How to Report Light Exposure in Human Chronobiology and Sleep Research Experiments
Abstract
:1. Introduction
|
2. Minimum Reporting Guidelines
2.1. Measure and Report the Spectrum of the Acute Stimulus from the Observer’s Point of View
- (1)
- The spectral irradiance received at the cornea measured as the vertical spectral irradiance, which incorporates a measurement of light from the entire visual field in the plane of the cornea.
- (2)
- The spectral radiance emitted from the emitting surface of a given light source, in a given direction. This can be measured relatively easily for planar surfaces, if they are viewed in the direction of the normal surface (“straight-on”), such as a monitor.
2.2. Measure and Report Spectrum of the Background Light Environment from the Observer’s Point of View
2.3. Make Spectra Available in Tabulated Form
2.4. Report α-opic (ir)radiances and Illuminance
2.5. Describe the Timing Properties of Stimulus
2.6. Describe the Spatial Properties of Stimulus
2.7. Report Measurement Conditions
3. Optional Reporting
3.1. Measure or Estimate Pupil Size of the Study Participant
3.2. Measure or Estimate Percentage Eye Open
3.3. Photography or Sketch of Laboratory Arrangement
3.4. Light Safety Calculations >10,000 cd/m2
3.5. Radiometric vs. Photon System
3.6. Calculate Age-Dependent Effects on Pre-Receptoral Filtering
3.7. Reporting Retinal Intensity
4. Challenges
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A. Example Reporting
Narrative Description
Condition | DL1 | DL2 | EL1 |
---|---|---|---|
Illuminance [lux] | 2.41 | 4.16 | 173.50 |
S-cone-opic irradiance (mW/m2) | 0.62 | 1.12 | 1.630 |
M-cone-opic irradiance (mW/m2) | 2.75 | 4.74 | 133.78 |
L-cone-opic irradiance (mW/m2) | 3.98 | 6.86 | 313.12 |
Rhodopic irradiance (mW/m2) | 1.73 | 2.97 | 80.23 |
Melanopic irradiance (mW/m2) | 1.27 | 2.17 | 52.99 |
Wavelength [nm] | Spectral irradiance [W/(m2 nm)] | ||
380 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
381 | 0.00E+00 | 0.00E+00 | 3.54E-06 |
382 | 0.00E+00 | 0.00E+00 | 6.94E-06 |
383 | 0.00E+00 | 0.00E+00 | 1.07E-05 |
⋮ | ⋮ | ⋮ | ⋮ |
777 | 5.53E-06 | 4.55E-06 | 1.07E-05 |
778 | 6.20E-06 | 4.80E-06 | 1.55E-05 |
779 | 6.37E-06 | 5.94E-06 | 1.29E-05 |
780 | 6.75E-06 | 6.86E-06 | 8.15E-06 |
Photograph of the Setup
References
- Gooley, J.J.; Ho Mien, I.; St Hilaire, M.A.; Yeo, S.C.; Chua, E.C.; van Reen, E.; Hanley, C.J.; Hull, J.T.; Czeisler, C.A.; Lockley, S.W. Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans. J Neurosci. 2012, 32, 14242–14253. [Google Scholar] [CrossRef] [PubMed]
- Spitschan, M.; Jain, S.; Brainard, D.H.; Aguirre, G.K. Opponent melanopsin and S-cone signals in the human pupillary light response. Proc. Natl. Acad. Sci. USA 2014, 111, 15568–15572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brainard, G.C.; Hanifin, J.P.; Greeson, J.M.; Byrne, B.; Glickman, G.; Gerner, E.; Rollag, M.D. Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. J. Neurosci. 2001, 21, 6405–6412. [Google Scholar] [CrossRef] [PubMed]
- Thapan, K.; Arendt, J.; Skene, D.J. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J. Physiol. 2001, 535, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Prayag, A.S.; Jost, S.; Avouac, P.; Dumortier, D.; Gronfier, C. Dynamics of Non-visual Responses in Humans: As Fast as Lightning? Front. Neurosci. 2019, 13, 126. [Google Scholar] [CrossRef] [PubMed]
- Gooley, J.J.; Rajaratnam, S.M.; Brainard, G.C.; Kronauer, R.E.; Czeisler, C.A.; Lockley, S.W. Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light. Sci. Transl. Med. 2010, 2, 31ra33. [Google Scholar] [CrossRef] [PubMed]
- Cajochen, C.; Munch, M.; Kobialka, S.; Krauchi, K.; Steiner, R.; Oelhafen, P.; Orgul, S.; Wirz-Justice, A. High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J. Clin. Endocrinol. Metab. 2005, 90, 1311–1316. [Google Scholar] [CrossRef] [PubMed]
- Lucas, R.J.; Peirson, S.N.; Berson, D.M.; Brown, T.M.; Cooper, H.M.; Czeisler, C.A.; Figueiro, M.G.; Gamlin, P.D.; Lockley, S.W.; O’Hagan, J.B.; et al. Measuring and using light in the melanopsin age. Trends Neurosci. 2014, 37, 1–9. [Google Scholar] [CrossRef] [PubMed]
- CIE. CIE System for Metrology of Optical Radiation for ipRGC-influenced Responses to Light; CIE Central Bureau: Vienna, Austria, 2018. [Google Scholar]
- Amundadottir, M.L.; Lockley, S.W.; Andersen, M. Unified framework to evaluate non-visual spectral effectiveness of light for human health. Lighting Res. Technol. 2016, 49, 673–696. [Google Scholar] [CrossRef] [Green Version]
- Rea, M.S.; Figueiro, M.G. Light as a circadian stimulus for architectural lighting. Lighting Res. Technol. 2016, 50, 497–510. [Google Scholar] [CrossRef]
- Prayag, A.; Münch, M.; Aeschbach, D.; Chellappa, S.; Gronfier, C. Light Modulation of Human Clocks, Wake, and Sleep. Clocks Sleep 2019, 1, 193–208. [Google Scholar] [CrossRef] [Green Version]
- Fisk, A.S.; Tam, S.K.E.; Brown, L.A.; Vyazovskiy, V.V.; Bannerman, D.M.; Peirson, S.N. Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal. Front. Neurol. 2018, 9, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brainard, D.H.; Stockman, A. Colorimetry. In OSA Handbook of Optics; Bass, M., Ed.; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Stockman, A.; Brainard, D.H. Color vision mechanisms. In OSA Handbook of Optics; Bass, M., Ed.; McGraw-Hill: New York, NY, USA, 2010; pp. 11.11–11.104. [Google Scholar]
- de Kort, Y.A.W. Tutorial: Theoretical Considerations When Planning Research on Human Factors in Lighting. Leukos 2019, 1–12. [Google Scholar] [CrossRef]
- Webler, F.; Spitschan, M.; Foster, R.; Andersen, M.; Peirson, S. What is the “spectral diet” of humans? OSF Prepr. 2019. [Google Scholar] [CrossRef]
- CIE. ILV: International Lighting Vocabulary, CIE publication S 017/E:2011; CIE Central Bureau: Vienna, Austria, 2011. [Google Scholar]
- Rohatgi, A. WebPlotDigitizer 4.1. 2018. Available online: https://automeris.io/WebPlotDigitizer (accessed on 1 March 2019).
- Burda, B.U.; O’Connor, E.A.; Webber, E.M.; Redmond, N.; Perdue, L.A. Estimating data from figures with a Web-based program: Considerations for a systematic review. Res. Synth Methods 2017, 8, 258–262. [Google Scholar] [CrossRef]
- Drevon, D.; Fursa, S.R.; Malcolm, A.L. Intercoder Reliability and Validity of WebPlotDigitizer in Extracting Graphed Data. Behav. Modif. 2017, 41, 323–339. [Google Scholar] [CrossRef]
- Moeyaert, M.; Maggin, D.; Verkuilen, J. Reliability, Validity, and Usability of Data Extraction Programs for Single-Case Research Designs. Behav. Modif. 2016, 40, 874–900. [Google Scholar] [CrossRef]
- CIE. Fundamental Chromaticity Diagram with Physiological Axes—Part. 1 (Technical Report 170-1); Central Bureau of the Commission Internationale de l’ Éclairage: Vienna, Austria, 2006. [Google Scholar]
- Najjar, R.; Zeitzer, J.M. Temporal integration of light flashes by the human circadian system. J. Clin. Investig. 2016, 126, 938–947. [Google Scholar] [CrossRef]
- Gronfier, C.; Wright, K.P., Jr.; Kronauer, R.E.; Jewett, M.E.; Czeisler, C.A. Efficacy of a single sequence of intermittent bright light pulses for delaying circadian phase in humans. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E174–E181. [Google Scholar] [CrossRef] [Green Version]
- Allen, A.E.; Hazelhoff, E.M.; Martial, F.P.; Cajochen, C.; Lucas, R.J. Exploiting metamerism to regulate the impact of a visual display on alertness and melatonin suppression independent of visual appearance. Sleep 2018, 41. [Google Scholar] [CrossRef] [Green Version]
- Cajochen, C.; Frey, S.; Anders, D.; Spati, J.; Bues, M.; Pross, A.; Mager, R.; Wirz-Justice, A.; Stefani, O. Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. J. Appl. Physiol. 2011, 110, 1432–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, A.B.; Yellott, J.I. A unified formula for light-adapted pupil size. J. Vis. 2012, 12, 12. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Pokorny, J.; Smith, V.C. Optical density of the human lens. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 1997, 14, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Najjar, R.; Teikari, P.; Cornut, P.L.; Knoblauch, K.; Cooper, H.M.; Gronfier, C. Heterochromatic Flicker Photometry for Objective Lens Density Quantification. Invest. Ophthalmol. Vis. Sci. 2016, 57, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Pokorny, J.; Smith, V.C.; Lutze, M. Aging of the human lens. Appl. Opt. 1987, 26, 1437–1440. [Google Scholar] [CrossRef] [PubMed]
- Sliney, D.H. Exposure geometry and spectral environment determine photobiological effects on the human eye. Photochem. Photobiol. 2005, 81, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Behar-Cohen, F.; Martinsons, C.; Vienot, F.; Zissis, G.; Barlier-Salsi, A.; Cesarini, J.P.; Enouf, O.; Garcia, M.; Picaud, S.; Attia, D. Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Prog. Retin. Eye Res. 2011, 30, 239–257. [Google Scholar] [CrossRef]
- Bureau International des Poids et Mesures. Draft Appendix 3 of the 9th SI Brochure; Bureau International des Poids et Mesures: Sèvres, France, 2018. [Google Scholar]
- Spitschan, M.; Bock, A.S.; Ryan, J.; Frazzetta, G.; Brainard, D.H.; Aguirre, G.K. The human visual cortex response to melanopsin-directed stimulation is accompanied by a distinct perceptual experience. Proc. Natl. Acad. Sci. USA 2017, 114, 12291–12296. [Google Scholar] [CrossRef] [Green Version]
- Spitschan, M.; Aguirre, G.K.; Brainard, D.H. Selective stimulation of penumbral cones reveals perception in the shadow of retinal blood vessels. PLoS ONE 2015, 10, e0124328. [Google Scholar] [CrossRef]
- Thibos, L.N.; Lopez-Gil, N.; Bradley, A. What is a troland? J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2018, 35, 813–816. [Google Scholar] [CrossRef]
- Aguilar, M.; Stiles, W.S. Saturation of the Rod Mechanism of the Retina at High Levels of Stimulation. Opt. Acta Int. J. Opt. 1954, 1, 59–65. [Google Scholar] [CrossRef]
- Sliney, D.H. How light reaches the eye and its components. Int. J. Toxicol. 2002, 21, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Asano, Y.; Fairchild, M.D.; Blondé, L. Individual Colorimetric Observer Model. PLoS ONE 2016, 11, e0145671. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spitschan, M.; Stefani, O.; Blattner, P.; Gronfier, C.; Lockley, S.W.; Lucas, R.J. How to Report Light Exposure in Human Chronobiology and Sleep Research Experiments. Clocks & Sleep 2019, 1, 280-289. https://doi.org/10.3390/clockssleep1030024
Spitschan M, Stefani O, Blattner P, Gronfier C, Lockley SW, Lucas RJ. How to Report Light Exposure in Human Chronobiology and Sleep Research Experiments. Clocks & Sleep. 2019; 1(3):280-289. https://doi.org/10.3390/clockssleep1030024
Chicago/Turabian StyleSpitschan, Manuel, Oliver Stefani, Peter Blattner, Claude Gronfier, Steven W. Lockley, and Robert J. Lucas. 2019. "How to Report Light Exposure in Human Chronobiology and Sleep Research Experiments" Clocks & Sleep 1, no. 3: 280-289. https://doi.org/10.3390/clockssleep1030024
APA StyleSpitschan, M., Stefani, O., Blattner, P., Gronfier, C., Lockley, S. W., & Lucas, R. J. (2019). How to Report Light Exposure in Human Chronobiology and Sleep Research Experiments. Clocks & Sleep, 1(3), 280-289. https://doi.org/10.3390/clockssleep1030024