Sleep Deprivation Does Not Influence Photic Resetting of Circadian Activity Rhythms in Drosophila
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borbély, A.A. A two process model of sleep regulation. Hum. Neurobiol. 1982, 1, 195–204. [Google Scholar] [PubMed]
- Deboer, T. Sleep homeostasis and the circadian clock: Do the circadian pacemaker and the sleep homeostat influence each other’s functioning? Neurobiol. Sleep Circadian Rhythm. 2018, 5, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Challet, E.; Turek, F.W.; Laute, M.-A.; Van Reeth, O. Sleep deprivation decreases phase-shift responses of circadian rhythms to light in the mouse: Role of serotonergic and metabolic signals. Brain Res. 2001, 909, 81–91. [Google Scholar] [CrossRef]
- Mistlberger, R.E.; Landry, G.J.; Marchant, E.G. Sleep deprivation can attenuate light-induced phase shifts of circadian rhythms in hamsters. Neurosci. Lett. 1997, 238, 5–8. [Google Scholar] [CrossRef]
- van Diepen, H.C.; Lucassen, E.A.; Yasenkov, R.; Groenen, I.; Ijzerman, A.P.; Meijer, J.H.; Deboer, T. Caffeine increases light responsiveness of the mouse circadian pacemaker. Eur. J. Neurosci. 2014, 40, 3504–3511. [Google Scholar] [CrossRef] [PubMed]
- Jha, P.K.; Bouâouda, H.; Gourmelen, S.; Dumont, S.; Fuchs, F.; Goumon, Y.; Bourgin, P.; Kalsbeek, A.; Challet, E. Sleep deprivation and caffeine treatment potentiate photic resetting of the master circadian clock in a diurnal rodent. J. Neurosci. 2017, 37, 4343–4358. [Google Scholar] [CrossRef]
- Burgess, H.J.; Eastman, C.I. Short nights attenuate light-induced circadian phase advances in humans. J. Clin. Endocrinol. Metab. 2005, 90, 4437–4440. [Google Scholar] [CrossRef][Green Version]
- Burgess, H.J. Partial sleep deprivation reduces phase advances to light in humans. J. Biol. Rhythm. 2010, 25, 460–468. [Google Scholar] [CrossRef]
- Burke, T.M.; Markwald, R.R.; McHill, A.W.; Chinoy, E.D.; Snider, J.A.; Bessman, S.C.; Jung, C.M.; O’Neill, J.S.; Wright, K.P. Effects of caffeine on the human circadian clock in vivo and in vitro. Sci. Trans. Med. 2015, 7, 305ra146. [Google Scholar] [CrossRef]
- Foster, R.G.; Helfrich-Forster, C. The regulation of circadian clocks by light in fruitflies and mice. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001, 356, 1779–1789. [Google Scholar] [CrossRef]
- Shaw, P.J.; Cirelli, C.; Greenspan, R.J.; Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science 2000, 287, 1834–1837. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.E.; Yokogawa, T.; Heller, H.C.; Franken, P.; Ruby, N.F. Homeostatic regulation of sleep in arrhythmic Siberian hamsters. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287, R104–R111. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Edgar, D.M.; Dement, W.C.; Fuller, C.A. Effect of SCN lesions on sleep in squirrel monkeys: Evidence for opponent processes in sleep-wake regulation. J. Neurosci. 1993, 13, 1065–1079. [Google Scholar] [CrossRef] [PubMed]
- Wisor, J.P.; O’Hara, B.F.; Terao, A.; Selby, C.P.; Kilduff, T.S.; Sancar, A.; Edgar, D.M.; Franken, P. A role for cryptochromes in sleep regulation. BMC Neurosci. 2002, 3, 20. [Google Scholar] [CrossRef] [PubMed]
- Dijk, D.-J.; Visscher, C.; Bloem, G.; Beersma, D.; Daan, S. Reduction of human sleep duration after bright light exposure in the morning. Neurosci. Lett. 1987, 73, 181–186. [Google Scholar] [CrossRef]
- Krauchi, K.; Knoblauch, V.; Wirz-Justice, A.; Cajochen, C. Challenging the sleep homeostat does not influence the thermoregulatory system in men: Evidence from a nap vs. sleep-deprivation study. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2006, 290, R1052–R1061. [Google Scholar] [CrossRef]
- Birchler-Pedross, A.; Schröder, C.M.; Münch, M.; Knoblauch, V.; Blatter, K.; Schnitzler-Sack, C.; Wirz-Justice, A.; Cajochen, C. Subjective well-being is modulated by circadian phase, sleep pressure, age, and gender. J. Biol. Rhythm. 2009, 24, 232–242. [Google Scholar] [CrossRef]
- Kaladchibachi, S.; Fernandez, F. Precision light for the treatment of psychiatric disorders. Neural Plast. 2018, 2018, 5868570. [Google Scholar] [CrossRef]
- Zeitzer, J.M.; Fisicaro, R.A.; Ruby, N.F.; Heller, H.C. Millisecond flashes of light phase delay the human circadian clock during sleep. J. Biol. Rhythm. 2014, 29, 370–376. [Google Scholar] [CrossRef]
- Kaladchibachi, S.; Secor, M.A.; Negelspach, D.C.; Fernandez, F. Longitudinal study of sleep and diurnal rhythms in Drosophila ananassae. Exp. Gerontol. 2019, 116, 74–79. [Google Scholar] [CrossRef]
- Aschoff, J. Response curves in circadian periodicity. In Circadian Clocks; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1965; pp. 95–111. [Google Scholar]
- Kayser, M.S.; Mainwaring, B.; Yue, Z.; Sehgal, A. Sleep deprivation suppresses aggression in Drosophila. Elife 2015, 4, e07643. [Google Scholar] [CrossRef] [PubMed]
- Vienne, J.; Spann, R.; Guo, F.; Rosbash, M. Age-related reduction of recovery sleep and arousal threshold in Drosophila. Sleep 2016, 39, 1613–1624. [Google Scholar] [CrossRef]
- Kaladchibachi, S.; Negelspach, D.C.; Fernandez, F. Circadian phase-shifting by light: Beyond photons. Neurobiol. Sleep Circadian Rhythm. 2018, 5, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Negelspach, D.C.; Kaladchibachi, S.; Fernandez, F. The circadian activity rhythm is reset by nanowatt pulses of ultraviolet light. Proc. Biol. Sci. 2018, 285, 20181288. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negelspach, D.C.; Kaladchibachi, S.; Dollish, H.K.; Fernandez, F.-X. Sleep Deprivation Does Not Influence Photic Resetting of Circadian Activity Rhythms in Drosophila. Clocks & Sleep 2022, 4, 202-207. https://doi.org/10.3390/clockssleep4010018
Negelspach DC, Kaladchibachi S, Dollish HK, Fernandez F-X. Sleep Deprivation Does Not Influence Photic Resetting of Circadian Activity Rhythms in Drosophila. Clocks & Sleep. 2022; 4(1):202-207. https://doi.org/10.3390/clockssleep4010018
Chicago/Turabian StyleNegelspach, David C., Sevag Kaladchibachi, Hannah K. Dollish, and Fabian-Xosé Fernandez. 2022. "Sleep Deprivation Does Not Influence Photic Resetting of Circadian Activity Rhythms in Drosophila" Clocks & Sleep 4, no. 1: 202-207. https://doi.org/10.3390/clockssleep4010018
APA StyleNegelspach, D. C., Kaladchibachi, S., Dollish, H. K., & Fernandez, F.-X. (2022). Sleep Deprivation Does Not Influence Photic Resetting of Circadian Activity Rhythms in Drosophila. Clocks & Sleep, 4(1), 202-207. https://doi.org/10.3390/clockssleep4010018