Influence of the Human Field of View on Visual and Non-Visual Quantities in Indoor Environments
Abstract
:1. Introduction
2. Results
2.1. Project Results for Scenarios 1–20
2.1.1. Project A: Realistic Office Lab Study, Scenarios 1–3
2.1.2. Project B: Home Office Workplace, Scenarios 4–6
2.1.3. Project C: Industry Field Study (Machine Workplace), Scenarios 7–8
2.1.4. Project D: Industry Workplace, Scenarios 9–10
2.1.5. Project E: Learning Space, Scenarios 11–13
2.1.6. Project F: Industry Field Study (Packaging Workplace), Scenarios 14–16
2.1.7. Project G: Halfdome Ganzfeld Lab Setup, Scenario 17
2.1.8. Project H: Artificial Office Lab Study, Scenarios 18–20
2.2. Impact of Head Orientation (Project D)
3. Discussion
- FOV occlusion is highly relevant for the visual and non-visual stimulus intensities in the context of realistic light-source positioning (mostly 20% to 60% reduction).
- Notable edge cases lead to a particularly high or low impact from occlusion (as low as −3% impact, to as high as −71%).
- FOV occlusion seems largely irrelevant for the spectral distribution (MDER). Only artificially constructed scenarios mattered in that regard, but it might also matter in spectrally diverse scenarios that were outside the scope of our projects.
- FOV occlusion is highly relevant in interaction with the head orientation (an impact as low as −6%, to as high as −57% for the same scenario, just by tilting the sensor).
3.1. Summarizing Project Results
- Changing the spectrum of light (most often through shifts in correlated color temperature (CCT)) across all lights in a scene the same way did not change the impact of FOV occlusion (scenarios 1–2, all about −29%). This does not mean, however, that changes in spectrum were not influential (see last point in Section 3.1).
- Changing the direction of light and spectral distribution outside the FOV did not necessarily change the impact of FOV occlusion (scenarios 4–6, all about −60%), but see below in relation to spotlights and panels.
- Changing the direction of light and spectral distribution within the FOV did not necessarily change the impact of FOV occlusion (scenarios 7–8, all about −3%).
- Lights mounted at high vertical angles had a large impact on FOV occlusion (scenarios 4–6 and 9, up to −60%), but the impact can be reduced by wide beam lights in larger rooms, where more lights are visible at a lower viewing angle (scenarios 1–3, about −29%; scenario 12, about −22%).
- Low mounted or desk lighting reduced the impact on FOV occlusion (scenarios 7–8, about −3%; scenario 10: −43% compared to scenario 9: −60%)
- Mixing spot and panel-light fixtures in dynamic lighting produced beneficial effects through FOV occlusion. In scenario 11, the goal was to maximize MEDI: the dominant panel lights illuminated the room evenly and led to little FOV occlusion impact (−11%). In scenario 13, the goal was to minimize MEDI: the dominant spotlights illuminated mainly the desk surface, but the light source above the desk was also a large contributor to the standard 2π geometry. The FOV occluded this part, however, and thus reduced the MEDI further (−43%). The resulting dynamic MEDI range thus increased from the 2π geometry (242 lx/54 lx: factor 4.5) when adjusting for the FOV occlusion (215 lx/31 lx: factor 6.9).
- Mixing spot and panel-light fixtures in dynamic lighting produced detrimental effects through FOV occlusion. In scenario 14, the goal was to maximize MEDI: the dominant light panels were only above the observer, however, and did not illuminate the large hall (−53%). As MEDI values were supposed to become lower (scenarios 15–16), the panel lights were dimmed in favor of the spotlight fixtures; those did little, however, in lowering the light coming from the rest of the production hall (−19%). The resulting dynamic MEDI range was thus reduced from the 2π geometry (322 lx/97 lx: factor 3.3) when adjusting for the FOV occlusion (151 lx/79 lx: factor 1.9).
- (Near) vertical measurements led to the highest FOV occlusion impact (Y ± 0: −43; Y + 15: −57%), whereas large tilts up- and downwards reduced the impact considerably (Y + 45°: −6%; Y − 45°: −29%). We find it likely that this tendency is generalizable for typical workplace settings with overhead lighting (see 2.3 for more on this reasoning). While changes along the horizontal axis influenced FOV occlusion as well; we do not believe this can be generalized beyond our measurements.
- Ganzfeld setups were small but not negligible in terms of the FOV occlusion impact (scenario 17, −8%), and real-world settings can have lower occlusion (scenarios 7–8, about −3%).
- The FOV occlusion reduced spectral irradiance by about the same amount regardless of wavelength (rSPD for scenarios 1–18). Thus, visual and non-visual quantities were also reduced in the same manner and changes in MDER are negligible.
3.2. Limitations
3.2.1. Opportunity Sample Selection
3.2.2. Incidence Angles of Light
3.2.3. Gaze Direction
3.2.4. Definition of Illuminance and Cosine Correction
3.3. Further Discussion and Outlook
4. Materials and Methods
4.1. FOV Occlusion
4.2. Measurement Apparatus
4.3. Projects and Measurements
4.4. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Project Descriptions
Appendix A.1. Project A: Realistic Office Lab Study, Scenarios 1–3
Appendix A.2. Project B: Home Office Workplace, Scenarios 4–6
Appendix A.3. Project C: Industry Field Study (Machine Workplace), Scenarios 7–8
Appendix A.4. Project D: Industry Workplace, Scenarios 9–10
Appendix A.5. Project E: Learning Space, Scenarios 11–13
Appendix A.6. Project F: Industry Field Study (Packaging Workplace), Scenarios 14–16
Appendix A.7. Project G: Halfdome Ganzfeld Lab Setup, Scenario 17
Appendix A.8. Project H: Artificial Office Lab Study, Scenarios 18–20
References
- Brown, T.M. Melanopic illuminance defines the magnitude of human circadian light responses under a wide range of conditions. J. Pineal Res. 2020, 69, e12655. [Google Scholar] [CrossRef] [PubMed]
- Spitschan, M.; Smolders, K.; Vandendriessche, B.; Bent, B.; Bakker, J.P.; Rodriguez-Chavez, I.R.; Vetter, C. Verification, analytical validation and clinical validation (V3) of wearable dosimeters and light loggers. Digit. Health 2022, 8, 20552076221144858. [Google Scholar] [CrossRef]
- CIE S 026/E:2018; CIE System for Metrology of Optical Radiation for ipRGC-Influenced Responses of Light. CIE: Vienna, Austria, 2018.
- Broszio, K.; Knoop, M.; Niedling, M.; Völker, S. Effective radiant flux for non-image forming effects—Is the illuminance and the melanopic irradiance at the eye really the right measure. Light Eng. 2018, 26, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Babilon, S.; Beck, S.; Kunkel, J.; Klabes, J.; Myland, P.; Benkner, S.; Khanh, T.Q. Measurement of Circadian Effectiveness in Lighting for Office Applications. Appl. Sci. 2021, 11, 6936. [Google Scholar] [CrossRef]
- Knoop, M.; Broszio, K.; Diakite, A.; Liedtke, C.; Niedling, M.; Rothert, I.; Rudawski, F.; Weber, N. Methods to Describe and Measure Lighting Conditions in Experiments on Non-Image-Forming Aspects. Leukos 2019, 15, 163–179. [Google Scholar] [CrossRef]
- Sliney, D.H.; Mellerio, J. Safety with Lasers and Other Optical Sources: A Comprehensive Handbook; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Guth, S. Light and comfort. Ind. Med. Surg. 1958, 27, 570–574. [Google Scholar] [PubMed]
- Parker, J.F., Jr.; West, V.R. Bioastronautics Data Book; NASA: Washington, DC, USA, 1973.
- Strasburger, H. Seven Myths on Crowding and Peripheral Vision. Iperception 2020, 11, 2041669520913052. [Google Scholar] [CrossRef]
- Rönne, H. Zur theorie und technik der Bjerrumschen gesichtsfelduntersuchung. Arch. Augenheilkd. 1915, 78, 284–301. [Google Scholar]
- Bieske, K.; Schuppert, B.; Schierz, C. (Eds.) Einfluss der Blickrichtung auf die Messung von nichtvisuellen Lichtwirkungen. In Proceedings of the LICHT 2023: 25 Europäischer Lichttechnischer Kongress, Salzburg, Austria, 26–29 March 2023. [Google Scholar]
- Brown, T.M.; Brainard, G.C.; Cajochen, C.; Czeisler, C.A.; Hanifin, J.P.; Lockley, S.W.; Lucas, R.J.; Münch, M.; O’hagan, J.B.; Peirson, S.N.; et al. Recommendations for daytime, evening, and nighttime indoor light exposure to best support physiology, sleep, and wakefulness in healthy adults. PLoS Biol. 2022, 20, e3001571. [Google Scholar] [CrossRef]
- Cajochen, C.; Zeitzer, J.M.; Czeisler, C.A.; Dijk, D.-J. Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behav. Brain Res. 2000, 115, 75–83. [Google Scholar] [CrossRef]
- Zeitzer, J.M.; Dijk, D.J.; Kronauer, R.; Brown, E.; Czeisler, C. Sensitivity of the human circadian pacemaker to nocturnal light: Melatonin phase resetting and suppression. J. Physiol. 2000, 526 Pt 3, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Brainard, G.C.; Hanifin, J.P.; Greeson, J.M.; Byrne, B.; Glickman, G.; Gerner, E.; Rollag, M.D. Action Spectrum for Melatonin Regulation in Humans: Evidence for a Novel Circadian Photoreceptor. J. Neurosci. 2001, 21, 6405–6412. [Google Scholar] [CrossRef]
- Brown, T.M.; Thapan, K.; Arendt, J.; Revell, V.L.; Skene, D.J. S-cone contribution to the acute melatonin suppression response in humans. J. Pineal Res. 2021, 71, e12719. [Google Scholar] [CrossRef]
- Wright, H.R.; Lack, L.C. Effect of Light Wavelenght on Suppression and Phase Delay of the Melatonin Rhythm. Chronobiol. Int. 2001, 18, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Revell, V.L.; Skene, D.J. Light-Induced Melatonin Suppression in Humans with Polychromatic and Monochromatic Light. Chronobiol. Int. 2007, 24, 1125–1137. [Google Scholar] [CrossRef] [PubMed]
- Brainard, G.C.; Sliney, D.; Hanifin, J.P.; Glickman, G.; Byrne, B.; Greeson, J.M.; Jasser, S.; Gerner, E.; Rollag, M.D. Sensitivity of the Human Circadian System to Short-Wavelength (420-nm) Light. J. Biol. Rhythm. 2008, 23, 379–386. [Google Scholar] [CrossRef]
- Gooley, J.J.; Rajaratnam, S.M.W.; Brainard, G.C.; Kronauer, R.E.; Czeisler, C.A.; Lockley, S.W. Spectral Responses of the Human Circadian System Depend on the Irradiance and Duration of Exposure to Light. Sci. Transl. Med. 2010, 2, 31ra3. [Google Scholar] [CrossRef]
- Revell, V.L.; Barrett, D.C.G.; Schlangen, L.J.M.; Skene, D.J. Predicting Human Nocturnal Non-visual Responses to Monochromatic and Polychromatic Light with a Melanopsin Photosensitivity Function. Chronobiol. Int. 2010, 27, 1762–1777. [Google Scholar] [CrossRef]
- Santhi, N.; Thorne, H.C.; Van der Veen, D.R.; Johnsen, S.; Mills, S.L.; Hommes, V.; Schlangen, L.J.; Archer, S.N.; Dijk, D.-J. The spectral composition of evening light and individual differences in the suppression of melatonin and delay of sleep in humans. J. Pineal Res. 2012, 53, 47–59. [Google Scholar] [CrossRef]
- Papamichael, C.; Skene, D.J.; Revell, V.L. Human non-visual responses to simultaneous presentation of blue and red monochromatic light. J. Biol. Rhythm. 2012, 27, 70–78. [Google Scholar] [CrossRef]
- Chellappa, S.L.; Steiner, R.; Blattner, P.; Oelhafen, P.; Götz, T.; Cajochen, C. Non-visual effects of light on melatonin, alertness and cognitive performance: Can blue-enriched light keep us alert? PLoS ONE 2011, 6, e16429. [Google Scholar] [CrossRef] [PubMed]
- Mien, I.H.; Chua, E.C.-P.; Lau, P.; Tan, L.-C.; Lee, I.T.-G.; Yeo, S.-C.; Tan, S.S.; Gooley, J.J. Effects of exposure to intermittent versus continuous red light on human circadian rhythms, melatonin suppression, and pupillary constriction. PLoS ONE 2014, 9, e96532. [Google Scholar] [CrossRef]
- Najjar, R.P.; Chiquet, C.; Teikari, P.; Cornut, P.-L.; Claustrat, B.; Denis, P.; Cooper, H.M.; Gronfier, C. Aging of non-visual spectral sensitivity to light in humans: Compensatory mechanisms? PLoS ONE 2014, 9, e85837. [Google Scholar] [CrossRef]
- Brainard, G.C.; Hanifin, J.P.; Warfield, B.; Stone, M.K.; James, M.E.; Ayers, M.; Kubey, A.; Byrne, B.; Rollag, M. Short-wavelength enrichment of polychromatic light enhances human melatonin suppression potency. J. Pineal Res. 2015, 58, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.A.; St Hilaire, M.A.; Lockley, S.W. The effects of spectral tuning of evening ambient light on melatonin suppression, alertness and sleep. Physiol. Behavior. 2017, 177, 221–229. [Google Scholar] [CrossRef]
- Hanifin, J.; Lockley, S.; Cecil, K.; West, K.; Jablonski, M.; Warfield, B.; James, M.; Ayers, M.; Byrne, B.; Gerner, E.; et al. Randomized trial of polychromatic blue-enriched light for circadian phase shifting, melatonin suppression, and alerting responses. Physiol. Behavior. 2019, 198, 57–66. [Google Scholar] [CrossRef]
- Nagare, R.; Rea, M.S.; Plitnick, B.; Figueiro, M.G. Nocturnal Melatonin Suppression by Adolescents and Adults for Different Levels, Spectra, and Durations of Light Exposure. J. Biol. Rhythm. 2019, 34, 178–194. [Google Scholar] [CrossRef]
- Phillips, A.J.K.; Vidafar, P.; Burns, A.C.; McGlashan, E.M.; Anderson, C.; Rajaratnam, S.M.W.; Lockley, S.W.; Cain, S.W. High sensitivity and interindividual variability in the response of the human circadian system to evening light. Proc. Natl. Acad. Sci. USA 2019, 116, 12019–12024. [Google Scholar] [CrossRef]
- Zauner, J.; Plischke, H.; Stijnen, H.; Schwarz, U.T.; Strasburger, H. Influence of common lighting conditions and time-of-day on the effort-related cardiac response. PLoS ONE 2020, 15, e0239553. [Google Scholar] [CrossRef]
- Ru, T.; Smolders, K.; Chen, Q.; Zhou, G.; de Kort, Y. Diurnal effects of illuminance on performance: Exploring the moderating role of cognitive domain and task difficulty. Light. Res. Technol. 2021, 53, 727–747. [Google Scholar] [CrossRef]
- Baandrup, L.; Jennum, P.J. Effect of a dynamic lighting intervention on circadian rest-activity disturbances in cognitively impaired, older adults living in a nursing home: A proof-of-concept study. Neurobiol. Sleep Circadian Rhythm. 2021, 11, 100067. [Google Scholar] [CrossRef]
- van Duijnhoven, J.; Aarts, M.; Kort, H. Personal lighting conditions of office workers: An exploratory field study. Light Res. Technol. 2020, 53, 285–310. [Google Scholar] [CrossRef]
- Zauner, J.; Plischke, H. Designing Light for Night Shift Workers: Application of Non-visual Lighting Design Principles in an Industrial Production Line. Appl. Sci. 2021, 11, 896. [Google Scholar] [CrossRef]
- Plischke, H.; Linek, M.; Zauner, J. The opportunities of biodynamic lighting in homes for the elderly. Curr. Dir. Biomed. Eng. 2018, 4, 123–126. [Google Scholar] [CrossRef]
- Van de Putte, E.; Kindt, S.; Bracke, P.; Stevens, M.; Vansteenkiste, M.; Vandevivere, L.; Ryckaert, W.R. The influence of integrative lighting on sleep and cognitive functioning of shift workers during the morning shift in an assembly plant. Appl. Ergon. 2022, 99, 103618. [Google Scholar] [CrossRef]
- SpectroMasks. 2023. Available online: https://depositonce.tu-berlin.de/items/0ac37ebd-d92f-4d51-a43e-a95dc0f1b502 (accessed on 1 August 2023).
- Lasko, T.A.; Kripke, D.F.; Elliot, J.A. Melatonin Suppression by Illumination of Upper and Lower Visual Fields. J. Biol. Rhythm. 1999, 14, 122–125. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Li, H.; Yan, Y.; Cai, H. Capturing Luminous Flux Entering Human Eyes with a Camera, Part 1: Fundamentals. Leukos 2022, 1–19. [Google Scholar] [CrossRef]
- He, S.; Li, H.; Yan, Y.; Cai, H. Capturing Luminous Flux Entering Human Eyes with a Camera, Part 2: A Field Verification Experiment. Leukos. 2023, 1–27. [Google Scholar] [CrossRef]
- Kooijman, A.C. Light distribution on the retina of a wide-angle theoretical eye. J. Opt. Soc. Am. 1983, 73, 1544–1550. [Google Scholar] [CrossRef]
- Schierz, C. (Ed.) Zur Photometrie nichtvisueller Lichtwirkungen. In Symposium Licht und Gesundheit; Messegelände Berlin: Berlin, Germany, 2008. [Google Scholar]
- Van Derlofske, J.F.; Bierman, A.; Rea, M.S.; Maliyagoda, N. (Eds.) Design and optimization of a retinal exposure detector. In Novel Optical Systems Design and Optimization III; SPIE: Cergy, France, 2000. [Google Scholar]
- John Van, D.; Andrew, B.; Mark, S.R.; Janani, R.; John, D.B. Design and optimization of a retinal flux density meter. Meas. Sci. Technol. 2002, 13, 821. [Google Scholar] [CrossRef]
- CIE TN 011:2020; What to Document and Report in Studies of ipRGC-Influenced Responses to Light. CIE: Vienna, Austria, 2020.
- Zauner, J.; Plischke, H.; Strasburger, H. Spectral dependency of the human pupillary light reflex. Influences of pre-adaptation and chronotype. PLoS ONE 2022, 17, e0253030. [Google Scholar] [CrossRef] [PubMed]
- DIN SPEC 67600:2022-08; Complementary Criteria for Lighting Design and Lighting Application with Regard to Non-Visual Effects of Light. Beuth Publishing Company: Berlin, Germany, 2022.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Influence of the Human Field of View on Visual and Non-Visual Quantities in Indoor Environments: Project Picture Database. 2023. Available online: https://osf.io/jm7qz/ (accessed on 1 August 2023).
- Rolf, H.; Udovicic, L.; Völker, S. Effects of Light on Attention during the Day: Spectral Composition and Exposure Duration. In Proceedings of the Lux Junior 2021: 15 Internationales Forum für den Lichttechnischen Nachwuchs, Ilmenau, Germany, 4–6 June 2021. [Google Scholar]
- Rolf, H.; Udovicic, L.; Völker, S. Einfluss des Lichts auf die Aufmerksamkeit am Tag: Spektrale Zusammensetzung und Expositionsdauer. In Proceedings of the LICHT2021: 24 Europäischer Lichtkongress der Lichttechnischen Gesellschaften Deutschlands, der Niederlande, Österreichs und der Schweiz, Bamberg, Germany, 21–24 March 2021. [Google Scholar]
- Zauner, J. Ocular Light Effects on Human Autonomous Function: The Role of Intrinsically Photosensitive Retinal Ganglion Cell Sensitivity and Time of Day. Ph.D. Thesis, LMU München, München, Germany, 2022. [Google Scholar]
- Broszio, K.; Knoop, M.; Völker, S. Einfluss der Lichteinfallsrichtung auf die akute Aufmerksamkeit. In 10 Symposium Licht und Gesundheit; Bundesanstalt für Arbeitsschutz und Arbeitsmedizin: Dortmund, Germany, 2019. [Google Scholar]
- Broszio, K.; Bieske, K.; Zauner, J. (Eds.) Untersuchung zum Einfluss des menschlichen Gesichtsfelds auf nichtvisuelle Größen. In Proceedings of the LICHT 2023: 25 Europäischer Lichttechnischer Kongress, Salzburg, Austria, 26–29 March 2023. [Google Scholar]
Citation | Light Incidence 1 |
---|---|
Cajochen et al. 2000 [14] | Not stated |
Zeitzer et al. 2000 [15] | Ceiling Mounted Lights 2 |
Brainard et al. 2001 [16] | Ganzfeld Dome |
Thapan et al. 2001 [17] | Ganzfeld Dome |
Wright and Lack 2001 [18] | Low-Central, 20° visual angle |
Revell and Skene 2007 [19] | Ganzfeld Dome |
Brainard et al. 2008 [20] | Ganzfeld Dome |
Gooley et al. 2010 [21] | Ganzfeld Dome |
Revell et al. 2010 [22] | Ganzfeld Dome |
Santhi et al. 2010 [23] | Central, Light Box |
Papamichael et al. 2012 [24] | Ganzfeld Dome |
Chellapa et al. 2014 [25] | Ganzfeld Room |
Ho Mien et al. 2014 [26] | Ganzfeld Dome |
Najjar et al. 2014 [27] | Ganzfeld Dome |
Brainard et al. 2015 [28] | Central, 63° viewing angle |
Rahman et al. 2017 [29] | Wall mounted Lights |
Hanifin et al. 2019 [30] | Central, 63° visual angle |
Nagare et al. 2019 [31] | Central, 40° viewing angle |
Phillips et al. 2019 [32] | Ceiling mounted Lights |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zauner, J.; Broszio, K.; Bieske, K. Influence of the Human Field of View on Visual and Non-Visual Quantities in Indoor Environments. Clocks & Sleep 2023, 5, 476-498. https://doi.org/10.3390/clockssleep5030032
Zauner J, Broszio K, Bieske K. Influence of the Human Field of View on Visual and Non-Visual Quantities in Indoor Environments. Clocks & Sleep. 2023; 5(3):476-498. https://doi.org/10.3390/clockssleep5030032
Chicago/Turabian StyleZauner, Johannes, Kai Broszio, and Karin Bieske. 2023. "Influence of the Human Field of View on Visual and Non-Visual Quantities in Indoor Environments" Clocks & Sleep 5, no. 3: 476-498. https://doi.org/10.3390/clockssleep5030032
APA StyleZauner, J., Broszio, K., & Bieske, K. (2023). Influence of the Human Field of View on Visual and Non-Visual Quantities in Indoor Environments. Clocks & Sleep, 5(3), 476-498. https://doi.org/10.3390/clockssleep5030032