factor, the re-alkalization process in the suction and diffusion phase can be modeled, so that a comparison of the different materials with regard to the expected maximum re-alkalization depth is possible. This is crucial when the alkali concentration in the re-alkalization material is high compared to cement-based mortars, so as not to underestimate the re-alkalization potential of these materials.
- As a result of cyclical irrigation, the re-alkalization mortar is subjected to stress in two directions, which is characterized on the one hand by leaching and on the other hand by the excessive release of alkalis into the substrate.
- Although pre-wetting the concrete influences the absorption behavior of the concrete, this does not directly correlate with the re-alkalization progress during the suction phase of the CRA. A less pre-wetted substrate concrete does not automatically result in faster re-alkalization during the suction phase.
6. Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CRA | Chemical re-alkalization |
dCRA | Re-alkalization depth |
D(RM) | Specific diffusion coefficient for a repair mortar |
HAABs | Hybrid alkali-activated binders |
kCRA | Re-alkalization coefficient |
KWG | Potassium water glass |
LIBS | Laser-induced-breakdown spectroscopy |
OPC | Ordinary Portland cement |
Appendix A
Mix.-No. | Name | CEM I 32.5 | CEM I 52.5 | Metakaolin | KOHsol (50 %) | KWG (Silicate Modulus 1.0) | Water by Solutions | Added Mixing Water | K |
---|---|---|---|---|---|---|---|---|---|
g | wt% | ||||||||
1 | Ref-0 | 100 | - | - | - | - | - | 50 | 0.656 |
2 | Ref-I | 100 | - | - | 3.75 | - | 1.875 | 48.125 | 1.795 |
3 | Ref-II | 100 | - | - | 7.5 | - | 3.75 | 46.25 | 2.921 |
4 | Ref-III | 100 | - | - | 11.25 | - | 5.625 | 44.375 | 4.018 |
5 | Ref-IV | 100 | - | - | 15.0 | - | 7.5 | 42.5 | 5.070 |
6 | 37.5-C | - | 62.5 | 85.0 | - | - | - | 50.0 | 0.595 |
7 | 25-C | - | 75.9 | 84.0 | - | - | - | 50.0 | 0.633 |
8 | 12.5-C | - | 87.5 | 83.0 | - | - | - | 50.0 | 0.667 |
9 | 50-C-0 | - | 50.0 | 50.0 | - | - | 50 | 0.560 |
References
- DIN EN 1504-9:2008; Products and Systems for the Protection and Repair of Concrete Structures—Definitions, Requirements, Quality Control and Evaluation of Conformity—Part 9: General Principles for the Use of Products and Systems. Beuth: Berlin, Germany, 2008.
- Deutsches Institut für Bautechnik (DIBt). Technische Regel—Instandhaltung von Betonbauwerken (TR Instandhaltung)—Teil 2: Merkmale von Produkten oder Systemen für die Instandsetzung und Regelungen für Deren Verwendung; Deutsches Institut für Bautechnik (DIBt): Berlin, Germany, 2020. [Google Scholar]
- Réus, G.C.; Medeiros, M.H.F. Chemical realkalization for carbonated concrete treatment: Alkaline solutions and application methods. Constr. Build. Mater. 2020, 262, 120880. [Google Scholar] [CrossRef]
- Jung, A.; Weichold, O. Preparation and characterisation of highly alkaline hydrogels for the re-alkalisation of carbonated cementitious materials. Soft Matter 2018, 14, 8105–8111. [Google Scholar] [CrossRef]
- Mukhin, P. Long-term durability of passive realkalization solution in concrete remediation: A 10-year old field study. In Proceedings of the Australasian Corrosion Association Conference, Cairns, Australia, 10–14 November 2024; The Australasian Corrosion Association Inc.: Cairns, Australia. [Google Scholar]
- Glawe, C.; Raupach, M. Application of hybrid alkali-activated binders for chemical re-alkalization. Mater. Struct. 2025, 58, 212. [Google Scholar] [CrossRef]
- Merkel, M. Realkalisierungspotenzial von Zementgebundenen Werkstoffen im Trinkwasserbereich. Ph.D. Thesis, Technische Universität Kaiserslautern, Kaiserslautern, Germany, 15 July 2021. [Google Scholar]
- Wang, Y.; Li, L.; An, M.; Sun, Y.; Yu, Z.; Huang, H. Factors Influencing the Capillary Water Absorption Characteristics of Concrete and Their Relationship to Pore Structure. Appl. Sci. 2022, 12, 2211. [Google Scholar] [CrossRef]
- Bier, T.A. Carbonation and Realkalization of Cement Paste and Concrete. Ph.D. Thesis, Universität Fridericiana zu Karlsruhe, Karlsruhe, Germany, 23 December 1987. [Google Scholar]
- Haardt, P.; Hilsdorf, H.K. Realkalisierung karbonatisierter Betonrandzonen durch großflächigen Auftrag zementgebundener Reparaturschichten. In Berichtsband zu Werkstoffwissenschaften und Bauinstandsetzen (MSR III-93); Expert Verlag: Tübingen, Germany, 1993; pp. 666–683. [Google Scholar]
- Wilsch, G.; Weritz, F.; Schaurich, D.; Wiggenhauser, H. Determination of chloride content in concrete structures with laser-induced breakdown spectroscopy. Constr. Build. Mater. 2005, 19, 724–730. [Google Scholar] [CrossRef]
- Bernal, S.A.; Dhandapani, Y.; Elakneswaran, Y.; Gluth, G.J.G.; Gruyaert, E.; Juenger, M.C.G.; Lothenbach, B.; Olonade, K.A.; Sakoparnig, M.; Shi, Z.; et al. Report of RILEM TC 281-CCC: A critical review of the standardised testing methods to determine carbonation resistance of concrete. Mater. Struct. 2024, 57, 173. [Google Scholar] [CrossRef]
- Sakoparnig, M.; Galan, I.; Müller, B.; Mittermayr, F.; Juhart, J.; Grengg, C. Optical pH imaging reveals what phenolphthalein conceals–A carbonation study on blended cements. Cem. Concr. Res. 2024, 186, 107681. [Google Scholar] [CrossRef]
- Plusquellec, G.; Geiker, M.R.; Lindgård, J.; Duchesne, J.; Fournier, B.; De Weerdt, K. Determination of the pH and the free alkali metal content in the pore solution of concrete: Review and experimental comparison. Cem. Concr. Res. 2017, 96, 13–26. [Google Scholar] [CrossRef]
- Ranger, M.; Hasholt, M.T.; Barbosa, R.A. Pore solution alkalinity of cement paste as determined by Cold Water Extraction. Cement 2023, 11, 100055. [Google Scholar] [CrossRef]
- Deutsches Institut für Bautechnik (DIBt). Technische Regel—Instandhaltung von Betonbauwerken (TR Instandhaltung)—Teil 1: Anwendungsbereich und Planung der Instandhaltung; Deutsches Institut für Bautechnik (DIBt): Berlin, Germany, 2020. [Google Scholar]
- Thiel, C.; Kratzer, J.; Grimm, B.; Kränkel, T.; Gehlen, C. Effect of Internal Moisture and Outer Relative Humidity on Concrete Carbonation. CivilEng 2022, 3, 1039–1052. [Google Scholar] [CrossRef]
- Loehmannsroeben, H.-G.; Roch, T.; Schaefer, R.; Schultze, R.; Vereecken, H. Laser-induced fluorescence (LIF) spectroscopy for in-situ analysis of fluorescence tracers in water and soils. In Remote Sensing of Vegetation and Water, and Standardization of Remote Sensing Methods; SPIE: Bellingham, WA, USA, 1997; Volume 3107, pp. 207–216. [Google Scholar] [CrossRef]
- Courard, L.; Lenaers, J.-F.; Michel, F.; Garbacz, A. Saturation level of the superficial zone of concrete and adhesion of repair systems. Constr. Build. Mater. 2011, 25, 2488–2494. [Google Scholar] [CrossRef]
- Glawe, C.; Georget, F.; Raupach, M.; Matschei, T. Multi technique characterization of the carbonation affected zone uncluding non-destructive sindle sided 1H NMR. Cem. Concr. Res. 2024, 178, 107438. [Google Scholar] [CrossRef]
- Šavija, B.; Schlangen, E.; Pacheco, J.; Millar, S.; Eichler, T.; Wilsch, G. Chloride ingress in cracked concrete: A laser induced breakdown spectroscopy (LIBS) study. J. Adv. Concr. Technol. 2014, 12, 425–442. [Google Scholar] [CrossRef]
- Molkenthin, A. Laser-Induzierte Breakdown Spektroskopie (LIBS) zur Hochauflösenden Analyse der Ionenverteilung in Zementgebundenen Feststoffen. Ph.D. Thesis, Universität Duisburg-Essen, Essen, Germany, 12 November 2008. [Google Scholar]
- Pourbozorgi Langroudi, P.; Kapteina, G.; Illguth, M. Automated Distinction between Cement Paste and Aggregates of Concrete Using Laser-Induced Breakdown Spectroscopy. Materials 2021, 14, 4624. [Google Scholar] [CrossRef] [PubMed]
- Ziehensack, E.; Keßler, S.; Angst, U.; Hilbig, H.; Gehlen, C. Diffusion potentials in saturated hardened cement paste upon chloride exposure. Mater Struct 2023, 56, 100. [Google Scholar] [CrossRef]
- Mateo, J.; García, M.C.; Rodero, A. Using laser-induced breakdown spectroscopy for the study of chloride diffusion in mortar and concrete. Constr. Build. Mater. 2023, 385, 131520. [Google Scholar] [CrossRef]
- Mangat, P.S.; Molloy, B.T. Prediction of free chloride concentration in concrete using routine inspection data. Mag. Concr. Res. 1994, 46, 279–287. [Google Scholar] [CrossRef]
- Glawe, C.; Raupach, M. Basics and new opportunities for chemical re-alkalisation of carbonated concrete, including alkali-activated binders. Mag. Concr. Res. 2024, 76, 1185–1197. [Google Scholar] [CrossRef]
- Zajac, M.; Song, J.; Ullrich, P.; Skocek, J.; Ben Haha, M.; Skibsted, J. High early pozzolanic reactivity of alumina-silica gel: A study of the hydration of composite cements with carbonated recycled concrete paste. Cem. Concr. Res. 2024, 175, 107345. [Google Scholar] [CrossRef]
- De Weerdt, K.; Plusquellec, G.; Revert, A.B.; Geiker, M.; Lothenbach, B. Effect of carbonation on the pore solution of mortar. Cem. Concr. Res. 2019, 118, 38–56. [Google Scholar] [CrossRef]
- Georget, F.; Soja, W.; Louise Scrivener, K. Characteristic lengths of the carbonation front in naturally carbonated cement pastes: Implications for reactive transport models. Cem. Concr. Res. 2020, 134, 106080. [Google Scholar] [CrossRef]
Method | Measured Variable | Resolution | Sample Preparation | Qualitative | Quantitative | Advantages of LIBS over This Method | |
---|---|---|---|---|---|---|---|
LIBS (Laser-induced breakdown spectroscopy) [11] | Elemental concentrations | Up to 100 µm | Sawed and dry surface | X | - | ||
Chemical indicator spray (e.g., Phenolphthalein) [12] | Visual pH threshold front | In mm range (depends on aggregate size) | Fresh fracture surface | X | LIBS gives quantitative element profiles instead of single pH threshold front; avoids dye kinetics and influence of timing. | ||
Optical pH imaging/fluorescent imaging [13] | pH maps or profiles | ~100 to 500 µm (depending on pixel size) | Sawed, clean surface | X | LIBS measures elements directly; no dyes needed. | ||
Pore solution expression [14] | Fluid samples measured using ion chromatography | Composition of pore solution | No spatial resolution | Pressing out sample | X | LIBS enables spatial solution; no influence of sample preparation (e.g., high pressure) | |
Cold-Water extraction [15] | Crushing, sieving of sample and leaching of powder, filtering of fluid | X | LIBS avoids deviations through leaching; provides in situ profiles. |
Component | Unit | CEM I 32.5 R | CEM I 52.5 R | Metakaolin |
---|---|---|---|---|
SiO2 | wt% | 20.88 | 20.21 | 60.97 |
Al2O3 | 5.61 | 5.61 | 35.01 | |
Fe2O3 | 2.53 | 2.15 | 1.26 | |
MnO | 0.057 | 0.06 | 0.00 | |
TiO2 | 0.333 | 0.33 | 1.63 | |
P2O5 | 0.113 | 0.28 | 0.04 | |
CaO | 64.62 | 64.46 | 0.24 | |
MgO | 1.61 | 1.57 | 0.13 | |
K2O | 0.90 | 1.00 | 0.51 | |
Na2O | 0.12 | 0.11 | 0.06 | |
SO3 | 2.78 | 3.85 | 0.04 | |
Sum | 99.55 | 99.63 | 99.92 | |
LOI | 1.97 | 2.60 | 1.03 |
A2 Concrete | Ref. | 50C | 50C 0.5 KOH | 50C 0.5 KOH-WG | 50C 0.5 WG | 50C 2.3 KOH | 50C 2.3 KOH-WG | ||
---|---|---|---|---|---|---|---|---|---|
Cement Type | - | CEM I 32.5 R | CEM I 52.5 R | ||||||
Cement | kg/m3 | 180.00 | 491.75 | 225.26 | 223.00 | 222.70 | 222.39 | 212.35 | 210.68 |
Metakaolin | - | - | 225.26 | 223.00 | 222.70 | 222.39 | 212.35 | 210.68 | |
Aggregates | |||||||||
0.0–0.25 (quartz powder) | - | 376.98 | 355.47 | 341.19 | 340.73 | 340.26 | 324.90 | 322.34 | |
0.1–2.0 | 841.06 | 1098.28 | 996.1 | 996.82 | 995.45 | 994.11 | 949.20 | 941.72 | |
2.0–8.0 | 680.87 | - | - | - | - | - | - | - | |
8.0–16.0 | 480.61 | - | - | - | - | - | - | - | |
Water | 160.20 | 287.18 | 263.11 | 255.83 | 255.18 | 254.53 | 221.52 | 218.20 | |
KOHsol (50%) | - | - | - | 22.30 | 11.13 | - | 127.41 | 63.20 | |
Potassium Waterglass (silicate modulus = 1.0) | - | - | - | - | 14.84 | 29.63 | - | 84.21 | |
w/b | 0.89 | 0.58 | |||||||
Potassium in fresh mortar (calculated) | - | 0.18 | 0.14 | 0.50 | 0.50 | 0.50 | 2.3 | 2.3 | |
Potassium in fresh cement paste (calculated) | wt% | - | 0.52 | 0.40 | 1.46 | 1.45 | 1.44 | 6.08 | 5.93 |
Name | Color Change | Composition | Chemical Formula |
---|---|---|---|
Phenolphthalein | colorless–magenta | 1 g indicator powder, 70 mL ethanol, 30 mL demineralized water | C20H14O4 |
Mordant Orange 1 | light yellow–brown | C13H9N3O5 |
CEM I 32.5 R | CEM I 52.5 R | Metakaolin | KOHsol (50 %) | KWG (Silicate Modulus = 1.0) | |
---|---|---|---|---|---|
wt% | |||||
K | 0.75 | 0.83 | 0.42 | 34.84 | 26.15 |
OPC | 50C | 50C 0.5 KOH | 50C 0.5 KOH KWG | 50C 0.5 KWG | 50C 2.3 KOH | 50C 2.3 KOH KWG | ||
---|---|---|---|---|---|---|---|---|
kCRA | mm/√d | 0.453 | 0.066 | 0.464 | 0.324 | 0.691 | 1.432 | 1.457 |
R2 | - | 0.77 | 0.11 | 0.72 | 0.31 | 0.92 | 0.81 | 0.91 |
OPC | 50C | 50C 0.5 KOH | 50C 0.5 KOH KWG | 50C 0.5 KWG | 50C 2.3 KOH | 50C 2.3 KOH KWG | ||
---|---|---|---|---|---|---|---|---|
D(RM) | m2/s · 10−10 | 2.13 | 0.82 | 1.91 | 3.37 | 3.37 | 5.68 | 2.55 |
CS | wt% | 1.25 | 1.87 | 3.38 | 3.83 | 3.83 | 6.40 | 6.31 |
R2 | - | 0.84 | 0.90 | 0.97 | 0.90 | 0.90 | 0.84 | 0.94 |
OPC | 50C | 50C 0.5 KOH | 50C 0.5 KOH KWG | 50C 0.5 KWG | 50C 2.3 KOH | 50C 2.3 KOH KWG | |
---|---|---|---|---|---|---|---|
a | 1.088 | 1.395 | 2.124 | 2.112 | 1.082 | 3.508 | 3.156 |
b | −0.234 | −0.463 | −0.423 | −0.469 | −0.251 | −0.449 | −0.289 |
R2 | 0.97 | 0.98 | 0.98 | 0.99 | 0.95 | 0.98 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glawe, C.; Raupach, M. Quantitative Analysis of the Alkali Transport During Chemical Re-Alkalization Using Laser-Induced-Breakdown Spectroscopy. Corros. Mater. Degrad. 2025, 6, 43. https://doi.org/10.3390/cmd6030043
Glawe C, Raupach M. Quantitative Analysis of the Alkali Transport During Chemical Re-Alkalization Using Laser-Induced-Breakdown Spectroscopy. Corrosion and Materials Degradation. 2025; 6(3):43. https://doi.org/10.3390/cmd6030043
Chicago/Turabian StyleGlawe, Clarissa, and Michael Raupach. 2025. "Quantitative Analysis of the Alkali Transport During Chemical Re-Alkalization Using Laser-Induced-Breakdown Spectroscopy" Corrosion and Materials Degradation 6, no. 3: 43. https://doi.org/10.3390/cmd6030043
APA StyleGlawe, C., & Raupach, M. (2025). Quantitative Analysis of the Alkali Transport During Chemical Re-Alkalization Using Laser-Induced-Breakdown Spectroscopy. Corrosion and Materials Degradation, 6(3), 43. https://doi.org/10.3390/cmd6030043