Effect of Heat Treatment of Martensitic Stainless Steel on Passive Layer Growth Kinetics Studied by Electrochemical Impedance Spectroscopy in Conjunction with the Point Defect Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Sample Preparation
2.2. Electrochemistry
2.3. Fitting the Point Defect Model
- The passive layer solely consists of species, namely and (which leads to =3 in the reaction scheme (Figure 1)).
- The dissolution of the oxide layer does not lead to a change of oxide state of the metals and dissolves to (Reactions 4, 5, and 7 do not play a role regarding the faradaic impedance).
- The defects leading to the n-type structure of the passive film on stainless steel are oxygen vacancies. Hence, metal interstitials are neglected for the purpose of this paper and for simplification and so are Reaction 3 and 5. Both currents, produced by the formation of metal interstitials and by the formation of oxygen vacancies, cannot be distinguished and the calculated rate constants could be composite of both reactions. To ensure n-type behavior at the given potential Mott-Schottky-Analysis are done and can be seen in the supplementary materials (Figures S1 and S2).
- The inner barrier layer is the protecting passive layer and the reactions at the barrier layer-metal interface are described by the PDM.
3. Results and Discussion
3.1. Microstructure
3.2. Linear Sweep Voltammetry
3.3. Extraction of Kinetic Parameters from EIS Data Via the PDM
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Macdonald, D.D. Passivity—The key to our metals-based civilization. Pure Appl. Chem. 1999, 71, 951–978. [Google Scholar] [CrossRef]
- Ryan, M.P.; Williams, D.E.; Chater, R.J. Why stainless steel corrodes. Nature 2002, 415, 770–774. [Google Scholar] [CrossRef] [PubMed]
- Böhni, H. Breakdown of Passivity and Localized Corrosion Processes. Langmuir 1987, 3, 924–930. [Google Scholar] [CrossRef]
- Soltis, J. Passivity breakdown, pit initiation and propagation of pits in metallic materials—Review. Corros. Sci. 2015, 90, 5–22. [Google Scholar] [CrossRef]
- McBee, C.L.; Kruger, J. Nature of passive films on iron-chromium alloys. Electrochim. Acta 1972, 17, 1337–1341. [Google Scholar] [CrossRef]
- Qian, S.; Newman, R.C.; Cottis, R.A.; Sieradzki, K. Computer simulation of alloy passivation and activation. Corros. Sci. 1990, 31, 621–626. [Google Scholar] [CrossRef]
- Qian, S.; Newman, R.C.; Cottis, R.A. Validation of a Percolation Model for Passivation of Fe-Cr Alloys: Two-Dimensional Computer Simulations. J. Electrochem. Soc. 1990, 137, 435–439. [Google Scholar] [CrossRef]
- Metikoš-Huković, M.; Grubač, Z.; Omanovic, S. Change of n-type to p-type conductivity of the semiconductor passive film on N-steel: Enhancement of the pitting corrosion resistance. J. Serbian Chem. Soc. 2013, 78, 2053–2067. [Google Scholar]
- Marcelin, S.; Ter-Ovanessian, B.; Normand, B. Electronic properties of passive films from the multi-frequency Mott-Schottky and power-law coupled approach. Electrochem. Commun. 2016, 66, 62–65. [Google Scholar] [CrossRef]
- Guo, L.Q.; Qin, S.X.; Yang, B.J. Effect of hydrogen on semiconductive properties of passive film on ferrite and austenite phases in a duplex stainless steel. Sci. Rep. 2017, 7, 8–13. [Google Scholar] [CrossRef]
- Antunes, R.A.; De Oliveira, M.C.L.; Costa, I. Study of the correlation between corrosion resistance and semi-conducting properties of the passive film of AISI 316L stainless steel in physiological solution. Mater. Corros. 2012, 63, 586–592. [Google Scholar] [CrossRef]
- Bösing, I.; Cramer, L.; Steinbacher, M. Influence of heat treatment on the microstructure and corrosion resistance of martensitic stainless steel. AIP Adv. 2019, 9, 065317. [Google Scholar] [CrossRef] [Green Version]
- Candelaria, A.F.; Pinedo, C.E. Influence of the heat treatment on the corrosion resistance of the martensitic stainless steel type AISI 420. J. Mater. Sci. Lett. 2003, 22, 1151–1153. [Google Scholar] [CrossRef]
- Rosemann, P.; Kauss, N.; Müller, C.; Halle, T. Influence of solution annealing temperature and cooling medium on microstructure, hardness and corrosion resistance of martensitic stainless steel X46Cr13. Mater. Corros. 2015, 66, 1068–1076. [Google Scholar] [CrossRef]
- Bösing, I.; Bobrov, I.; Epp, J. Influence of Systematically Changed Martensite Content on the Passive Film Properties of Austenitic Stainless Steel in Neutral Electrolyte. Int. J. Electrochem. Sci. 2020, 15, 319–333. [Google Scholar] [CrossRef]
- MacDonald, D.D. Reflections on the history of electrochemical impedance spectroscopy. Electrochim. Acta 2006, 51, 1376–1388. [Google Scholar] [CrossRef]
- MacDonald, D.D. The history of the Point Defect Model for the passive state: A brief review of film growth aspects. Electrochim. Acta 2011, 56, 1761–1772. [Google Scholar] [CrossRef]
- Chao, C.Y.; Lin, L.F.; Macdonald, D.D. A Point Defect Model for Anodic Passive Films: I. Film growth kinetics. J. Electrochem. Soc. 1981, 128, 1187. [Google Scholar] [CrossRef]
- Macdonald, D.D. On the Existence of Our Metals-Based Civilization. J. Electrochem. Soc. 2006, 153, B213–B224. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Urquidi-Macdonald, M. Theory of Steady-State Passive Films. J. Electrochem. Soc. 1990, 137, 2395–2402. [Google Scholar] [CrossRef]
- Lin, L.F.; Chao, C.Y.; Macdonald, D.D. A Point Defect Model for Anodic Passive Films: III. Impedance response. J. Electrochem. Soc. 1982, 129, 1874–1879. [Google Scholar]
- Olsson, C.-O.A.; Hamm, D.; Landolt, D. Evaluation of Passive Film Growth Models with the Electrochemical Quartz Crystal Microbalance on PVD Deposited Cr. J. Electrochem. Soc. 2002, 147, 4093. [Google Scholar] [CrossRef]
- Fehlner, F.P. Low-temperature oxidation. Philos. Mag. B Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop. 1987, 55, 633–636. [Google Scholar] [CrossRef]
- Haupt, S.; Strehblow, H.H. A combined surface analytical and electrochemical study of the formation of passive layers on Fe Cr alloys in 0.5 M H2SO4. Corros. Sci. 1995, 37, 43–54. [Google Scholar] [CrossRef]
- Bungardt, K.; Kunze, E.; Horn, E. Untersuchungen über den Aufbau des Systems Eisen-Chrom-Kohlenstoff. Arch. Eisenhüttenwes. 1958, 29, 193–203. [Google Scholar] [CrossRef]
- Yang, H.-S.; Bhadeshia, H. Austenite grain size and the marteniste-start temperature. Scr. Mater. 2009, 60, 493–495. [Google Scholar] [CrossRef]
- Scheil, J. Entwicklung von Austenitisch—Ferritischem Gusseisen (ADI) aus EN—JS2070: Mikrostruktur, Mechanische Eigenschaften und Deren Auswirkung auf Die Oberflächenbearbeitung Durch das Maschinelle Oberflächenhämmern. Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2016. [Google Scholar]
- Orazem, M.E.; Bernard, T. Kinetic Models. In Electrochemical Impedance Spectroscopy, 48th ed.; John Voley & Sons: Hoboken, NJ, USA, 2017; pp. 163–182. [Google Scholar]
- Macdonald, D.; Sharifi-Asl, S.; Engelhardt, G. Review of the extraction of electrochemical kinetic data from electrochemical impedance data using genetic algorithm optimization. Bulg. Chem. Commun. 2017, 49, 53–64. [Google Scholar]
- Sharifi-Asl, S.; Taylor, M.L.; Lu, Z. Modeling of the electrochemical impedance spectroscopic behavior of passive iron using a genetic algorithm approach. Electrochim. Acta 2013, 102, 161–173. [Google Scholar] [CrossRef]
- Hsu, C.H.; Mansfeld, F. Concernng the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion 2001, 57, 747–748. [Google Scholar] [CrossRef]
- Haynes, W.M. CRC Handbook of Chemistry and Physics, 93rd ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Astm Standard E112-12 Standard Test Methods for Determining Average Grain Size; ASTM: West Conshohocken, PA, USA, 2012.
- Geringer, J.; MacDonald, D.D. Modeling fretting-corrosion wear of 316L SS against poly(methyl methacrylate) with the Point Defect Model: Fundamental theory, assessment, and outlook. Electrochim. Acta 2012, 79, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Schmuki, P. From Bacon to barriers: A review on the passivity of metals and alloys. J. Solid State Electrochem. 2002, 6, 145–164. [Google Scholar] [CrossRef]
- Bou-Saleh, Z.; Shahryari, A.; Omanovic, S. Enhancement of corrosion resistance of a biomedical grade 316LVM stainless steel by potentiodynamic cyclic polarization. Thin Solid Film. 2007, 515, 4727–4737. [Google Scholar] [CrossRef]
Alloying Element | C | Cr | Fe | Mn | O | P | S | Si |
---|---|---|---|---|---|---|---|---|
Laboratory alloy | 0.497 | 13.700 | bal. | 0.372 | 0.0033 | 0.0022 | 0.0031 | 0.0075 |
TA /°C | Amount of Austenite Phase (During Austenitizing) /ma.-% | Mass Amount of Dissolved Cr /ma.-% |
---|---|---|
1000 | 97.46 | 11.94 |
1050 | 98.44 | 12.65 |
1100 | 99.60 | 13.45 |
1150 | 99.97 | 13.69 |
1200 | 99.97 | 13.69 |
Parameter | Full Model | Simplified Model |
---|---|---|
2.34 × 10−14 | – | |
0.13 | – | |
7.25 × 10−11 | 7.66 × 10−11 | |
0.028 | 0.028 | |
2.56 × 10−14 | – | |
0.01 | – | |
2.93 × 10−10 | 3.05 × 10−10 | |
1.12 × 106 | 1.0 × 106 | |
0.1 | 0.1 | |
7 × 10−16 | – | |
0.875 | 0.875 | |
0.9974 | 0.9970 |
T0 | 9.61 × 10−11 | 0.0247 | 3.60 × 10−10 | 1.50 |
1000 | 5.91 × 10−11 | 0.0298 | 3.09 × 10−10 | 1.32 |
1050 | 3.68 × 10−11 | 0.0282 | 1.92 × 10−10 | 1.07 |
1100 | 1.80 × 10−11 | 0.0353 | 1.38 × 10−10 | 1.16 |
1150 | 2.69 × 10−11 | 0.0368 | 2.66 × 10−10 | 0.76 |
1200 | 9.46 × 10-12 | 0.0352 | 8.44 × 10-11 | 0.77 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bösing, I.; Marquardt, G.; Thöming, J. Effect of Heat Treatment of Martensitic Stainless Steel on Passive Layer Growth Kinetics Studied by Electrochemical Impedance Spectroscopy in Conjunction with the Point Defect Model. Corros. Mater. Degrad. 2020, 1, 77-91. https://doi.org/10.3390/cmd1010006
Bösing I, Marquardt G, Thöming J. Effect of Heat Treatment of Martensitic Stainless Steel on Passive Layer Growth Kinetics Studied by Electrochemical Impedance Spectroscopy in Conjunction with the Point Defect Model. Corrosion and Materials Degradation. 2020; 1(1):77-91. https://doi.org/10.3390/cmd1010006
Chicago/Turabian StyleBösing, Ingmar, Georg Marquardt, and Jorg Thöming. 2020. "Effect of Heat Treatment of Martensitic Stainless Steel on Passive Layer Growth Kinetics Studied by Electrochemical Impedance Spectroscopy in Conjunction with the Point Defect Model" Corrosion and Materials Degradation 1, no. 1: 77-91. https://doi.org/10.3390/cmd1010006
APA StyleBösing, I., Marquardt, G., & Thöming, J. (2020). Effect of Heat Treatment of Martensitic Stainless Steel on Passive Layer Growth Kinetics Studied by Electrochemical Impedance Spectroscopy in Conjunction with the Point Defect Model. Corrosion and Materials Degradation, 1(1), 77-91. https://doi.org/10.3390/cmd1010006