Can Special Light Glasses Reduce Sleepiness and Improve Sleep of Nightshift Workers? A Placebo-Controlled Explorative Field Study
Abstract
:1. Introduction
2. Results
2.1. Sleepiness (Karolinska Sleepiness Scale)
2.2. Driver Sleepiness (Driver Sleepiness Scale)
2.3. Sleep
2.4. Person-Bound Light Exposure
2.5. Participants’ Subjective Experiences of Both Light Glasses in Retrospect
3. Discussion
3.1. Effects of the Light Treatment
3.1.1. Driver Sleepiness
3.1.2. Sleepiness (KSS)
3.1.3. Sleep
3.2. Light Exposure
3.3. Limitations and Future Studies
4. Materials and Methods
4.1. Study Design
4.2. Participants
4.3. Light Protocol
4.4. Measurements
4.4.1. Sleepiness (KSS)
4.4.2. Driver Sleepiness (DSS)
4.4.3. Objective Sleep Measures (Actigraphy)
4.4.4. Subjective Sleep Measures (GSQS)
4.4.5. Person-Bound Light Exposure
4.4.6. Perceived Effectiveness
4.5. Data Analysis
4.5.1. Sleepiness
4.5.2. Driver Sleepiness
4.5.3. Sleep
4.5.4. Person-Bound Light Exposure
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
KSS | Karolinska Sleepiness Scale |
DSS | Driver Sleepiness Scale |
GSQS | Groningen Sleep Quality Scale |
MCTQ | Munich Chronotype Questionnaire |
Appendix A. Review Results of Field Studies from Literature
Results | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Authors, Reference | Treatment Period | 0- Condition | Lighting Setup | E (lx) ‡, Spectrum, Tcp (K) | Protocol †† | N | Phase Shift | Subj. Sleep | Obj. Sleep | Sub. Alertness | Cog. Performance | Others | |
Boivin et al. [44] | | E = 111 lx | light box, blue-blocking goggles | 2000 lx Full | | a | 15 | + * (Mel., CBT) | X (TST) | ||||
Boivin et al. [45] | | E = 111 lx | light box, blue-blocking goggles | 2000 lx Full | | a | 15 | + ** (Mel., CBT) | X (TST) | + * (TST) | |||
James et al. [46] | | E = 111 lx | light box, sunglasses | 2000 lx Full | | a | 11 | + ** (Cort.) | |||||
Boivin et al. [47] | | light box, sunglasses | 1350 lx Full | | a | 15 | X | X | X | + * | + *** (UaMT6s) | ||
Boudreau et al. [48] | | light box, sunglasses | 1350 lx ‡‡ Full | | a | 15 | X | X | + * (WASO) + ** (HRV) | + * (VAS) | X | X (mood) | |
Budnick et al. [29] | | ambient | 4000–8000 lx | | 29 | X | X | X | |||||
Huang et al. [49] | | 100–400 lx | light box & sunglasses | 7000–10,000 lx Full | | 92 | + *** (ISI) | + *** (HADS) | |||||
Karchani et al. [50] | | 300 lx | ambient | 2500–3000 lx | | 90 | + *** | ||||||
Lowden et al. [51] | | 300 lx | ambient | 2500 lx, full (5000 K) | | b | 18 | + * (Mel.) | + * (TST) | + * (KSS) | |||
Motamedzadeh et al. [52] | | 352 lx, Tcp = 2500–3000 K | ambient | 354 lx, full (6500 K) | | 30 | + ** (Mel.) | + *** (KSS) | X | ||||
350 lx, full (17,000 K) | | 30 | + ** (Mel.) | + *** (KSS) | + * | ||||||||
Sasseville et al. [23] | | 130 lx | special fixture & blue-blocking goggles | 200 lx (500 nm, 66 μW/cm2) | | c | 4 | + * (TST,SL) | + * | X(errors) | |||
Yoon et al. [25] | | 100–500 lx + 10,000 lx (1 h) | light box | 4000–6000 lx Full | | 12 | + * (TST, SE) | X | + * | ||||
Light box & sunglasses | 12 | + ** ( TST, SE) | X | + ** | |||||||||
Bjorvatn et al, [3] | | light box | 10,000 lx Full | | d,e | 17 | x | X (KSS) X (ATS) | |||||
| d,f | 17 | + * (SQ) | + ** (KSS) + ** (ATS) | |||||||||
Bjorvatn et al. [53] | | 200–300 lx | light box | 10,000 lx, Full | | g | 17 | + * (SL) | X | X (KSS) X (ATS) | X (reaction time) | ||
| g | 17 | + * (TST) | X | X (KSS) + * (ATS) | X (reaction time) | |||||||
Ross et al. [27] | | 300 lx (red light) | Light box | 2500–3000 lx Full | | 14 | + ** | + * (SL) | X (mood) | ||||
Tanaka et al. [28] | | Eh = 530–640 lx | light box | 6666 lx full | | b | 61 | + * (VAS) | + ** (KSS) + *** (CISQ) | X(PVT) | X(errors) | ||
Thorne et al. [26] | | Sunglasses | Light box | 3000 lx ‡‡, full 1 mW/cm2 | | h | 10 | X | + * (SQ) | + ** (TST) + * (SE) |
Appendix B. Results from the Linear Mixed-Effects Models (LMM) Analyses
DV | Term | DF | F | p | R2 | Post-hoc | ICCSubject |
---|---|---|---|---|---|---|---|
During nightshift | Condition | 1776.3 | 0.305 | 0.581 | 0 | 0.393 | |
During nightshift | Daytype | 2776.6 | 6.34 | 0.002 ** | 0.016 | FN > N, LN; | |
During nightshift | Time of day | 4776.1 | 51.53 | 0.001 *** | 0.202 | 6–8 h > 0–2 h; 6 h > 0–4 h | |
During nightshift | Condition × Daytype | 2776.4 | 3.32 | 0.037 * | 0.007 | Plac: FN > LN Plac: FN > Treat: N | |
During nightshift | Condition × Daytype × Time of day | 8776.0 | 1.29 | 0.243 | 0.012 | FN, 4 h, Plac. > Treatm. N, 8 h, Plac. > Treatm. | |
After nightshift | Condition | 1416.2 | 0.968 | 0.326 | 0.036 | 0.398 | |
After nightshift | Daytype | 2417.2 | 3.31 | 0.038 * | 0.018 | FN < N; | |
After nightshift | Time of Day | 3417.0 | 3.44 | 0.017 * | 0.025 | 18 h > 20 h | |
After nightshift | Condition × Daytype | 2415.9 | 0.191 | 0.827 | 0.002 | ||
D1, D2, R1, R2 | Condition | 1806.0 | 0.710 | 0.400 | 0 | 0.178 | |
D1, D2, R1, R2 | Daytype | 3805.6 | 2.68 | 0.046 * | 0.007 | D1 < D2, R1, R2; | |
D1, D2, R1, R2 | Time of day | 8805.8 | 13.03 | 0.001 *** | 0.117 | 12–20 h < 8–10 h, 22–24 h | |
D1, D2, R1, R2 | Condition × Daytype | 3804.8 | 0.856 | 0.462 | 0.005 | ||
D1, D2, R1, R2 | Condition × Daytype × Time of day | 15,804.5 | 0.677 | 0.809 | 0.014 | R1, 18 h, Plac. < Treatm. |
DV | Term | DF | F | p | R2 | Post-hoc | ICCSubject |
---|---|---|---|---|---|---|---|
DSS | Condition | 1130.3 | 2.10 | 0.149 | 0.016 | 0.538 | |
DSS | Daytype | 2130.5 | 8.20 | <0.001 *** | 0.112 | FN, N > LN; | |
DSS | Condition × Daytype | 2130.4 | 3.60 | 0.030 * | 0.052 | FN Plac > Treat: Plac: LN < FN, N | |
KSS | Condition | 1130.2 | 0.196 | 0.659 | 3.32 | ||
KSS | Daytype | 2130.3 | 2.27 | 0.108 | |||
KSS | Condition × Daytype | 2130.2 | 1.59 | 0.208 |
DV | Term | DF | F | P | R2 | Post-hoc | ICCSubject |
---|---|---|---|---|---|---|---|
BT | Condition | 1226.4 | 0.09 | 0.766 | 0 | 0 | |
BT | Daytype | 5226.5 | 3549.2 | <0.001 *** | 0.99 | D2, R1, R2 > FN, N, LN | |
BT | Condition × Daytype | 5226.5 | 1.50 | 0.191 | 0.03 | D2: Plac. > Treat. | |
GUT | Condition | 1230.1 | 2.15 | 0.144 | 0.01 | 0.03 | |
GUT | Daytype | 5230.1 | 419.58 | <0.001 *** | 0.90 | D2, R1, R2 < FN, N, LN FN, N > LN D2 > R2 | |
GUT | Condition × Daytype | 5230.1 | 1.93 | 0.09 | 0.04 | R2: Treat. > Plac. | |
TIB | Condition | 1229.7 | 0.033 | 0.857 | 0 | 0.05 | |
TIB | Daytype | 5229.4 | 85.49 | <0.001 *** | 0.66 | D2, R1, R2 > FN, N, LN FN, N > LN | |
TIB | Condition × Daytype | 5229.5 | 2.35 | 0.042 * | 0.05 | R2: Treat. > Plac. | |
TST | Condition | 1229.5 | 0.095 | 0.759 | 0 | 0.05 | |
TST | Daytype | 5229.2 | 74.27 | <0.001 *** | 0.62 | D2 > FN, N, LN, R2 R1, R2 > N, LN FN, N > LN | |
TST | Condition × Daytype | 5229.3 | 2.65 | 0.024 * | 0.06 | R2: Treat. > Plac. | |
SL | Condition | 1229.0 | 0.48 | 0.491 | 0 | 0.22 | |
SL | Daytype | 5228.4 | 3.57 | 0.004 ** | 0.07 | R2 > FN, N | |
SL | Condition × Daytype | 5228.4 | 2.91 | 0.014 * | 0.06 | D2: Treat. > Plac. R2: Plac. > Treat | |
SE | Condition | 1224.4 | 0.022 | 0.882 | 0 | 0.49 | |
SE | Daytype | 5224.1 | 3.01 | 0.012 * | 0.06 | FN > LN, R2 | |
SE | Condition × Daytype | 5224.1 | 1.92 | 0.092 | 0.04 | R2: Treat. > Plac. | |
FI | Condition | 1227.9 | 1.35 | 0.246 | 0 | 0.39 | |
FI | Daytype | 1227.9 | 2.16 | 0.059 | 0.05 | FN < R2 | |
FI | Condition × Daytype | 5227.9 | 2.08 | 0.068 | 0.04 | ||
GSQS | Condition | 1211.4 | 4.65 | 0.032 * | 0.02 | Treat. > Plac. | 0.31 |
GSQS | Daytype | 5211.3 | 7.41 | <0.001 *** | 0.15 | D2, FN < N, LN | |
GSQS | Condition × Daytype | 5211.7 | 2.03 | 0.075 | 0.05 | FN: Treat. > Plac. R1: Treat. > Plac. |
References
- Eurostat. Population in Employment Working during Unsocial Hours-LFS Series; Eurostat: Luxembourg, 2019. [Google Scholar]
- Åkerstedt, T. Work hours, sleepiness and the underlying mechanisms. J. Sleep Res. 1995, 4, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Bjorvatn, B.; Kecklund, G.; Åkerstedt, T. Bright light treatment used for adaptation to night work and re-adaptation back to day life. A field study at an oil platform in the North Sea. J. Sleep Res. 1999, 8, 105–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boivin, D.B.; Boudreau, P. Impacts of shift work on sleep and circadian rhythms. Pathol. Biol. 2014, 62, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Vyas, M.V.; Garg, A.X.; Iansavichus, A.V.; Costella, J.; Donner, A.; Laugsand, L.E.; Janszky, I.; Mrkobrada, M.; Parraga, G.; Hackam, D.G. Shift work and vascular events: Systematic review and meta-analysis. BMJ 2012, 345, e4800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proper, K.I.; Van De Langenberg, D.; Rodenburg, W.; Vermeulen, R.C.H.; Van Der Beek, A.J.; Van Steeg, H.; Van Kerkhof, L.W.M. The relationship between shift work and metabolic risk factors: A systematic review of longitudinal studies. Am. J. Prev. Med. 2016, 50, e147–e157. [Google Scholar] [CrossRef]
- Anothaisintawee, T.; Reutrakul, S.; Van Cauter, E.; Thakkinstian, A. Sleep disturbances compared to traditional risk factors for diabetes development: Systematic review and meta-analysis. Sleep Med. Rev. 2016, 30, 11–24. [Google Scholar] [CrossRef]
- Straif, K.; Baan, R.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Bouvard, V.; Altieri, A.; Benbrahim-Tallaa, L.; Cogliano, V. Carcinogenicity of Shift-Work, Painting, and Fire-Fighting. Lancet Oncol. 2007, 8, 1065–1066. [Google Scholar] [CrossRef]
- Esquirol, Y.; Perret, B.; Ruidavets, J.B.; Marquie, J.C.; Dienne, E.; Niezborala, M.; Ferrieres, J. Shift work and cardiovascular risk factors: New knowledge from the past decade. Arch. Cardiovasc. Dis. 2011, 104, 636–668. [Google Scholar] [CrossRef] [Green Version]
- Wagstaff, A.S.; Lie, J.A.S. Shift and night work and long working hours—A systematic review of safety implications. Scand. J. Work Environ. Health 2011, 37, 173–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Cordova, P.B.; Bradford, M.A.; Stone, P.W. Increased errors and decreased performance at night: A systematic review of the evidence concerning shift work and quality. Work 2016, 53, 825–834. [Google Scholar] [CrossRef]
- Kecklund, G.; Axelsson, J. Health consequences of shift work and insufficient sleep. BMJ 2016, 355, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Dumont, M.; Lanctt, V.; Cadieux-Viau, R.; Paquet, J. Melatonin production and light exposure of rotating night workers. Chronobiol. Int. 2012, 29, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Hegde, A.L.; Rhodes, R. Assessment of lighting in independent living facilities and residents’ perceptions. J. Appl. Gerontol. 2010, 29, 381–390. [Google Scholar] [CrossRef]
- Eastman, C.I.; Martin, S.K. How to use light and dark to produce circadian adaptation to night shift work. Ann. Med. 1999, 31, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Slanger, T.E.; Gross, J.V.; Pinger, A.; Morfeld, P.; Bellinger, M.; Duhme, A.L.; Reichardt Ortega, R.A.; Costa, G.; Driscoll, T.R.; Foster, R.G.; et al. Person-directed, non-pharmacological interventions for sleepiness at work and sleep disturbances caused by shift work. Cochrane Database Syst. Rev. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Neil-Sztramko, S.E.; Pahwa, M.; Demers, P.A.; Gotay, C.C. Health-related interventions among night shift workers: A critical review of the literature. Scand. J. Work Environ. Health 2014, 40, 543–556. [Google Scholar] [CrossRef]
- Chapdelaine, S.; Paquet, J.; Dumont, M. Effects of partial circadian adjustments on sleep and vigilance quality during simulated night work. J. Sleep Res. 2012, 21, 380–389. [Google Scholar] [CrossRef]
- Smith, M.R.; Fogg, L.F.; Eastman, C.I. Practical interventions to promote circadian adaptation to permanent night shift work: Study 4. J. Biol. Rhythms 2009, 24, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Crowley, S.J.; Lee, C.; Tseng, C.Y.; Fogg, L.F.; Eastman, C.I. Complete or partial circadian re-entrainment improves performance, alertness, and mood during night-shift work. Sleep 2004, 27, 1077–1087. [Google Scholar] [CrossRef] [Green Version]
- Aarts, M.P.J. Raise the Lantern. How Light Can Help to Maintain a Healthy and Safe Hospital Environment Focusing on Nurses. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2020. [Google Scholar]
- Rhodes, G.; Bernstein, J.; Grendell, R. Nurses’ drowsy driving prevention strategies: A qualitative exploratory multiple-case study. J. Nurs. Educ. Pract. 2019, 9, 73. [Google Scholar] [CrossRef]
- Sasseville, A.; Hébert, M. Using blue-green light at night and blue-blockers during the day to improves adaptation to night work: A pilot study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2010, 34, 1236–1242. [Google Scholar] [CrossRef] [PubMed]
- Crowley, S.J.; Lee, C.; Tseng, C.Y.; Fogg, L.F.; Eastman, C.I. Combinations of Bright Light, Scheduled Dark, Sunglasses, and Melatonin to Facilitate Circadian Entrainment to Night Shift Work. J. Biol. Rhythms 2003, 18, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Yoon, I.-Y.; Jeong, D.-U.; Kwon, K.-B.; Kang, S.-B.; Song, B.-G. Bright light exposure at night and light attenuation in the morning improve adaptation of night shift workers. Sleep 2002, 25, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Thorne, H.C.; Hampton, S.M.; Morgan, L.M.; Skene, D.J.; Arendt, J. Returning from night shift to day life: Beneficial effects of light on sleep. Sleep Biol. Rhythms 2010, 8, 212–221. [Google Scholar] [CrossRef] [Green Version]
- Ross, J.K.; Arendt, J.; Horne, J.; Haston, W. Night-shift work in antarctica: Sleep characteristics and bright light treatment. Physiol. Behav. 1995, 57, 1169–1174. [Google Scholar] [CrossRef]
- Tanaka, K.; Takahashi, M.; Tanaka, M.; Takanao, T.; Nishinoue, N.; Kaku, A.; Kato, N.; Tagaya, H.; Miyaoka, H. Brief Morning Exposure to Bright Light Improves Subjective Symptoms and Performance in Nurses with Rapidly Rotating Shifts. J. Occup. Health 2011, 53, 258–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budnick, L.D.; Lerman, S.E.; Nicolich, M.J. An evaluation of scheduled bright light and darkness on rotating shiftworkers: Trial and limitations. Am. J. Ind. Med. 1995, 27, 771–782. [Google Scholar] [CrossRef]
- Brown, T.M. Melanopic illuminance defines the magnitude of human circadian light responses under a wide range of conditions. J. Pineal. Res. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganesan, S.; Magee, M.; Stone, J.E.; Mulhall, M.D.; Collins, A.; Howard, M.E.; Lockley, S.W.; Rajaratnam, S.M.W.; Sletten, T.L. The Impact of Shift Work on Sleep, Alertness and Performance in Healthcare Workers. Sci. Rep. 2019, 9, 4635. [Google Scholar] [CrossRef] [PubMed]
- Ancoli-Israel, S.; Cole, R.; Alessi, C.; Chambers, M.; Moorcroft, W.; Pollak, C.P. The role of actigraphy in the study of sleep and circadian rhythms. Sleep 2003, 26, 342–392. [Google Scholar] [CrossRef] [Green Version]
- Aarts, M.P.J.; van Duijnhoven, J.; Aries, M.B.C.; Rosemann, A.L.P. Performance of personally worn dosimeters to study non-image forming effects of light: Assessment methods. Build. Environ. 2017, 117, 60–72. [Google Scholar] [CrossRef]
- Chang, A.M.; Scheer, F.A.J.L.; Czeisler, C.A. The human circadian system adapts to prior photic history. J. Physiol. 2011, 589, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Kantermann, T.; Juda, M.; Vetter, C.; Roenneberg, T. Shift-work research: Where do we stand, where should we go? Sleep Biol. Rhythms 2010, 8, 95–105. [Google Scholar] [CrossRef]
- Saksvik, I.B.; Pallesen, S.; Sandal, G.M.; Bjorvatn, B.; Hetland, H. Individual differences in tolerance to shift work—A systematic review. Sleep Med. Rev. 2010, 15, 221–235. [Google Scholar] [CrossRef]
- Stone, J.E.; Sletten, T.L.; Magee, M.; Ganesan, S.; Mulhall, M.D.; Collins, A.; Howard, M.E.; Lockley, S.W.; Rajaratnam, S.M.W. Temporal dynamics of circadian phase shifting response to consecutive night shifts in healthcare workers: Role of light–dark exposure. J. Physiol. 2018, 596, 2381–2395. [Google Scholar] [CrossRef]
- Juda, M.; Vetter, C.; Roenneberg, T. The Munich ChronoType Questionnaire for shift-workers (MCTQ Shift). J. Biol. Rhythms 2013, 28, 130–140. [Google Scholar] [CrossRef] [Green Version]
- CIE. CIE System for Metrology of Optical Radiation for ipRGC-Influenced Responses to Light; International Standard CIE 026/E2018; CIE: Paris, France, 2018; Volume 32. [Google Scholar] [CrossRef]
- Åkerstedt, T.; Gillberg, M. Subjective and objective sleepiness in the active individual. Int. J. Neurosci. 1990, 52, 29–37. [Google Scholar] [CrossRef]
- Watling, C.N.; Armstrong, K.A.; Smith, S.S.; Wilson, A. The on-road experiences and awareness of sleepiness in a sample of Australian highway drivers: A roadside driver sleepiness study. Traffic Inj. Prev. 2016, 17, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Mulder-Hajonides van der Meulen, W.R.E.H.; Wijnberg, J.R.; Hollander, J.J.; De Diana, I.P.F.; Van den Hoofdakker, R.H. Measurement of Subjective Sleep Quality. In Sleep 1980, Proceedings of the 5th European Congress on Sleep Research, Amsterdam, The Netherlands, 2–5 September 1980; Koella, W.P., Ed.; Karger: Basel, Switzerland, 1981. [Google Scholar]
- Meijman, T.F.; Thunnissen, M.J.; De Vries-Griever, A.G.H. The after-effects of a prolonged period of day-sleep on subjective sleep quality. Work Stress 1990, 4, 65–70. [Google Scholar] [CrossRef]
- Boivin, D.B.; James, F.O. Circadian Adaptation to Night-Shift Work by Judicious Light and Darkness Exposure. J. Biol. Rhythms 2002, 17, 556–567. [Google Scholar] [CrossRef]
- Boivin, D.B.; Boudreau, P.; James, F.O.; Kin, N.M.K.N.Y. Photic resetting in night-shift work: Impact on nurses’ sleep. Chronobiol. Int. 2012, 29, 619–628. [Google Scholar] [CrossRef]
- James, F.O.; Walker, C.D.; Boivin, D.B. Controlled exposure to light and darkness realigns the salivary cortisol rhythm in night shift workers. Chronobiol. Int. 2004, 21, 961–972. [Google Scholar] [CrossRef]
- Boivin, D.B.; Boudreau, P.; Tremblay, G.M. Phototherapy and orange-tinted goggles for night-shift adaptation of police officers on patrol. Chronobiol. Int. 2012, 29, 629–640. [Google Scholar] [CrossRef]
- Boudreau, P.; Dumont, G.A.; Boivin, D.B. Circadian Adaptation to Night Shift Work Influences Sleep, Performance, Mood and the Autonomic Modulation of the Heart. PLoS ONE 2013, 8, e70813. [Google Scholar] [CrossRef]
- Huang, L.-B.; Tsai, M.-C.; Chen, C.-Y.; Hsu, S.-C. The effectiveness of light/dark exposure to treat insomnia in female nurses undertaking shift work during the evening/night shift. J. Clin. Sleep Med. 2013, 9, 641–646. [Google Scholar] [CrossRef]
- Karchani, M.; Kakooei, H.; Yazdi, Z.; Zare, M. Do bright-light shock exposures during breaks reduce subjective sleepiness in night workers? Sleep Biol. Rhythms 2011, 9, 95–102. [Google Scholar] [CrossRef]
- Lowden, A.; Åkerstedt, T.; Wibom, R. Suppression of Sleepiness and Melatonin by Bright Light Exposure during Breaks in Night Work. J. Sleep Res. 2004, 13, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Motamedzadeh, M.; Golmohammadi, R.; Kazemi, R.; Heidarimoghadam, R. The effect of blue-enriched white light on cognitive performances and sleepiness of night-shift workers: A field study. Physiol. Behav. 2017, 177, 208–214. [Google Scholar] [CrossRef]
- Bjorvatn, B.; Stangenes, K.; Øyane, N.; Forberg, K.; Lowden, A.; Holsten, F.; Åkerstedt, T. Randomized placebo-controlled field study of the effects of bright light and melatonin in adaptation to night work. Scand. J. Work Environ. Health 2007, 33, 204–214. [Google Scholar] [CrossRef] [Green Version]
Placebo | Treatment | |||||
---|---|---|---|---|---|---|
Mean ± SD | Number of Participants Rating [-] | Mean ± SD | Number of Participants Rating [-] | |||
Effect on | Positive | Negative | Positive | Negative | ||
Alertness a | 4.17 ± 0.58 | 4 | 1 | 4.83 ± 1.03 | 11 | - |
Sleep quality a | 4.26 ± 0.62 | 4 | - | 4.48 ± 0.99 | 8 | 1 |
Sleep length a | 4.22 ± 0.52 | 4 | - | 4.13 ± 0.87 | 5 | 3 |
Recovery a | 4.48 ± 0.67 | 9 | - | 4.52 ± 0.99 | 9 | 1 |
Wear b | 4.20 ± 1.15 | 4.40 ± 1.14 | ||||
Comfort b | 3.90 ± 1.29 | 3.90 ± 1.29 | ||||
Adverse effects | ||||||
Headache | 6 | 4 | ||||
Impaired vision | 3 | 5 | ||||
Dizziness | 2 | 0 | ||||
Concentration | 1 | 1 |
M | SD | n | |
---|---|---|---|
Age (years old) | 30.1 | 10.2 | |
Working experience in healthcare (years) | 9.13 | 11.5 | |
Working week (hours) | 33.6 | 3.03 | |
Monthly number nightshifts (-) | 5.66 | 2.38 | |
Chronotype (hh:mm) | 04:40 | 01:07 | |
Late (MSFESC b > 5) | 4 | ||
Intermediate (MSFESC = 03:00–05:00) | 7 | ||
Early (MSFESC < 3) | 1 | ||
Undefined | 11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aarts, M.P.J.; Hartmeyer, S.L.; Morsink, K.; Kort, H.S.M.; de Kort, Y.A.W. Can Special Light Glasses Reduce Sleepiness and Improve Sleep of Nightshift Workers? A Placebo-Controlled Explorative Field Study. Clocks & Sleep 2020, 2, 225-245. https://doi.org/10.3390/clockssleep2020018
Aarts MPJ, Hartmeyer SL, Morsink K, Kort HSM, de Kort YAW. Can Special Light Glasses Reduce Sleepiness and Improve Sleep of Nightshift Workers? A Placebo-Controlled Explorative Field Study. Clocks & Sleep. 2020; 2(2):225-245. https://doi.org/10.3390/clockssleep2020018
Chicago/Turabian StyleAarts, Mariëlle P. J., Steffen L. Hartmeyer, Kars Morsink, Helianthe S. M. Kort, and Yvonne A. W. de Kort. 2020. "Can Special Light Glasses Reduce Sleepiness and Improve Sleep of Nightshift Workers? A Placebo-Controlled Explorative Field Study" Clocks & Sleep 2, no. 2: 225-245. https://doi.org/10.3390/clockssleep2020018
APA StyleAarts, M. P. J., Hartmeyer, S. L., Morsink, K., Kort, H. S. M., & de Kort, Y. A. W. (2020). Can Special Light Glasses Reduce Sleepiness and Improve Sleep of Nightshift Workers? A Placebo-Controlled Explorative Field Study. Clocks & Sleep, 2(2), 225-245. https://doi.org/10.3390/clockssleep2020018