The Relationship between Acceptance and Sleep–Wake Quality before, during, and after the First Italian COVID-19 Lockdown
Abstract
:1. Introduction
2. Results
2.1. Effects of Lockdown on Mindfulness, Well-Being, and Sleep
2.2. Anxiety Mediates the Effect of Acceptance on Sleep–Wake Problems
3. Discussion
4. Materials and Methods
4.1. Participants and Procedure
4.2. Materials
4.3. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chokroverty, S.; Ferini-Strambi, L. Oxford Textbook of Sleep Disorders; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Manocchia, M.; Keller, S.; Ware, J.E. Sleep problems, health-related quality of life, work functioning and health care utilization among the chronically ill. Qual. Life Res. 2001, 10, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Cellini, N.; Canale, N.; Mioni, G.; Costa, S. Changes in sleep pattern, sense of time and digital media use during COVID-19 lockdown in Italy. J. Sleep Res. 2020, 29, e13074. [Google Scholar] [CrossRef] [PubMed]
- Jahrami, H.; BaHammam, A.S.; Bragazzi, N.L.; Saif, Z.; Faris, M.; Vitiello, M.V. Sleep problems during the COVID-19 pandemic by population: A systematic review and meta-analysis. J. Clin. Sleep Med. 2021, 17, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Mirolli, M.; Simione, L.; Martoni, M.; Fabbri, M. Accept anxiety to improve sleep: The impact of the COVID-19 lockdown on the relationships between mindfulness, distress and sleep quality. Int. J. Environ. Res. Public Health 2021, 18, 13149. [Google Scholar] [CrossRef]
- Salfi, F.; D’Atri, A.; Tempesta, D.; Ferrara, M. Sleeping under the waves: A longitudinal study across the contagion peaks of the COVID-19 pandemic in Italy. J. Sleep Res. 2021, 30, e13313. [Google Scholar] [CrossRef]
- Conte, F.; Cellini, N.; De Rosa, O.; Rescott, M.L.; Malloggi, S.; Giganti, F.; Ficca, G. Dissociated profiles of sleep timing and sleep quality changes across the first and second wave of the COVID-19 pandemic. J. Psychiatr. Res. 2021, 143, 222–229. [Google Scholar] [CrossRef]
- Conte, F.; De Rosa, O.; Rescott, M.L.; Arabia, T.P.; D’Onofrio, P.; Lustro, A.; Malloggi, S.; Molinaro, D.; Spagnoli, P.; Giganti, F.; et al. High sleep fragmentation parallels poor subjective sleep quality during the third wave of the COVID-19 pandemic: An actigraphic study. J. Sleep Res. 2021, e13519. [Google Scholar] [CrossRef]
- Lam, C.S.; Yu, B.Y.-M.; Cheung, D.S.T.; Cheung, T.; Lam, S.C.; Chung, K.-F.; Ho, F.Y.-Y.; Yeung, W.-F. Sleep and mood disturbances during the COVID-19 outbreak in an urban Chinese population in Hong Kong: A longitudinal study of the second and third waves of the outbreak. Int. J. Environ. Res. Public Health 2021, 18, 8444. [Google Scholar] [CrossRef]
- Beck, F.; Leger, D.; Cortaredona, S.; Verger, P.; Peretti-Watel, P.; the COCONEL group. Would we recover better sleep at the end of COVID-19? A relative improvement observed at the population level with the end of the lockdown in France. Sleep Med. 2021, 78, 115–119. [Google Scholar] [CrossRef]
- Waage, S.; Pallesen, S.; Vedaa, Ø.; Buchvold, H.; Blytt, K.M.; Harris, A.; Bjorvatn, B. Sleep patterns among Norwegian nurses between the first and second wave of the COVID-19 pandemic. BMC Nurs. 2021, 20, 105. [Google Scholar] [CrossRef]
- Kabat-Zinn, J. Wherever You Go, There You Are: Mindfulness Meditation in Everyday Life; Hyperion Books: New York, NY, USA, 1994. [Google Scholar]
- Simione, L.; Raffone, A.; Mirolli, M. Stress as the missing link between mindfulness, sleep quality, and well-being: A cross-sectional study. Mindfulness 2020, 11, 439–451. [Google Scholar] [CrossRef]
- Mayer, B.; Polak, M.G.; Remmerswaal, D. Mindfulness, interpretation bias, and levels of anxiety and depression: Two mediation studies. Mindfulness 2019, 10, 55–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, J.C.; Ulmer, C.S.; Manber, R. Improving sleep with mindfulness and acceptance: A metacognitive model of insomnia. Behav. Res. Ther. 2012, 50, 651–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsay, E.K.; Creswell, J.D. Mechanisms of mindfulness training: Monitor and Acceptance Theory (MAT). Clin. Psychol. Rev. 2017, 51, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Simione, L.; Raffone, A.; Mirolli, M. Acceptance and not its interaction with attention monitoring, increases psychological well-being: Testing the Monitor and Acceptance Theory of mindfulness. Mindfulness 2021, 12, 1398–1411. [Google Scholar] [CrossRef]
- Cash, M.; Whittingham, K. What facets of mindfulness con- tribute to psychological well-being and depressive, anxious, and stress-related symptomatology? Mindfulness 2010, 1, 177–182. [Google Scholar] [CrossRef]
- Hamill, T.S.; Pickett, S.M.; Amsbaugh, H.M.; Aho, K.M. Mindfulness and acceptance in relation to Behavioral Inhibition System sensitivity and psychological distress. Pers. Individ. Diff. 2015, 72, 24–29. [Google Scholar] [CrossRef]
- Fisak, B.; von Lehe, A.C. The relation between the five facets of mindfulness and worry in a non-clinical sample. Mindfulness 2012, 3, 15–21. [Google Scholar] [CrossRef]
- Paul, N.A.; Stanton, S.J.; Greeson, J.M.; Smoski, M.J.; Wang, L. Psychological and neural mechanisms of trait mindfulness in reducing depression vulnerability. Soc. Cogn. Affect. Neurosci. 2013, 8, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Koçak, O.; Koçak, Ö.E.; Younis, M.Z. The psychological consequences of COVID-19 fear and the moderator effects of individuals’ underlying illness and witnessing infected friends and family. Int. J. Environ. Res. Public Health 2021, 18, 1836. [Google Scholar] [CrossRef]
- Shallcross, A.J.; Visvanathan, P.D.; Sperber, S.H.; Duberstein, Z.T. Waking up to the problem of sleep: Can mindfulness help? A review of theory and evidence for the effects of mindfulness for sleep. Curr. Opin. Psychol. 2019, 13, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Segerstrom, S.C.; Tsao, J.C.I.; Alden, L.E.; Craske, M.G. Worry and rumination: Repetitive thought as a concomitant and predictor of negative mood. Cognit. Ther. Res. 2000, 24, 671–688. [Google Scholar] [CrossRef]
- Fabbri, M.; Beracci, A.; Martoni, M.; Meneo, D.; Tonetti, L.; Natale, V. Measuring subjective sleep quality: A review. Int. J. Environ. Res. Public Health 2021, 18, 1082. [Google Scholar] [CrossRef] [PubMed]
- Duffy, J.F.; Wright, K.P. Entrainment of the human circadian system by light. J. Biol. Rhythm. 2005, 20, 326–338. [Google Scholar] [CrossRef]
- Furukawa, T.; Morrow, E.M.; Li, T.; Davis, F.C.; Cepko, C.L. Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat. Genet. 1999, 23, 466–470. [Google Scholar] [CrossRef]
- Wehr, T.A.; Glesen, H.A.; Moul, D.E.; Schwartz, P.J. Suppression of men’s responses to seasonal changes in day length by modern artificial lighting. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 1995, 269, R173–R178. [Google Scholar] [CrossRef]
- Adamsson, M.; Laike, T.; Morita, T. Annual variation in daily light exposure and circadian change of melatonin and cortisol concentrations at a northern latitude with large seasonal differences in photoperiod length. J. Physiol. Anthropol. 2017, 36, 6. [Google Scholar] [CrossRef] [Green Version]
- Mattingly, S.M.; Grover, T.; Martinez, G.J.; Aledavood, T.; Robles-Granda, P.; Nies, K.; Striegel, A.; Mark, G. The effects of seasons and weather on sleep patterns measured through longitudinal multimodal sensing. NPJ Digit. Med. 2021, 4, 76. [Google Scholar] [CrossRef]
- Tonetti, L.; Erbacci, A.; Fabbri, M.; Martoni, M.; Natale, V. Effects of transitions into and out of Daylight Saving Time on the quality of the sleep/wake cycle: An actigraphic study in healthy university students. Chronobiol. Int. 2013, 30, 1218–1222. [Google Scholar] [CrossRef]
- Iani, L.; Lauriola, M.; Costantini, M. A confirmatory bifactor analysis of the hospital anxiety and depression scale in an Italian community sample. Health Qual. Life Outcomes 2014, 12, 84. [Google Scholar] [CrossRef]
- Giovannini, C.; Giromini, L.; Bonalume, L.; Tagini, A.; Lang, M.; Amadei, G. The Italian Five Facet Mindfulness Questionnaire: A contribution to its validity and reliability. J. Psychopathol. Behav. Assess. 2014, 36, 415–423. [Google Scholar] [CrossRef]
- Cardaciotto, L.; Herbert, J.D.; Forman, E.M.; Moitra, E.; Farrow, V. The assessment of present-moment awareness and acceptance: The Philadelphia Mindfulness Scale. Assessment 2008, 15, 204–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLean, C.P.; Asnaani, A.; Litz, B.T.; Hofmann, S.G. Gender differences in anxiety disorders: Prevalence, course of illness, comorbidity and burden of illness. J. Psychiatr. Res. 2011, 45, 1027–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.; Zhang, F.; Wei, C.; Jia, Y.; Shang, Z.; Sun, L.; Wu, L.; Sun, Z.; Zhou, Y.; Wang, Y.; et al. Prevalence and predictors of PTSS during COVID-19 outbreak in China hardest-hit areas: Gender differences matter. Psychiatry Res. 2020, 287, 112921. [Google Scholar] [CrossRef]
- McLean, C.P.; Anderson, E.R. Brave men and timid women? A review of the gender differences in fear and anxiety. Clin. Psychol. Rev. 2009, 29, 496–505. [Google Scholar] [CrossRef]
- Yang, R.; Sun, H.; Wu, Y.; Lu, G.; Wang, Y.; Li, Q.; Zhou, J.; Sun, H.; Sun, L. Long-lasting sex-specific effects based on Emotion- and Cognition-Related behavioral assessment of adult rats after post-traumatic stress disorder from different lengths of maternal separation. Front. Psychiatry 2019, 10, 289. [Google Scholar] [CrossRef]
- Felmingham, K.; Williams, L.M.; Kemp, A.H.; Liddell, B.; Falconer, E.; Peduto, A.; Bryant, R. Neural responses to masked fear faces: Sex differences and trauma exposure in posttraumatic stress disorders. J. Abnorm. Psychol. 2010, 119, 241–247. [Google Scholar] [CrossRef]
- Natale, V.; Fabbri, M.; Tonetti, L.; Martoni, M. Psychometric goodness of the Mini Sleep Questionnaire. Psychiatry Clin. Neurosci. 2014, 68, 568–573. [Google Scholar] [CrossRef]
- Adan, A.; Archer, S.N.; Hidalgo, M.P.; Di Milia, L.; Natale, V.; Randler, C. Circadian typology: A comprehensive review. Chronobiol. Int. 2012, 29, 1153–1175. [Google Scholar] [CrossRef] [Green Version]
- Natale, V.; Esposito, M.J.; Martoni, M.; Fabbri, M. Validity of the reduced version of the Morningness-Eveningness Questionnaire. Sleep Biol. Rhythm. 2006, 4, 72–74. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; The Guilford Press: New York, NY, USA, 2016. [Google Scholar]
- Putnick, D.L.; Bornstein, M.H. Measurement Invariance Conventions and Reporting: The State of the Art and Future Directions for Psychological Research. Dev. Rev. 2016, 41, 71–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.-T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Modeling A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Rosseel, Y. Iavaan: An R Package for structural equation modelling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 29 January 2022).
Pre-Lockdown (N = 69) | Lockdown (N = 85) | After-Lockdown (N = 103) | One-Way ANCOVA | Tukey Post-hoc | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | M | SD | M | SD | M | SD | SS | MS | F | p | PL-L | PL-AL | L-AL |
Observing | 25.51 | 6.71 | 28.05 | 5.81 | 26.54 | 5.01 | 243 | 121.5 | 3.71 | <0.05 | <0.05 | 0.47 | 0.19 |
Describing | 27.93 | 6.04 | 27.53 | 5.71 | 27.23 | 6.4 | 20 | 10.0 | 0.28 | 0.75 | - | - | - |
Actaware | 27.65 | 5.97 | 26.67 | 5.37 | 25.38 | 5.94 | 221 | 110.6 | 3.39 | <0.05 | 0.55 | <0.05 | 0.29 |
Nonjudging | 27.12 | 6.31 | 25.01 | 6.49 | 24.03 | 6.12 | 397 | 199 | 5.22 | <0.01 | <0.10 | <0.01 | 0.54 |
Nonreacting | 20.75 | 4.78 | 20.37 | 3.64 | 19.14 | 3.78 | 127 | 63.6 | 4.00 | <0.05 | 0.83 | <0.05 | <0.10 |
Acceptance | 47.87 | 8.46 | 45.38 | 7.93 | 43.17 | 7.76 | 920 | 460 | 7.68 | <0.01 | 0.13 | <0.01 | 0.39 |
HADS tot | 22.71 | 4.04 | 23.73 | 3.56 | 22.82 | 3.76 | 55 | 24.8 | 1.80 | 0.17 | - | - | - |
Anxiety | 9.55 | 3.16 | 9.86 | 3.24 | 10.78 | 3.3 | 72 | 35.9 | 3.48 | <0.05 | 0.84 | <0.05 | 0.14 |
Depression | 13.16 | 3.1 | 13.87 | 2.69 | 12.04 | 2.46 | 155 | 77.3 | 10.56 | <0.01 | 0.25 | <0.05 | <0.01 |
Sleep | 14.35 | 6.09 | 16.94 | 6.4 | 19.36 | 5.89 | 1047 | 523 | 14.16 | <0.01 | <0.05 | <0.01 | <0.05 |
Wake | 12.91 | 4.76 | 14.95 | 4.59 | 17.05 | 4.46 | 717 | 359 | 18.33 | <0.01 | <0.05 | <0.01 | <0.01 |
MSQ tot | 27.26 | 9.54 | 31.88 | 9.8 | 36.41 | 9.03 | 3496 | 1748 | 20.61 | <0.01 | <0.01 | <0.01 | <0.01 |
rMEQ | 14.75 | 3.46 | 14.64 | 3.61 | 13.68 | 3.91 | 63 | 31.4 | 2.34 | 0.10 | - | - | - |
Pre-Lockdown Group | Lockdown Group | After-Lockdown Group | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | b | CIlower | CIupper | SE | β | b | CIlower | CIupper | SE | β | b | CIlower | CIupper | SE | β |
(a)Acceptance->Anxiety | −0.22 ** | −0.30 | −0.15 | 0.04 | −0.60 | −0.24 ** | −0.31 | −0.17 | 0.04 | −0.60 | −0.23 ** | −0.28 | −0.16 | 0.03 | −0.53 |
(b)Anxiety->Sleep–wake | 0.89 * | 0.15 | 1.74 | 0.40 | 0.30 | 1.35 ** | 0.60 | 2.04 | 0.36 | 0.45 | 0.41 + | −0.05 | 0.94 | 0.25 | 0.15 |
(c)Acceptance->Sleep–wake | −0.11 | −0.42 | 0.29 | 0.18 | −0.10 | −0.06 | −0.33 | 0.25 | 0.15 | −0.05 | −0.57 ** | −0.79 | −0.36 | 0.11 | −0.49 |
Indirect effect (a * b) | −0.20 * | −0.44 | −0.03 | 0.10 | −0.18 | −0.33 ** | −0.56 | −0.14 | 0.10 | −0.27 | −0.09+ | −0.23 | 0.01 | 0.06 | −0.08 |
Total effect | −0.31 * | −0.56 | −0.02 | 0.14 | −0.28 | −0.38 ** | −0.61 | −0.16 | 0.12 | −0.31 | −0.66 ** | −0.84 | −0.47 | 0.09 | −0.56 |
Metric Invariance Model | |||||
---|---|---|---|---|---|
Parameter | b | CIlower | CIupper | SE | β |
(a)Acceptance- > Anxiety | −0.23 ** | −0.27 | −0.19 | 0.02 | −0.61 |
(b)Anxiety- > Sleep–wake | 0.76 ** | 0.38 | 1.17 | 0.20 | 0.24 |
(c)Acceptance- > Sleep–wake | −0.32 ** | −0.49 | −0.15 | 0.08 | −0.27 |
Indirect effect (a * b) | −0.17 ** | −0.28 | −0.08 | 0.05 | −0.15 |
Total effect | −0.50 ** | −0.63 | −0.36 | 0.07 | −0.42 |
Metric invariance model with released parameter c | |||||
Parameter c by phase | b | CIlower | CIupper | SE | β |
Pre-Lockdown group | −0.16 | −0.44 | 0.18 | 0.16 | −0.14 |
Lockdown group | −0.22 + | −0.46 | 0.02 | 0.12 | −0.19 |
After-Lockdown group | −0.49 ** | −0.69 | −0.29 | 0.10 | −0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabbri, M.; Simione, L.; Martoni, M.; Mirolli, M. The Relationship between Acceptance and Sleep–Wake Quality before, during, and after the First Italian COVID-19 Lockdown. Clocks & Sleep 2022, 4, 172-184. https://doi.org/10.3390/clockssleep4010016
Fabbri M, Simione L, Martoni M, Mirolli M. The Relationship between Acceptance and Sleep–Wake Quality before, during, and after the First Italian COVID-19 Lockdown. Clocks & Sleep. 2022; 4(1):172-184. https://doi.org/10.3390/clockssleep4010016
Chicago/Turabian StyleFabbri, Marco, Luca Simione, Monica Martoni, and Marco Mirolli. 2022. "The Relationship between Acceptance and Sleep–Wake Quality before, during, and after the First Italian COVID-19 Lockdown" Clocks & Sleep 4, no. 1: 172-184. https://doi.org/10.3390/clockssleep4010016
APA StyleFabbri, M., Simione, L., Martoni, M., & Mirolli, M. (2022). The Relationship between Acceptance and Sleep–Wake Quality before, during, and after the First Italian COVID-19 Lockdown. Clocks & Sleep, 4(1), 172-184. https://doi.org/10.3390/clockssleep4010016