Alarm Tones, Voice Warnings, and Musical Treatments: A Systematic Review of Auditory Countermeasures for Sleep Inertia in Abrupt and Casual Awakenings
Abstract
:1. Introduction
2. Methods
2.1. Eligibility Criteria
2.2. Information Sources, Search Strategy and Study Selection
2.3. Data Collection Process and Data Items
2.4. Analysis of Bias
2.5. Data Synthesis
3. Results
3.1. Noise
3.2. Emergency Alarms; Tone Sequences, Voice and Hybrids
3.2.1. Children
3.2.2. Adults
3.3. Music
4. Discussion
4.1. Summary of Evidence
4.2. Limitations and Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Paterson, J.L.; Aisbett, B.; Ferguson, S.A. Sound the alarm: Health and safety risks associated with alarm response for salaried and retained metropolitan firefighters. Saf. Sci. 2016, 82, 174–181. [Google Scholar] [CrossRef]
- Tassi, P.; Muzet, A. Sleep inertia. Sleep Med. Rev. 2000, 4, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Trotti, L.M. Waking up is the hardest thing I do all day: Sleep inertia and sleep drunkenness. Sleep Med. Rev. 2017, 35, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Hilditch, C.J.; McHill, A.W. Sleep inertia: Current insights. Nat. Sci. Sleep 2019, 11, 155–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wertz, A.T.; Ronda, J.M.; A Czeisler, C.; Wright, J.K.P. Effects of Sleep Inertia on Cognition. JAMA 2006, 295, 159. [Google Scholar] [CrossRef]
- Wilkinson, R.T.; Stretton, M. Performance after awakening at different times of night. Psychon. Sci. 1971, 23, 283–285. [Google Scholar] [CrossRef]
- Sallinen, M.; Harma, M.; Akerstedt, T.; Rosa, R.; Lillqvist, O. Promoting alertness with a short nap during a night shift. J. Sleep Res. 1998, 7, 240–247. [Google Scholar] [CrossRef]
- Jewett, M.E.; Wyatt, J.K.; Cecco, A.R.; Khalsa, S.B.; Dijk, D.; Czeisler, C.A. Time course of sleep inertia dissipation in human performance and alertness. J. Sleep Res. 1999, 8, 1–8. [Google Scholar] [CrossRef]
- Dinges, D.F. Are you awake? Cognitive performance and reverie during the hypnopompic state. In Sleep and Cognition; Kihlstrom, J.F., Schacter, D.L., Eds.; American Psychological Association (APA): Washington, DC, USA, 2004; pp. 159–175. [Google Scholar]
- Broughton, R.J. Sleep disorders: Disorders of arousal?: Enuresis, somnambulism, and nightmares occur in confusional states of arousal, not in “dreaming sleep”. Science 1968, 159, 1070–1078. [Google Scholar] [CrossRef]
- Bruck, D.; Pisani, D.L. The effects of sleep inertia on decision-making performance. J. Sleep Res. 1999, 8, 95–103. [Google Scholar] [CrossRef]
- Bonnet, M.H. Memory for Events Occurring During Arousal From Sleep. Psychophysiology 1983, 20, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Webb, W.B.; Agnew, H. Reaction time and serial response efficiency on arousal from sleep. Percept. Mot. Ski. 1964, 18, 783–784. [Google Scholar] [CrossRef] [PubMed]
- Dinges, D.F.; Orne, M.T.; Orne, E.C. Assessing performance upon abrupt awakening from naps during quasi-continuous operations. Behav. Res. Methods Instrum. Comput. 1985, 17, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Balkin, T.J.; Badia, P. Relationship between sleep inertia and sleepiness: Cumulative effects of four nights of sleep disruption/restriction on performance following abrupt nocturnal awakening. Biol. Psychol. 1988, 27, 245–258. [Google Scholar] [CrossRef]
- Bonnet, M.H. Performance and Sleepiness as a Function of Frequency and Placement of Sleep Disruption. Psychophysiology 1986, 23, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, M.; De Gennaro, L.; Bertini, M. The effects of slow-wave sleep (SWS) deprivation and time of night on behavioral performance upon awakening. Physiol. Behav. 2000, 68, 55–61. [Google Scholar] [CrossRef]
- Ferrara, M.; De Gennaro, L.; Bertini, M. Time-course of sleep inertia upon awakening from nighttime sleep with different sleep homeostasis conditions. Aviat. Space Environ. Med. 2000, 71, 225–229. [Google Scholar] [PubMed]
- Ferrara, M.; De Gennaro, L.; Casagrande, M.; Bertini, M. Selective slow-wave sleep deprivation and time-of-night effects on cognitive performance upon awakening. Psychophysiology 2000, 37, 440–446. [Google Scholar] [CrossRef]
- Ferrara, M.; De Gennaro, L. The sleep inertia phenomenon during the sleep-wake transition: Theoretical and operational issues. Aviat. Space Environ. Med. 2000, 71, 843–848. [Google Scholar]
- Scheer, F.A.J.L.; Shea, T.J.; Hilton, M.F.; Shea, S.A. An Endogenous Circadian Rhythm in Sleep Inertia Results in Greatest Cognitive Impairment upon Awakening during the Biological Night. J. Biol. Rhythm. 2008, 23, 353–361. [Google Scholar] [CrossRef] [Green Version]
- Silva, E.J.; Duffy, J.F. Sleep inertia varies with circadian phase and sleep stage in older adults. Behav. Neurosci. 2008, 122, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Van Dongen, H.P.A.; Price, N.J.; Mullington, J.M.; Szuba, M.P.; Kapoor, S.C.; Dinges, D.F. Caffeine eliminates psychomotor vigilance deficits from sleep inertia. Sleep 2001, 24, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Signal, T.L.; Berg, M.J.V.D.; Mulrine, H.M.; Gander, P.H. Duration of sleep inertia after napping during simulated night work and in extended operations. Chronobiol. Int. 2012, 29, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Santhi, N.; Groeger, J.A.; Archer, S.N.; Gimenez, M.; Schlangen, L.J.M.; Dijk, D.-J. Morning Sleep Inertia in Alertness and Performance: Effect of Cognitive Domain and White Light Conditions. PLoS ONE 2013, 8, e79688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achermann, P.; Werth, E.; Dijk, D.J.; A Borbely, A. Time course of sleep inertia after nighttime and daytime sleep episodes. Arch. Ital. Biol. 1995, 134, 109–119. [Google Scholar]
- Horne, J.; Moseley, R. Sudden early morning awakening impairs immediate tactical planning in a changing ‘emergency’ scenario. J. Sleep Res. 2010, 20, 275–278. [Google Scholar] [CrossRef]
- Government of India Ministry of Civil Aviation. Report on Accident to Air India Express Boeing 737–800 Aircraft VT-AXV on 22nd May 2010 at Mangalore; Government of India Ministry of Civil Aviation: New Delhi, India, 2010. [Google Scholar]
- Armentrout, J.J.; A Holland, D.; O’Toole, K.J.; Ercoline, W.R. Fatigue and related human factors in the near crash of a large military aircraft. Aviat. Space Environ. Med. 2006, 77, 963–970. [Google Scholar]
- Wu, B.; Wang, Y.; Wu, X.; Liu, D.; Xu, D.; Wang, F. On-orbit sleep problems of astronauts and countermeasures. Mil. Med Res. 2018, 5, 17. [Google Scholar] [CrossRef]
- Flynn-Evans, E.; Gregory, K.; Arsintescu, L.; Whitmire, A. Evidence Report: Risk of Performance Decrements and Adverse Health Outcomes Resulting from Sleep Loss, Circadian Desynchronization, and Work Overload; National Aeronautics and Space Administration: Houston, TX, USA, 2016. [Google Scholar]
- Caldwell, J.A.; Frazinko, B.F.; Caldwell, B.S.; Caldwell, J.L. Fatigue in Aviation Sustained Operations, the Utility of Napping, and the Problem of Sleep Inertia; Army Aeromedical Research Lab: Fort Rucker, AL, USA, 2002. [Google Scholar]
- Rosekind, M.R.; Smith, R.M.; Miller, D.L.; Co, E.L.; Gregory, K.B.; Webbon, L.L.; Gander, P.H.; Lebacqz, J.V. Alertness management: Strategic naps in operational settings. J. Sleep Res. 1995, 4, 62–66. [Google Scholar] [CrossRef]
- Caldwell, J.A. The impact of fatigue in air medical and other types of operations: A review of fatigue facts and potential countermeasures. Air Med. J. 2001, 20, 25–32. [Google Scholar] [CrossRef]
- Caldwell, J.A.; Mallis, M.M.; Paul, M.A.; Miller, J.C.; Neri, D.F. Fatigue Countermeasures in Aviation. Aviat. Space Environ. Med. 2009, 80, 29–59. [Google Scholar] [CrossRef] [PubMed]
- Hartzler, B.M. Fatigue on the flight deck: The consequences of sleep loss and the benefits of napping. Accid. Anal. Prev. 2014, 62, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Signal, T.L.; Gander, P.H.; Anderson, H.; Brash, S. Scheduled napping as a countermeasure to sleepiness in air traffic controllers. J. Sleep Res. 2009, 18, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Nakata, A.; Haratani, T.; Ogawa, Y.; Arito, H. Post-lunch nap as a worksite intervention to promote alertness on the job. Ergonomics 2004, 47, 1003–1013. [Google Scholar] [CrossRef]
- Brooks, A.; Lack, L. A Brief Afternoon Nap Following Nocturnal Sleep Restriction: Which Nap Duration is Most Recuperative? Sleep 2006, 29, 831–840. [Google Scholar] [CrossRef] [Green Version]
- Hilditch, C.J.; Dorrian, J.; Centofanti, S.A.; Van Dongen, H.P.; Banks, S. Sleep inertia associated with a 10-min nap before the commute home following a night shift: A laboratory simulation study. Accid. Anal. Prev. 2017, 99, 411–415. [Google Scholar] [CrossRef]
- Tassi, P.; Bonnefond, A.; Engasser, O.; Hoeft, A.; Eschenlauer, R.; Muzet, A. EEG spectral power and cognitive performance during sleep inertia: The effect of normal sleep duration and partial sleep deprivation. Physiol. Behav. 2006, 87, 177–184. [Google Scholar] [CrossRef]
- Miccoli, L.; Versace, F.; Koterle, S.; Cavallero, C. Comparing Sleep-Loss Sleepiness and Sleep Inertia: Lapses Make the Difference. Chronobiol. Int. 2008, 25, 725–744. [Google Scholar] [CrossRef]
- Sasaki, N.; Ozono, R.; Teramen, K.; Yamashita, H.; Fujiwara, S.; Kihara, Y. P6215. Poor sleep and cardiovascular disease: Different pattern of sleep disturbance in ischemic heart disease and stroke. Eur. Hear. J. 2017, 38, 1. [Google Scholar] [CrossRef] [Green Version]
- Hafner, M.; Stepanek, M.; Taylor, J.; Troxel, W.; Stolk, C. Why sleep matters: The economic costs of insufficient sleep. Rand Health Q. 2017, 6, 11. [Google Scholar] [CrossRef]
- A Centofanti, S.; Dorrian, J.; Grant, C.; Stepień, J.; Coates, A.; Lushington, K.; Evans, A.; Lange, S.R.; Banks, S. 0200 The Effectiveness Of Caffeine Gum In Reducing Sleep Inertia Following A 30min Nighttime Nap Opportunity: Preliminary Results. Sleep 2018, 41, A78. [Google Scholar] [CrossRef] [Green Version]
- Reyner, L.A.; Horne, J.A. Suppression of sleepiness in drivers: Combination of caffeine with a short nap. Psychophysiology 1997, 34, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Masuda, A.; Hori, T. The alerting effects of caffeine, bright light and face washing after a short daytime nap. Clin. Neurophysiol. 2003, 114, 2268–2278. [Google Scholar] [CrossRef]
- Newman, R.A.; Kamimori, G.H.; Wesensten, N.J.; Picchioni, D.; Balkin, T.J. Caffeine Gum Minimizes Sleep Inertia. Percept. Mot. Ski. 2013, 116, 280–293. [Google Scholar] [CrossRef]
- Figueiro, M.G.; Sahin, L.; Roohan, C.; Kalsher, M.; Plitnick, B.; Rea, M.S. Effects of red light on sleep inertia. Nat. Sci. Sleep 2019, 11, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Geerdink, M.; Walbeek, T.J.; Beersma, D.G.; Hommes, V.; Gordijn, M.C.M. Short Blue Light Pulses (30 Min) in the Morning Support a Sleep-Advancing Protocol in a Home Setting. J. Biol. Rhythm. 2016, 31, 483–497. [Google Scholar] [CrossRef]
- Gabel, V.; Maire, M.; Reichert, C.F.; Chellappa, S.L.; Schmidt, C.; Hommes, V.; Viola, A.U.; Ecajochen, C. Effects of Artificial Dawn and Morning Blue Light on Daytime Cognitive Performance, Well-being, Cortisol and Melatonin Levels. Chronobiol. Int. 2013, 30, 988–997. [Google Scholar] [CrossRef] [Green Version]
- Kräuchi, K.; Cajochen, C.; Wirz-Justice, A. Waking up properly: Is there a role of thermoregulation in sleep inertia? J. Sleep Res. 2004, 13, 121–127. [Google Scholar] [CrossRef]
- Kräuchi, K.; Knoblauch, V.; Wirz-Justice, A.; Cajochen, C. Challenging the sleep homeostat does not influence the thermoregulatory system in men: Evidence from a nap vs. sleep-deprivation study. Am. J. Physiol. Integr. Comp. Physiol. 2006, 290, R1052–R1061. [Google Scholar] [CrossRef] [Green Version]
- A Kaplan, K.; Talavera, D.C.; Harvey, A.G.; Kaplan, K.A. Rise and shine: A treatment experiment testing a morning routine to decrease subjective sleep inertia in insomnia and bipolar disorder. Behav. Res. Ther. 2018, 111, 106–112. [Google Scholar] [CrossRef]
- Jay, S.M.; Carley, D.M.; Aisbett, B.; Ferguson, S.A.; Paterson, J.L. Can stress act as a sleep inertia countermeasure when on-call? Biol. Rhythm. Res. 2018, 50, 429–439. [Google Scholar] [CrossRef]
- Hilditch, C.J.; Dorrian, J.; Banks, S. Time to wake up: Reactive countermeasures to sleep inertia. Ind. Health 2016, 54, 528–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, M.; Uchida, C.; Shoji, T.; Hori, T. The effects of the preference for music on sleep inertia after a short daytime nap. Sleep Biol. Rhythm. 2004, 2, 184–191. [Google Scholar] [CrossRef]
- Tassi, P.; Nicolas, A.; Dewasmes, G.; Eschenlauer, R.; Ehrhart, J.; Salame, P.; Muzet, A.; Libert, J.P. Effects of Noise on Sleep Inertia as a Function of Circadian Placement of a One-Hour Nap. Percept. Mot. Ski. 1992, 75, 291–302. [Google Scholar] [CrossRef]
- Poulton, E.C. Arousing environmental stresses can improve performance, whatever people say. Aviat. Space Environ. Med. 1976, 47, 1193–1204. [Google Scholar]
- Harrison, D.W.; Kelly, P.L. Age Differences in Cardiovascular and Cognitive Performance under Noise Conditions. Percept. Mot. Ski. 1989, 69, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Hockey, G.R.J. Effect of loud noise on attentional selectivity. Q. J. Exp. Psychol. 1970, 22, 28–36. [Google Scholar] [CrossRef]
- Asutay, E.; Västfjäll, D. Exposure to arousal-inducing sounds facilitates visual search. Sci. Rep. 2017, 7, 10363. [Google Scholar] [CrossRef] [Green Version]
- Davies, D.R.; Lang, L.; Shackleton, V.J. The effects of music and task difficulty on performance at a visual vigilance task. Br. J. Psychol. 1973, 64, 383–389. [Google Scholar] [CrossRef]
- Corhan, C.M.; Gounard, B.R. Types of Music, Schedules of Background Stimulation, and Visual Vigilance Performance. Percept. Mot. Ski. 1976, 42, 662. [Google Scholar] [CrossRef]
- Mayfield, C.; Moss, S.; Mayheld, C. Effect of Music Tempo on Task Performance. Psychol. Rep. 1989, 65, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Riby, L.M. The joys of spring: Changes in mental alertness and brain function. Exp. Psychol. 2013, 60, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Husain, G.; Thompson, W.F.; Schellenberg, E.G. Effects of musical tempo and mode on arousal, mood, and spatial abilities. Music Percept. Interdiscip. J. 2002, 20, 151–171. [Google Scholar] [CrossRef]
- Thomas, I.; Bruck, D. Awakening of sleeping people: A decade of research. Fire Technol. 2008, 46, 743–761. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; PRISMA-P Group; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drucker, A.M.; Fleming, P.; Chan, A.-W. Research Techniques Made Simple: Assessing Risk of Bias in Systematic Reviews. J. Investig. Dermatol. 2016, 136, e109–e114. [Google Scholar] [CrossRef]
- Gusenbauer, M. Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic databases. Scientometrics 2018, 118, 177–214. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Higgins, J.P.; Deeks, J.J. Collecting data. In Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley & Sons: Chichester, UK, 2019; pp. 109–141. [Google Scholar] [CrossRef]
- Higgins, J.P.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Kmet, L.M.; Cook, L.S.; Lee, R.C. Standard Quality Assessment Criteria for Evaluating Primary Research Papers from a Variety of Fields. In Edmonton: Alberta Heritage Foundation for Medical Research (AHFMR); AHFMR—HTA Initiative #13: Edmonton, AB, Canada, 2004. [Google Scholar]
- Popay, J.; Roberts, H.; Sowden, A.; Petticrew, M.; Arai, L.; Rodgers, M.; Britten, N. Guidance on the Conduct of Narrative Synthesis in Systematic Reviews: A Product from the ESRC Methods Programme, 1st ed.; Lancaster University: Lancaster, UK, 2006; Volume 10, pp. 1018–4643. [Google Scholar]
- Smith, G.A.; Splaingard, M.; Hayes, J.R.; Xiang, H. Comparison of a personalized parent voice smoke alarm with a conventional residential tone smoke alarm for awakening children. Pediatrics 2006, 118, 1623–1632. [Google Scholar] [CrossRef]
- Smith, G.A.; Chounthirath, T.; Splaingard, M. Effectiveness of a voice smoke alarm using the child’s name for sleeping children: A randomized trial. J. Pediatrics 2019, 205, 250–256. [Google Scholar] [CrossRef]
- Smith, G.A.; Chounthirath, T.; Splaingard, M. Comparison of the effectiveness of female voice, male voice, and hybrid voice-tone smoke alarms for sleeping children. Pediatr. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Splaingard, M.; Hayes, J.; Smith, G.A. Impairment of reaction time among children awakened during stage 4 sleep. Sleep 2007, 30, 104–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, G.A.; Chounthirath, T.; Splaingard, M. Do sleeping children respond better to a smoke alarm that uses their mother’s voice? Acad. Pediatrics 2020, 20, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Bruck, D.; Reid, S.; Kouzma, J.; Ball, M. The effectiveness of different alarms in waking sleeping children. In Human Behavior in Fire: Public Fire Safety-Professionals in Partnership, Proceedings of the 3rd International Symposium, Belfast, Northern Ireland, 1–3 September 2004; Interscience Communications Ltd.: London, UK, 2004; pp. 279–289. [Google Scholar]
- McFarlane, S.J.; Garcia, J.; Verhagen, D.S.; Dyer, A.G. Alarm tones, music and their elements: Analysis of reported waking sounds to counteract sleep inertia. PLoS ONE 2020, 15, e0215788. [Google Scholar] [CrossRef] [Green Version]
- McFarlane, S.J.; Garcia, J.E.; Verhagen, D.; Dyer, A.G. Auditory Countermeasures for Sleep Inertia: Exploring the Effect of Melody and Rhythm in an Ecological Context. Clocks Sleep 2020, 2, 208–224. [Google Scholar] [CrossRef]
- Bruck, D.; Horasan, M. Non-arousal and non-action of normal sleepers in response to a smoke detector alarm. Fire Saf. J. 1995, 25, 125–139. [Google Scholar] [CrossRef]
- Bruck, D. Non-awakening in children in response to a smoke detector alarm. Fire Saf. J. 1999, 32, 369–376. [Google Scholar] [CrossRef]
- Ancoli-Israel, S.; Cole, R.; Alessi, C.; Chambers, M.; Moorcroft, W.; Pollak, C.P. The Role of Actigraphy in the Study of Sleep and Circadian Rhythms. Sleep 2003, 26, 342–392. [Google Scholar] [CrossRef] [Green Version]
- McDowell, K.; Lin, C.-T.; Oie, K.S.; Jung, T.-P.; Gordon, S.; Whitaker, K.W.; Li, S.-Y.; Lu, S.-W.; Hairston, W.D. Real-World Neuroimaging Technologies. IEEE Access 2013, 1, 131–149. [Google Scholar] [CrossRef]
- Huston, P.; Edge, V.L.; Bernier, E. Reaping the benefits of Open Data in public health. Can. Commun. Dis. Rep. 2019, 45, 252–256. [Google Scholar] [CrossRef]
- Willinsky, J. The Access Principle: The Case for Open Access to Research and Scholarship; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Albouy, P.; Benjamin, L.; Morillon, B.; Zatorre, R.J. Distinct sensitivity to spectrotemporal modulation supports brain asymmetry for speech and melody. Science 2020, 367, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
Author | Setting | n | Age | Sex or Gender | Study Design | Sleep Duration | Awakening Time | EEG Confirmed Awakening | Stimulus | dB | Objective Measure | Subjective Measure |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tassi, Nicolas et al. (1992) | Lab | 44 | 19–27 | Male | Controlled, nonblinded, repeated measures | 1 h | 01:00 04:00 | Yes | Control/Baseline: No-noise Experimental: Pink noise | 75 | All test groups: Spatial Memory Test | None |
Bruck and Horasan (1995) | Lab | 24 | 18–24 | Male Female | Non-blinded, observational study | NR | NR | Yes | Control/Baseline: None Experimental: High frequency ‘pulse’ sequence alarm | 55–65 | All participants: Reaction time (RT) | All participants: Sleep quality Sleep quantity |
Bruck (1999) | Field | 36 | 6–59 | Male Female | Non-blinded, repeated measures | NR | 01:00–04:30 | No | Control/Baseline: None Experimental: Smoke alarm | 60 | All test groups: Wrist actigraphy | All test groups: Clear-headedness scale KSS |
Hayashi, Uchida et al. (2004) | Lab | 16 | 20–23 | Male Female | Controlled, non-blinded | 20 min | 14:20 | Yes | Control/Baseline: Intercom Experimental: (1) Participant choice (2) Selected by the experimenter | 60 | Control group: Memory search task Experimental group: Visual oddball task | All test groups: Sleepiness rating Comfort rating |
Bruck, Reid et al. (2004) | Field | (S1) 20 (S2) 14 (S3) 14 | 6–10 | Male Female | Non-blinded, repeated measures | NR | 01:00 03:00 | No | Control/Baseline: None Experimental: (1) Mothers voice (2) Female actors voice (3) High frequency ‘pulse’ sequence alarm (4) Low-frequency T-3 tone alarm | 89 | All test groups: Wrist actigraphy | All test groups: Clear-headedness scale Adapted KSS |
Smith, Splaingard et al. (2006) | Clinical | 24 | 6–12 | Male Female | Randomized, non-blinded | NR | Awakened during the first two S4S cycles | Yes | Control/Baseline: None Experimental: (1) Mothers voice (2) High-frequency T-3 tone alarm | 100 | All test groups: Self-rescue sequence | None |
Splaingard, Hayes et al. (2007) | Clinical | 44 | 6–12 | Male Female | Non-blinded, observational study | Cycle 1: ~65 min Cycle 2: ~50 min Mean time between alarms 76 min | Awakened during the first two S4S cycles | Yes | Control/Baseline: None Experimental: (1) T-3 tone alarm (2) Mother’s voice (3) Hybrid alarm (T-3 tone alarm and vibration wand) | 100 | All test groups: PVT (10-min) Self-rescue sequence | None |
Smith, Chounthirath et al. (2019) | Clinical | 176 | 5–12 | Male Female | Randomized, non-blinded, repeated measures | NR | Awakened during the first two S4S cycles | Yes | Control/Baseline: High-frequency T-3 tone alarm Experimental: (1) Maternal voice (Name only) (2) Maternal voice (Instructions only) (3) Maternal voice (Name and instructions) | 85 | All test groups: Self-rescue sequence | None |
McFarlane, Garcia et al. (2020) | Field | 50 | 18+ | Male Female | Blind, questionnaire | NR | Following nocturnal sleep | No | Participant specified | Self-report subjective scale | None | All participants: Self-report questionnaire including: Sleep Inertia Questionnaire (SIQ) Music element ratings Sound type Feeling toward the sound rating |
Smith, Chounthirath et al. (2020) | Clinical | 188 | 5–12 | Male Female | Randomized, non-blinded, repeated measures | NR | Awakened during the first two S4S cycles | Yes | Control/Baseline: None Experimental: (1) Female voice (2) Male voice (3) Hybrid voice-tone alarm (Low-frequency T-3 tone alarm and female voice) (4) High-frequency T-3 tone alarm | 85 | All test groups: Simulated escape procedure | None |
Smith, Chounthirath et al. (2020) | Clinical | 176 | 5–12 | Male Female | Randomized, non-blinded, repeated measures | NR | Awakened during the first two S4S cycles | Yes | Control/Baseline: None Experimental: (1) Child’s mother voice (2) Female strangers voice (3) Low-frequency T-3 tone alarm (4) High-frequency T-3 tone alarm | 85 | All test groups: Simulated escape sequence | None |
McFarlane, Garcia et al. (2020) | Field | 20 | 18–49 | Male Female | Controlled, non-blinded, repeated measures | Group A & B: 5–9+ | Following nocturnal sleep | No | Control: Tonal pulse Experimental: (1) Melodic (2) Rhythmic | None | All test groups: PVT (3 min) | All test groups: KSS Hours Slept Sleep Quality Scale |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McFarlane, S.J.; Garcia, J.E.; Verhagen, D.S.; Dyer, A.G. Alarm Tones, Voice Warnings, and Musical Treatments: A Systematic Review of Auditory Countermeasures for Sleep Inertia in Abrupt and Casual Awakenings. Clocks & Sleep 2020, 2, 416-433. https://doi.org/10.3390/clockssleep2040031
McFarlane SJ, Garcia JE, Verhagen DS, Dyer AG. Alarm Tones, Voice Warnings, and Musical Treatments: A Systematic Review of Auditory Countermeasures for Sleep Inertia in Abrupt and Casual Awakenings. Clocks & Sleep. 2020; 2(4):416-433. https://doi.org/10.3390/clockssleep2040031
Chicago/Turabian StyleMcFarlane, Stuart J., Jair E. Garcia, Darrin S. Verhagen, and Adrian G. Dyer. 2020. "Alarm Tones, Voice Warnings, and Musical Treatments: A Systematic Review of Auditory Countermeasures for Sleep Inertia in Abrupt and Casual Awakenings" Clocks & Sleep 2, no. 4: 416-433. https://doi.org/10.3390/clockssleep2040031
APA StyleMcFarlane, S. J., Garcia, J. E., Verhagen, D. S., & Dyer, A. G. (2020). Alarm Tones, Voice Warnings, and Musical Treatments: A Systematic Review of Auditory Countermeasures for Sleep Inertia in Abrupt and Casual Awakenings. Clocks & Sleep, 2(4), 416-433. https://doi.org/10.3390/clockssleep2040031