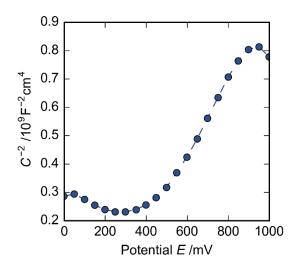
## **Supplementary Materials:**

## Effect of Heat Treatment of Martensitic Stainless Steel on Passive Layer Growth Kinetics Studied by Electrochemical Impedance Spectroscopy in Conjunction with the Point Defect Model

## Ingmar Bösing \*, Georg Marquardt and Jorg Thöming

Chemical Process Engineering, University of Bremen, Leobener Strasse 6, 28359 Bremen, Germany; gjm@gmx.de (G.M.); thoeming@uni-bremen.de (J.T.)


\*Correspondence: ingmar.boesing@uni-bremen.de

## **Mott-Schottky Analysis**

Mott-Schottky analysis were done to ensure n-type behavior of the passive layer at the polarization potential (0.6 V). Figure S1 shows the Mott-Schottky plot of a selected sample ( $T_A$ : 1200 °C). The passive film shows a positive slope between 300 and 900 mV indicating n-type behavior. Figure S2 shows the calculated defect densities  $N_D$  for all samples.  $N_D$  was calculated by the Mott-Schottky equation:

$$\frac{1}{C_{\rm sc}^2} = \frac{2}{\varepsilon \varepsilon_0 e N_{\rm D}} \left( E - E_{\rm fb} - \frac{kT}{e} \right) \tag{SI1}$$

in which  $\varepsilon$  describes the permittivity of the oxide (that can be assumed as 12 for oxide layers on stainless steel [33]),  $\varepsilon_0$  the permittivity of the vacuum (8.85 × 10<sup>-12</sup> C/(Vm)), e the elementary charge of an electron (1.902 × 10<sup>-19</sup> C),  $E_{\rm fb}$  the flatband potential, k the Boltzmann constant (1.38 × 10<sup>-23</sup> J/K), T the temperature, and  $N_{\rm D}$  concentration of dopants.



**Figure 1.** Mott-Schottky plot of martensitic stainless steel sample (austenitizing temperature  $T_A$ : 1200 °C) after passive film formation at 600 mV for 1800 s.

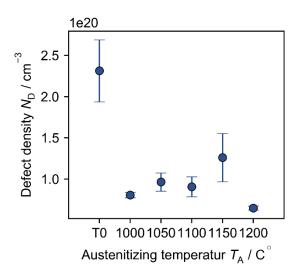



Figure 2. Calculated defect densities of the passive layer of martensitic stainless steel after different heat treatments.