Under the Covers: The Effect of a Temperature-Controlled Mattress Cover on Sleep and Perceptual Measures in Healthy Adults
Abstract
1. Introduction
2. Results
2.1. Menstrual Cycle Questionnaire
2.2. Daily Measures
2.3. Weekly Questionnaire
2.4. Post-Data-Collection Questionnaire
3. Discussion
3.1. Perceived Outcomes
3.2. Objective Sleep Outcomes
3.3. Biometric Outcomes
3.4. Ambient Temperature
3.5. Limitations
3.6. Main Conclusions
4. Materials and Methods
4.1. Participants
4.2. Study Design
4.3. Temperature-Controlled Mattress Cover
4.4. Sleep Monitoring
4.5. Sleep Regularity Index (SRI)
4.6. Bedroom Environment
4.7. Menstrual Cycle Questionnaire
4.8. Perceived Outcomes
4.8.1. Daily Perceived Outcomes
4.8.2. Weekly Questionnaire
4.8.3. Post-Data-Collection Questionnaire
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keenan, S.; Hirshkowitz, M.; Casseres, H. Monitoring and Staging Human Sleep. In Principles and Practice of Sleep Medicine; Kryger: Thousand Oaks, CA, USA, 2011. [Google Scholar] [CrossRef]
- Pan, L.; Lian, Z.; Lan, L. Investigation of sleep quality under different temperatures based on subjective and physiological measurements. HVAC&R Res. 2012, 18, 1030–1043. [Google Scholar] [CrossRef]
- Lan, L.; Pan, L.; Lian, Z.; Huang, H.; Lin, Y. Experimental study on thermal comfort of sleeping people at different air temperatures. Build. Environ. 2014, 73, 24–31. [Google Scholar] [CrossRef]
- Okamoto-Mizuno, K.; Mizuno, K. Effects of thermal environment on human sleep and thermoregulation. J. Physiol Anthropol. 2012, 31, 14. [Google Scholar] [CrossRef]
- Rogers, N.L.; Bowes, J.; Lushington, K.; Dawson, D. Thermoregulatory changes around the time of sleep onset. Physiol. Behav. 2007, 90, 643–647. [Google Scholar] [CrossRef]
- Kräuchi, K.; de Boer, T. Body Temperature, Sleep, and Hibernation. In Principles and Practice of Sleep Medicine, 5th ed.; Kryger: Thousand Oaks, CA, USA, 2010; pp. 323–334. [Google Scholar] [CrossRef]
- Van Someren, E.J.W. Mechanisms and functions of coupling between sleep and temperature rhythms. Prog. Brain Res. 2006, 153, 309–324. [Google Scholar] [CrossRef]
- Harding, E.C.; Franks, N.P.; Wisden, W. The temperature dependence of sleep. Front. Neurosci. 2019, 13, 336. [Google Scholar] [CrossRef]
- Troynikov, O.; Watson, C.G.; Nawaz, N. Sleep environments and sleep physiology: A review. J. Therm. Biol. 2018, 78, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Krauchi, K.; Deboer, T. The interrelationship between sleep regulation and thermoregulation. Front. Biosci. 2010, 15, 604–625. [Google Scholar] [CrossRef] [PubMed]
- Haghayegh, S.; Khoshnevis, S.; Smolensky, M.H.; Diller, K.R.; Castriotta, R.J. Before-bedtime passive body heating by warm shower or bath to improve sleep: A systematic review and meta-analysis. Sleep Med. Rev. 2019, 46, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, A.; Heuvel, C.v.D.; Dawson, D. Sleeping with an electric blanket: Effects on core temperature, sleep, and melatonin in young adults. Sleep 1999, 22, 313–318. [Google Scholar] [CrossRef]
- Herberger, S.; Kräuchi, K.; Glos, M.; Lederer, K.; Assmus, L.; Hein, J.; Penzel, T.; Fietze, I. Effects of sleep on a high-heat capacity mattress on sleep stages, EEG power spectra, cardiac interbeat intervals and body temperatures in healthy middle-aged men. Sleep 2020, 43, zsz271. [Google Scholar] [CrossRef]
- Kräuchi, K.; Fattori, E.; Giordano, A.; Falbo, M.; Iadarola, A.; Aglì, F.; Tribolo, A.; Mutani, R.; Cicolin, A. Sleep on a high heat capacity mattress increases conductive body heat loss and slow wave sleep. Physiol. Behav. 2018, 185, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Haghayegh, S.; Khoshnevis, S.; Smolensky, M.H.; Hermida, R.C.; Castriotta, R.J.; Schernhammer, E.; Diller, K.R. Novel temperature-controlled sleep system to improve sleep: A proof-of-concept study. J. Sleep Res. 2022, 31, e13662. [Google Scholar] [CrossRef] [PubMed]
- Chauvineau, M.; Hollville, E.; Duforez, F.; Guilhem, G.; Nedelec, M. Effect of a High-Heat-Capacity Mattress Topper on Sleep in Elite Badminton Players During a Summer Training Period: Does 1 Size Fit All? Int. J. Sports Physiol. Perform. 2025, 20, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Chauvineau, M.; Pasquier, F.; Duforez, F.; Guilhem, G.; Nedelec, M. Increased training load promotes sleep propensity and slow-wave sleep in endurance runners: Can a high-heat-capacity mattress topper modulate this effect? J. Sleep Res. 2024, 33, e14132. [Google Scholar] [CrossRef]
- Moyen, N.E.; Ediger, T.R.; Taylor, K.M.; Hancock, E.G.; Holden, L.D.; Tracy, E.E.; Kay, P.H.; Irick, C.R.; Kotzen, K.J.; He, D.D. Sleeping for One Week on a Temperature-Controlled Mattress Cover Improves Sleep and Cardiovascular Recovery. Bioengineering 2024, 11, 352. [Google Scholar] [CrossRef]
- Pasquier, F.; Chauvineau, M.; Castellini, G.; Gianola, S.; Bargeri, S.; Vitale, J.; Nedelec, M. Does body cooling facilitated by bedding compared to control condition improve sleep among adults (18–64 years old)? A systematic review and meta-analysis. J. Therm. Biol. 2024, 127, 104030. [Google Scholar] [CrossRef]
- Kaplan, K.A.; Hirshman, J.; Hernandez, B.; Stefanick, M.L.; Hoffman, A.R.; Redline, S.; Ancoli-Israel, S.; Stone, K.; Friedman, L.; Zeitzer, J.M. When a gold standard isn’t so golden: Lack of prediction of subjective sleep quality from sleep polysomnography. Biol. Psychol. 2017, 123, 37–46. [Google Scholar] [CrossRef]
- Neukirch, N.; Colagiuri, B. The placebo effect, sleep difficulty, and side effects: A balanced placebo model. J. Behav. Med. 2015, 38, 273–283. [Google Scholar] [CrossRef]
- Cao, T.; Lian, Z.; Ma, S.; Bao, J. Thermal comfort and sleep quality under temperature, relative humidity and illuminance in sleep environment. J. Build. Eng. 2021, 43, 102575. [Google Scholar] [CrossRef]
- Lan, L.; Tsuzuki, K.; Liu, Y.; Lian, Z. Thermal environment and sleep quality: A review. Energy Build. 2017, 149, 101–113. [Google Scholar] [CrossRef]
- Rahman, S.A.; Rood, D.; Trent, N.; Solet, J.; Langer, E.J.; Lockley, S.W. Manipulating sleep duration perception changes cognitive performance—An exploratory analysis. J. Psychosom. Res. 2020, 132, 109992. [Google Scholar] [CrossRef] [PubMed]
- Lan, L.; Lian, Z. Ten questions concerning thermal environment and sleep quality. Build. Environ. 2016, 99, 252–259. [Google Scholar] [CrossRef]
- Ravindran, K.K.G.; della Monica, C.; Atzori, G.; Lambert, D.; Hassanin, H.; Revell, V.; Dijk, D.-J. Reliable Contactless Monitoring of Heart Rate, Breathing Rate, and Breathing Disturbance During Sleep in Aging: Digital Health Technology Evaluation Study. JMIR Mhealth Uhealth 2024, 12, e53643. [Google Scholar] [CrossRef]
- Siyahjani, F.; Molina, G.G.; Barr, S.; Mushtaq, F. Performance Evaluation of a Smart Bed Technology against Polysomnography. Sensors 2022, 22, 2605. [Google Scholar] [CrossRef]
- Bischof, W.; Madsen, T.L.; Clausen, J.; Madsen, P.L.; Wildschidtz, G. Sleep and the temperature field of the bed. J. Therm. Biol. 1993, 18, 393–398. [Google Scholar] [CrossRef]
- Okamoto-Mizuno, K.; Tsuzuki, K.; Mizuno, K.; Ohshiro, Y. Effects of low ambient temperature on heart rate variability during sleep in humans. Eur. J. Appl. Physiol. 2009, 105, 191–197. [Google Scholar] [CrossRef]
- Baschieri, F.; Guaraldi, P.; Provini, F.; Chiogna, M.; Barletta, G.; Cecere, A.; De Scisciolo, G.; Cortelli, P.; Calandra-Buonaura, G. Circadian and state-dependent core body temperature in people with spinal cord injury. Spinal Cord 2021, 59, 538–546. [Google Scholar] [CrossRef]
- Okamoto-Mizuno, K.; Tsuzuki, K.; Mizuno, K.; Iwaki, T. Effects of partial humid heat exposure during different segments of sleep on human sleep stages and body temperature. Physiol. Behav. 2005, 83, 759–765. [Google Scholar] [CrossRef]
- Baker, F.C.; Siboza, F.; Fuller, A. Temperature regulation in women: Effects of the menstrual cycle. Temperature 2020, 7, 226–262. [Google Scholar] [CrossRef]
- VanSomeren, E.J.W. More than a marker: Interaction between the circadian regulation of temperature and sleep, age-related changes, and treatment possibilities. Chronobiol. Int. 2000, 17, 313–354. [Google Scholar] [CrossRef] [PubMed]
- Driller, M.W.; O’Donnell, S.; Tavares, F. What wrist should you wear your actigraphy device on? Analysis of dominant vs. non-dominant wrist actigraphy for measuring sleep in healthy adults. Sleep Sci. 2017, 10, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Haghayegh, S.; Khoshnevis, S.; Smolensky, M.H.; Diller, K.R.; Castriotta, R.J. Accuracy of wristband fitbit models in assessing sleep: Systematic review and meta-analysis. J. Med. Internet Res. 2019, 21, e16273. [Google Scholar] [CrossRef] [PubMed]
- Schyvens, A.-M.; Van Oost, N.C.; Aerts, J.-M.; Masci, F.; Peters, B.; Neven, A.; Dirix, H.; Wets, G.; Ross, V.; Verbraecken, J. Accuracy of Fitbit Charge 4, Garmin Vivosmart 4, and WHOOP Versus Polysomnography: Systematic Review. JMIR Mhealth Uhealth 2024, 12, e52192. [Google Scholar] [CrossRef]
- Chinoy, E.D.; Cuellar, J.A.; Huwa, K.E.; Jameson, J.T.; Watson, C.H.; Bessman, S.C.; Hirsch, D.A.; Cooper, A.D.; Drummond, S.P.A.; Markwald, R.R. Performance of seven consumer sleep-tracking devices compared with polysomnography. Sleep 2021, 44, zsaa291. [Google Scholar] [CrossRef]
- Phillips, A.J.K.; Clerx, W.M.; O’bRien, C.S.; Sano, A.; Barger, L.K.; Picard, R.W.; Lockley, S.W.; Klerman, E.B.; Czeisler, C.A. Irregular sleep/wake patterns are associated with poorer academic performance and delayed circadian and sleep/wake timing. Sci. Rep. 2017, 7, 3216. [Google Scholar] [CrossRef]
- Teece, A.; Beaven, C.M.; Suppiah, H.; Argus, C.K.; Gill, N.; Driller, M.W. Routine, Routine, Routine: Sleep Regularity and its Association with Sleep Metrics in Professional Rugby Union Athletes. Sports Med. Open 2024, 10, 51. [Google Scholar] [CrossRef]
- Windred, D.P.; Jones, S.E.; Russell, A.; Burns, A.C.; Chan, P.; Weedon, M.N.; Rutter, M.K.; Olivier, P.; Vetter, C.; Saxena, R.; et al. Objective assessment of sleep regularity in 60 000 UK Biobank participants using an open-source package. Sleep 2021, 44, zsab254. [Google Scholar] [CrossRef]
- Pajardo, E.; Hee Kang, D. Thermal Comfort in a Classroom: Sustainable Management for a Campus. In World Environmental and Water Resources Congress; ASCE Library: Reston, VA, USA, 2022; pp. 870–878. Available online: https://ascelibrary.org/doi/abs/10.1061/9780784484258.082 (accessed on 16 January 2025).
- Najmabadi, S.; Schliep, K.C.; Simonsen, S.E.; Porucznik, C.A.; Egger, M.J.; Stanford, J.B. Menstrual bleeding, cycle length, and follicular and luteal phase lengths in women without known subfertility: A pooled analysis of three cohorts. Paediatr. Perinat. Epidemiol. 2020, 34, 318–327. [Google Scholar] [CrossRef]
- ANSI/ASHRAE standard 55; Thermal Environmental Conditions for Human Occupancy. Ashrae: Peachtree Corners, GA, USA, 1992.
- Sancho-Domingo, C.; Carballo, J.L.; Coloma-Carmona, A.; Buysse, D.J. Brief version of the Pittsburgh Sleep Quality Index (B-PSQI) and measurement invariance across gender and age in a population-based sample. Psychol. Assess. 2021, 33, 111–121. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 1988. [Google Scholar]



| Variable | CON Mean ± SD | POD Mean ± SD |
|---|---|---|
| Objective sleep outcomes | ||
| Total sleep time (h:mm) | 7 h 25 min ± 32 min | 7 h 34 min ± 33 min |
| Wake after sleep onset (h:mm) | 1 h 1 min ± 13 min | 1 h 4 min ± 13 min |
| Sleep onset latency (min) | 11 ± 8 | 10 ± 6 |
| Sleep efficiency (%) | 87 ± 2 | 87 ± 2 |
| Sleep regularity index (/100) | 74.1 ± 10.7 | 71.9 ± 9.4 |
| Biometric outcomes | ||
| Heart rate (bpm) | 54 ± 6 | 53 ± 6 |
| Heart rate variability (ms) | 66 ± 25 | 68 ± 25 |
| Respiratory rate (breaths per min) | 15 ± 2 | 15 ± 2 |
| Daily perceived outcomes | ||
| Calmness of sleep (/5) | 3.4 ± 0.7 | 3.7 ± 0.7 * |
| Ease of falling asleep (/5) | 3.6 ± 0.6 | 3.9 ± 0.6 * |
| Ease of waking up (/5) | 3.0 ± 0.6 | 3.2 ± 0.6 * |
| Refreshed after waking (/5) | 2.7 ± 0.6 | 3.1 ± 0.7 * |
| Sleep satisfaction (/5) | 3.3 ± 0.5 | 3.7 ± 0.5 * |
| Thermal sensation (ASHRAE) | 0.5 ± 0.8 | −0.1 ± 1.0 * |
| Thermal comfort (/5) | 3.3 ± 0.6 | 4.0 ± 0.5 * |
| Predictor | Estimate (B) (95% CI) | p-Value | SMD | Estimate (B) (95% CI) | p-Value | SMD | Estimate (B) (95% CI) | p-Value | SMD | Estimate (B) (95% CI) | p-Value | SMD |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TST (min) | WASO (min) | SOL (min) | SE (%) | |||||||||
| Intercept | 455.364 (441.209–469.519) | 65.487 (59.128–71.847) | 10.706 (7.613–13.799) | 87.602 (86.736–88.470) | ||||||||
| Condition | 12.082 (−1.207–25.370) | 0.094 | 0.229 | 5.110 (0.193–10.026) | 0.054 | 0.360 | −1.303 (−3.752–1.147) | 0.300 | −0.161 | −0.557 (−1.470–0.356) | 0.244 | −0.225 |
| Order | −0.235 (−28.442–27.971) | 0.987 | −0.005 | 3.963 (−8.617–16.544) | 0.542 | 0.280 | −0.607 (−6.784–5.571) | 0.848 | −0.075 | −0.822 (−2.530–0.887) | 0.355 | −0.335 |
| Ambient Temperature | 1.332 (−3.094–5.759) | 0.554 | 0.026 | 1.303 (−0.167–2.773) | 0.082 | 0.269 | 0.696 (−0.071–1.463) | 0.076 | 0.249 | −0.126 (−0.365–0.113) | 0.300 | −0.154 |
| Relative Humidity | 0.414 (−0.950–1.777) | 0.551 | 0.008 | −0.103 (−0.559–0.353) | 0.656 | −0.060 | −0.156 (−0.395–0.083) | 0.201 | −0.157 | 0.025 (−0.052–0.101) | 0.527 | 0.083 |
| Sex | 1.508 (−26.795–29.811) | 0.917 | 0.029 | 6.104 (−6.507–18.715) | 0.352 | 0.431 | 0.480 (−5.710–6.669) | 0.880 | 0.059 | −0.950 (−2.663–0.763) | 0.288 | −0.389 |
| Condition × Order | 16.784 (−10.369–43.937) | 0.241 | 0.319 | −8.920 (−18.923–1.083) | 0.093 | −0.629 | −2.884 (−7.873–2.106) | 0.260 | −0.353 | 1.958 (0.107–3.809) | 0.050 | 0.797 |
| Condition × Sex | 27.351 (0.622–54.079) | 0.062 | 0.518 | 0.842 (−9.034–10.717) | 0.868 | 0.059 | −1.809 (−6.715–3.096) | 0.471 | −0.223 | 0.763 (−1.070–2.596) | 0.422 | 0.311 |
| Order × Sex | 28.593 (−31.722–88.908) | 0.359 | 0.554 | 9.081 (−16.745–34.906) | 0.496 | 0.642 | 2.848 (−10.054–15.751) | 0.667 | 0.348 | −1.327 (−4.870–2.215) | 0.469 | −0.540 |
| Condition × Order × Sex | −19.674 (−72.903–33.555) | 0.478 | −0.373 | 8.820 (−10.869–28.508) | 0.388 | 0.623 | 0.224 (−9.596–10.043) | 0.964 | 0.029 | −2.388 (−6.044–1.267) | 0.213 | −0.978 |
| Random Effects | ||||||||||||
| Between subjects SD | 31.453 | 14.277 | 7.244 | 1.870 | ||||||||
| Within subjects SD | 9.943 | 7.198 | 3.010 | 1.481 | ||||||||
| ICC | 0.283 | 0.523 | 0.458 | 0.388 | ||||||||
| Predictor | Estimate (B) (95% CI) | p-Value | SMD | Estimate (B) (95% CI) | p-Value | SMD | Estimate (B) (95% CI) | p-Value | SMD |
|---|---|---|---|---|---|---|---|---|---|
| HR (bpm) | HRV (ms) | RR (/min) | |||||||
| Intercept | 54.556 (52.502–56.610) | 63.706 (57.422–69.990) | 15.268 (14.367–16.170) | ||||||
| Condition | −1.241 (−2.422–−0.060) | 0.051 | −0.404 | 3.457 (−0.572–7.4986) | 0.107 | 0.272 | −0.100 (−0.276–0.075) | 0.273 | −0.197 |
| Order | 0.474 (−3.632–4.579) | 0.822 | 0.153 | −9.505 (−22.067–3.056) | 0.150 | −0.749 | −1.410 (−3.214–0.393) | 0.138 | −2.779 |
| Ambient Temperature | −0.373 (−0.699–−0.047) | 0.025 | −0.354 | 0.354 (−0.938–1.647) | 0.590 | 0.081 | −0.066 (−0.122–−0.010) | 0.021 | −0.375 |
| Relative Humidity | −0.034 (−0.131–0.063) | 0.492 | −0.092 | −0.075 (−0.456–0.306) | 0.699 | −0.048 | 0.005 (−0.021–0.012) | 0.556 | −0.079 |
| Sex | 0.085 (−4.026–4.196) | 0.968 | 0.026 | −14.922 (−27.509–−2.335) | 0.029 | −1.176 | −0.683 (−2.487–1.120) | 0.464 | −1.340 |
| Condition × Order | −1.077 (−3.471–1.317) | 0.385 | −0.348 | −2.195 (−10.403–6.013) | 0.604 | −0.173 | −0.361 (−0.718–−0.003) | 0.059 | −0.710 |
| Condition × Sex | −0.857 (−3.230–1.515) | 0.485 | −0.280 | 1.624 (−6.482–9.730) | 0.697 | 0.128 | −0.300 (−0.653–0.052) | 0.109 | −0.591 |
| Order × Sex | −7.597 (−15.963–0.770) | 0.087 | −2.472 | 49.018 (23.115–74.922) | 0.001 | 3.864 | 0.019 (−3.599–3.637) | 0.992 | 0.039 |
| Condition × Order × Sex | 0.664 (−4.064–5.392) | 0.785 | 0.221 | −2.654 (−18.786–13.478) | 0.749 | −0.209 | −0.023 (−0.726–0.680) | 0.949 | −0.039 |
| Random Effects | |||||||||
| Between subjects SD | 5.062 | 15.252 | 2.266 | ||||||
| Within subjects SD | 2.147 | 5.999 | 0.291 | ||||||
| ICC | 0.744 | 0.607 | 0.955 | ||||||
| Predictor | Estimate (B) (95% CI) | p-Value | SMD | Estimate (B) (95% CI) | p-Value | SMD | Estimate (B) (95% CI) | p-Value | SMD | Estimate (B) (95% CI) | p-Value | SMD |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Calmness of Sleep (/5) | Ease of Falling Asleep (/5) | Ease of Waking Up (/5) | Refreshed After Waking (/5) | |||||||||
| Intercept | 3.710 (3.447–3.973) | 3.843 (3.658–4.027) | 3.226 (3.005–3.447) | 3.029 (2.770–3.289) | ||||||||
| Condition | 0.403 (0.123–0.684) | 0.005 | 0.347 | 0.370 (−0.128–0.613) | 0.008 | 0.384 | 0.363 (0.082–0.643) | 0.020 | 0.417 | 0.500 (0.240–0.759) | 0.001 | 0.607 |
| Order | 0.373 (−0.150–0.897) | 0.174 | 0.329 | 0.263 (−0.104–0.630) | 0.172 | 0.271 | 0.386 (−0.055–0.826) | 0.100 | 0.440 | 0.566 (0.049–1.083) | 0.042 | 0.681 |
| Ambient Temperature | −0.027 (−0.120–0.065) | 0.564 | −0.070 | −0.010 (−0.083–0.062) | 0.786 | −0.021 | 0.020 (−0.054–0.093) | 0.597 | 0.059 | −0.034 (−0.107–0.040) | 0.368 | −0.123 |
| Relative Humidity | −0.004 (−0.032–0.024) | 0.776 | −0.026 | −0.006 (−0.028–0.016) | 0.578 | −0.053 | −0.007 (−0.029–0.016) | 0.569 | −0.059 | −0.005 (−0.027–0.018) | 0.681 | −0.049 |
| Sex | 0.159 (−0.366–0.684) | 0.557 | 0.139 | 0.289 (−0.079–0.657) | 0.136 | 0.302 | 0.188 (−0.253–0.630) | 0.411 | 0.220 | 0.247 (−0.271–0.766) | 0.358 | 0.292 |
| Condition × Order | −0.217 (−0.789–0.356) | 0.457 | −0.191 | 0.014 (−0.479–0.507) | 0.956 | 0.010 | 0.215 (−0.352−0.782) | 0.464 | 0.244 | 0.120 (−0.407–0.646) | 0.659 | −0.146 |
| Condition × Sex | 0.259 (−0.305–0.824) | 0.367 | 0.226 | 0.476 (−0.012–0.963) | 0.071 | 0.499 | 0.137 (−0.426–0.700) | 0.637 | 0.162 | 0.009 (−0.512–0.531) | 0.972 | 0.024 |
| Order × Sex | 0.697 (−0.534–1.729) | 0.308 | 0.521 | −0.141 (−0.944–0.663) | 0.733 | −0.146 | −0.277 (−1.221–0.667) | 0.569 | −0.325 | 0.727 (−0.364–1.817) | 0.202 | 0.888 |
| Condition × Order × Sex | 0.805 (−0.320–1.929) | 0.160 | 0.704 | 1.119 (0.148–2.090) | 0.036 | 1.176 | −0.097 (−1.219–1.026) | 0.867 | −0.093 | 0.874 (−0.1767–1.914) | 0.114 | 1.058 |
| Random Effects | ||||||||||||
| Between subjects SD | 0.550 | 0.349 | 0.476 | 0.592 | ||||||||
| Within subjects SD | 0.030 | 0.160 | 0.439 | 0.387 | ||||||||
| ICC | 0.196 | 0.124 | 0.246 | 0.356 | ||||||||
| Predictor | Estimate (B) (95% CI) | p-Value | SMD | Estimate (B) (95% CI) | p-Value | SMD | Estimate (B) (95% CI) | p-Value | SMD |
|---|---|---|---|---|---|---|---|---|---|
| Sleep Satisfaction (/5) | Thermal Sensation (/7) | Thermal Comfort (/5) | |||||||
| Intercept | 3.618 (3.429–3.806) | 0.139 (−0.108–0.387) | 3.708 (3.535–3.881) | ||||||
| Condition | 0.464 (0.245–0.683) | <0.001 | 0.523 | −0.739 (−1.181–−0.297) | 0.003 | −0.926 | 0.912 (0.633–1.191) | <0.001 | 1.194 |
| Order | 0.313 (−0.062–0.687) | 0.115 | 0.352 | 0.104 (−0.389–0.598) | 0.682 | 0.140 | 0.306 (−0.039–0.650) | 0.096 | 0.407 |
| Ambient Temperature | −0.044 (−0.113–0.025) | 0.215 | −0.148 | 0.042 (−0.029–0.114) | 0.247 | 0.152 | 0.029 (−0.034–0.091) | 0.366 | 0.105 |
| Relative Humidity | 0.001 (−0.022–0.020) | 0.921 | −0.011 | −0.000 (−0.023–0.023) | 0.999 | 0.000 | 0.005 (−0.015–0.024) | 0.635 | 0.052 |
| Sex | 0.177 (−0.199–0.553) | 0.363 | 0.204 | −0.186 (−0.682–0.309) | 0.466 | −0.241 | 0.015 (−0.330–0.361) | 0.931 | 0.013 |
| Condition × Order | −0.215 (−0.661–0.230) | 0.352 | −0.238 | −0.236 (−1.123–0.651) | 0.605 | −0.304 | 0.291 (−0.271–0.853) | 0.320 | 0.380 |
| Condition × Sex | 0.213 (−0.226–0.653) | 0.350 | 0.238 | −0.443 (−1.329–0.442) | 0.335 | −0.558 | 0.416 (−0.143–0.975) | 0.158 | 0.551 |
| Order × Sex | 0.422 (−0.392–1.236) | 0.317 | 0.476 | −1.115 (−2.158–−0.073) | 0.045 | −1.409 | −0.253 (−0.998–0.492) | 0.510 | −0.354 |
| Condition × Order × Sex | 0.815 (−0.061–1.691) | 0.081 | 0.919 | −2.842 (−4.609–−1.074) | 0.004 | −3.602 | 1.322 (0.207–2.438) | 0.030 | 1.719 |
| Random Effects | |||||||||
| Between subjects SD | 0.382 | 0.553 | 0.355 | ||||||
| Within subjects SD | 0.112 | 0.962 | 0.503 | ||||||
| ICC | 0.169 | 0.344 | 0.190 | ||||||
| Variable | CON Mean ± SD | POD Mean ± SD | p-Value | Effect Size (95% CI) |
|---|---|---|---|---|
| Self-reported bedtime (hh:mm) | 22:31 ± 0:46 | 22:32 ± 0:45 | 0.70 | 0.00 (±0.33) unclear |
| Self-reported waketime (hh:mm) | 07:05 ± 0:54 | 07:02 ± 0:55 | 0.78 | −0.05 (±0.20) trivial |
| Self-reported sleep onset latency (min) | 22 ± 11 | 20 ± 9 | 0.37 | −0.13 (±0.23) trivial |
| Self-reported total sleep time (h:min) | 7 h 17 min ± 32 min | 7 h 28 min ± 35 min | 0.52 | 0.27 (±0.17) small |
| Self-reported sleep quality (/5) | 2.8 ± 0.5 | 3.2 ± 0.5 | <0.001 | 0.92 (±0.40) large |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stevenson, S.; Suppiah, H.; Mündel, T.; Driller, M. Under the Covers: The Effect of a Temperature-Controlled Mattress Cover on Sleep and Perceptual Measures in Healthy Adults. Clocks & Sleep 2025, 7, 55. https://doi.org/10.3390/clockssleep7040055
Stevenson S, Suppiah H, Mündel T, Driller M. Under the Covers: The Effect of a Temperature-Controlled Mattress Cover on Sleep and Perceptual Measures in Healthy Adults. Clocks & Sleep. 2025; 7(4):55. https://doi.org/10.3390/clockssleep7040055
Chicago/Turabian StyleStevenson, Shauna, Haresh Suppiah, Toby Mündel, and Matthew Driller. 2025. "Under the Covers: The Effect of a Temperature-Controlled Mattress Cover on Sleep and Perceptual Measures in Healthy Adults" Clocks & Sleep 7, no. 4: 55. https://doi.org/10.3390/clockssleep7040055
APA StyleStevenson, S., Suppiah, H., Mündel, T., & Driller, M. (2025). Under the Covers: The Effect of a Temperature-Controlled Mattress Cover on Sleep and Perceptual Measures in Healthy Adults. Clocks & Sleep, 7(4), 55. https://doi.org/10.3390/clockssleep7040055

