Intravenous Fosfomycin for Systemic Multidrug-Resistant Pseudomonas aeruginosa Infections
Abstract
:1. Introduction
2. Results
2.1. Microbiology
2.1.1. Testing
2.1.2. Mechanism of Resistance
2.1.3. Epidemiology
2.2. Pharmacokinetic/Pharmacodynamic Relationship
2.3. Clinical Data
2.3.1. Pneumonia
2.3.2. Bone and Prosthetic Joint Infections
2.3.3. Urinary Tract Infections
2.3.4. Bloodstream Infections
2.3.5. Central Nervous System
2.4. Proposed Schemes
3. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin. Infect. Dis. 2023, 2023, ciad428. [Google Scholar] [CrossRef] [PubMed]
- Antonello, R.M.; Principe, L.; Maraolo, A.E.; Viaggi, V.; Pol, R.; Fabbiani, M.; Montagnani, F.; Lovecchio, A.; Luzzati, R.; Di Bella, S. Fosfomycin as Partner Drug for Systemic Infection Management. A Systematic Review of Its Synergistic Properties from In Vitro and In Vivo Studies. Antibiotics 2020, 9, 500. [Google Scholar] [CrossRef] [PubMed]
- Avery, L.M.; Sutherland, C.A.; Nicolau, D.P. Prevalence of in vitro synergistic antibiotic interaction between fosfomycin and nonsusceptible antimicrobials in carbapenem-resistant Pseudomonas aeruginosa. J. Med. Microbiol. 2019, 68, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Memar, M.Y.; Adibkia, K.; Farajnia, S.; Samadi Kafil, H.; Khalili, Y.; Azargun, R.; Ghotaslou, R. In-vitro Effect of Imipenem, Fosfomycin, Colistin, and Gentamicin Combination against Carbapenem-resistant and Biofilm-forming Pseudomonas aeruginosa Isolated from Burn Patients. Iran J. Pharm. Res. 2021, 20, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Testing, E.C.o.A.S. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_13.1_Breakpoint_Tables.pdf (accessed on 2 October 2023).
- Walsh, C.C.; McIntosh, M.P.; Peleg, A.Y.; Kirkpatrick, C.M.; Bergen, P.J. In vitro pharmacodynamics of fosfomycin against clinical isolates of Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2015, 70, 3042–3050. [Google Scholar] [CrossRef]
- Corvec, S.; Poirel, L.; Espaze, E.; Giraudeau, C.; Drugeon, H.; Nordmann, P. Long-term evolution of a nosocomial outbreak of Pseudomonas aeruginosa producing VIM-2 metallo-enzyme. J. Hosp. Infect. 2008, 68, 73–82. [Google Scholar] [CrossRef]
- Faruqi, S.; McCreanor, J.; Moon, T.; Meigh, R.; Morice, A.H. Fosfomycin for Pseudomonas-related exacerbations of cystic fibrosis. Int. J. Antimicrob. Agents 2008, 32, 461–463. [Google Scholar] [CrossRef]
- Bressan, A.; Rodio, D.M.; Stangherlin, F.; Puggioni, G.; Ambrosi, C.; Arcari, G.; Carattoli, A.; Antonelli, G.; Pietropaolo, V.; Trancassini, M. In vitro activity of fosfomycin against mucoid and non-mucoid Pseudomonas aeruginosa strains. J. Glob. Antimicrob. Resist. 2020, 20, 328–331. [Google Scholar] [CrossRef]
- Monogue, M.L.; Nicolau, D.P. Antibacterial activity of ceftolozane/tazobactam alone and in combination with other antimicrobial agents against MDR Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2018, 73, 942–952. [Google Scholar] [CrossRef]
- Cuba, G.T.; Rocha-Santos, G.; Cayo, R.; Streling, A.P.; Nodari, C.S.; Gales, A.C.; Pignatari, A.C.C.; Nicolau, D.P.; Kiffer, C.R.V. In vitro synergy of ceftolozane/tazobactam in combination with fosfomycin or aztreonam against MDR Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2020, 75, 1874–1878. [Google Scholar] [CrossRef]
- Diez-Aguilar, M.; Morosini, M.I.; del Campo, R.; Garcia-Castillo, M.; Zamora, J.; Canton, R. In vitro activity of fosfomycin against a collection of clinical Pseudomonas aeruginosa isolates from 16 Spanish hospitals: Establishing the validity of standard broth microdilution as susceptibility testing method. Antimicrob. Agents Chemother. 2013, 57, 5701–5703. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Giannella, M.; Rinaldi, M.; Gaibani, P.; Viale, P.; Pea, F. Pharmacokinetic/Pharmacodynamic Analysis of Continuous-Infusion Fosfomycin in Combination with Extended-Infusion Cefiderocol or Continuous-Infusion Ceftazidime-Avibactam in a Case Series of Difficult-to-Treat Resistant Pseudomonas aeruginosa Bloodstream Infections and/or Hospital-Acquired Pneumonia. Antibiotics 2022, 11, 1739. [Google Scholar] [CrossRef]
- Falagas, M.E.; Kanellopoulou, M.D.; Karageorgopoulos, D.E.; Dimopoulos, G.; Rafailidis, P.I.; Skarmoutsou, N.D.; Papafrangas, E.A. Antimicrobial susceptibility of multidrug-resistant Gram negative bacteria to fosfomycin. Eur. J. Clin. Microbiol. Infect. Dis. 2008, 27, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Sumitani, Y.; Sugita, K.; Aikawa, N. Antimicrobial activity of fosfomycin against multidrug-resistant Pseudomonas aeruginosa in vitro. Int. J. Antimicrob. Agents 2007, 30, 563–564. [Google Scholar] [CrossRef] [PubMed]
- Tessier, F.; Quentin, C. In vitro activity of fosfomycin combined with ceftazidime, imipenem, amikacin, and ciprofloxacin against Pseudomonas aeruginosa. Eur. J. Clin. Microbiol. Infect. Dis. 1997, 16, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, M.; Suzuki, K.; Asano, N.; Araki, K.; Shukuya, N.; Egami, T.; Higurashi, Y.; Morita, K.; Uchimura, H.; Watanabe, T. Effectiveness of fosfomycin combined with other antimicrobial agents against multidrug-resistant Pseudomonas aeruginosa isolates using the efficacy time index assay. J. Infect. Chemother. 2002, 8, 37–42. [Google Scholar] [CrossRef]
- Traub, W.H.; Scheidhauer, R.; Leonhard, B.; Bauer, D. Surveillance of Pseudomonas aeruginosa in intensive care units: Clusters of nosocomial cross-infection and encounter of a multiple-antibiotic resistant strain. Chemotherapy 1998, 44, 243–259. [Google Scholar] [CrossRef]
- Talarmin, A.; Dubrous, P.; Gerome, P.; Buisson, Y. Study of Pseudomonas aeruginosa serotype O12 isolates with a common antibiotic susceptibility pattern. Eur. J. Clin. Microbiol. Infect. Dis. 1996, 15, 459–464. [Google Scholar] [CrossRef]
- Hamou-Segarra, M.; Zamorano, L.; Vadlamani, G.; Chu, M.; Sanchez-Diener, I.; Juan, C.; Blazquez, J.; Hattie, M.; Stubbs, K.A.; Mark, B.L.; et al. Synergistic activity of fosfomycin, beta-lactams and peptidoglycan recycling inhibition against Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2017, 72, 448–454. [Google Scholar] [CrossRef]
- Yang, X.; Domalaon, R.; Lyu, Y.; Zhanel, G.G.; Schweizer, F. Tobramycin-Linked Efflux Pump Inhibitor Conjugates Synergize Fluoroquinolones, Rifampicin and Fosfomycin against Multidrug-Resistant Pseudomonas aeruginosa. J. Clin. Med. 2018, 7, 158. [Google Scholar] [CrossRef]
- Gopichand, P.; Agarwal, G.; Natarajan, M.; Mandal, J.; Deepanjali, S.; Parameswaran, S.; Dorairajan, L.N. In vitro effect of fosfomycin on multi-drug resistant gram-negative bacteria causing urinary tract infections. Infect. Drug Resist. 2019, 12, 2005–2013. [Google Scholar] [CrossRef] [PubMed]
- Parisio, E.M.; Camarlinghi, G.; Coppi, M.; Niccolai, C.; Antonelli, A.; Nardone, M.; Vettori, C.; Giani, T.; Mattei, R.; Rossolini, G.M. Evaluation of the commercial AD fosfomycin test for susceptibility testing of multidrug-resistant Enterobacterales and Pseudomonas aeruginosa. Clin. Microbiol. Infect. 2020, 27, 788-e5. [Google Scholar] [CrossRef] [PubMed]
- Albiero, J.; Mazucheli, J.; Barros, J.; Szczerepa, M.; Nishiyama, S.A.B.; Carrara-Marroni, F.E.; Sy, S.; Fidler, M.; Sy, S.K.B.; Tognim, M.C.B. Pharmacodynamic Attainment of the Synergism of Meropenem and Fosfomycin Combination against Pseudomonas aeruginosa Producing Metallo-beta-Lactamase. Antimicrob. Agents Chemother. 2019, 63, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Abdelhady, A.S.M.; Darwish, N.M.; Abdel-Rahman, S.M.; Abo El Magd, N.M. The combined antimicrobial activity of citrus honey and fosfomycin on multidrug resistant Pseudomonas aeruginosa isolates. AIMS Microbiol. 2020, 6, 162–175. [Google Scholar] [CrossRef]
- Mikhail, S.; Singh, N.B.; Kebriaei, R.; Rice, S.A.; Stamper, K.C.; Castanheira, M.; Rybak, M.J. Evaluation of the Synergy of Ceftazidime-Avibactam in Combination with Meropenem, Amikacin, Aztreonam, Colistin, or Fosfomycin against Well-Characterized Multidrug-Resistant Klebsiella pneumoniae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2019, 63, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Croughs, P.D.; Konijnendijk-de Regt, M.; Yusuf, E. Fosfomycin Susceptibility Testing Using Commercial Agar Dilution Test. Microbiol. Spectr. 2022, 10, e0250421. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.C.; Brigman, H.V.; Anderson, J.C.; Emery, C.L.; Bias, T.E.; Bergen, P.J.; Landersdorfer, C.B.; Hirsch, E.B. Performance of Four Fosfomycin Susceptibility Testing Methods against an International Collection of Clinical Pseudomonas aeruginosa Isolates. J. Clin. Microbiol. 2020, 58, 10-1128. [Google Scholar] [CrossRef]
- Zheng, D.; Bergen, P.J.; Landersdorfer, C.B.; Hirsch, E.B. Differences in Fosfomycin Resistance Mechanisms between Pseudomonas aeruginosa and Enterobacterales. Antimicrob. Agents Chemother. 2022, 66, e0144621. [Google Scholar] [CrossRef]
- Kunz Coyne, A.J.; El Ghali, A.; Holger, D.; Rebold, N.; Rybak, M.J. Therapeutic Strategies for Emerging Multidrug-Resistant Pseudomonas aeruginosa. Infect. Dis. Ther. 2022, 11, 661–682. [Google Scholar] [CrossRef]
- Riano-Moreno, J.; Romero-Leiton, J.P.; Prieto, K. Contribution of Governance and Socioeconomic Factors to the P. aeruginosa MDR in Europe. Antibiotics 2022, 11, 212. [Google Scholar] [CrossRef]
- Doi, Y. Treatment Options for Carbapenem-resistant Gram-negative Bacterial Infections. Clin. Infect. Dis. 2019, 69, S565–S575. [Google Scholar] [CrossRef] [PubMed]
- Boyd, S.E.; Holmes, A.; Peck, R.; Livermore, D.M.; Hope, W. OXA-48-Like beta-Lactamases: Global Epidemiology, Treatment Options, and Development Pipeline. Antimicrob. Agents Chemother. 2022, 66, e0021622. [Google Scholar] [CrossRef] [PubMed]
- Torrens, G.; Hernandez, S.B.; Ayala, J.A.; Moya, B.; Juan, C.; Cava, F.; Oliver, A. Regulation of AmpC-Driven beta-Lactam Resistance in Pseudomonas aeruginosa: Different Pathways, Different Signaling. mSystems 2019, 4, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Laudy, A.E.; Rog, P.; Smolinska-Krol, K.; Cmiel, M.; Sloczynska, A.; Patzer, J.; Dzierzanowska, D.; Wolinowska, R.; Starosciak, B.; Tyski, S. Prevalence of ESBL-producing Pseudomonas aeruginosa isolates in Warsaw, Poland, detected by various phenotypic and genotypic methods. PLoS ONE 2017, 12, e0180121. [Google Scholar] [CrossRef] [PubMed]
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorli, L.; Luque, S.; Gomez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin. Microbiol. Rev. 2019, 32. [Google Scholar] [CrossRef] [PubMed]
- Alicia Rodríguez-Gascón, A.s.C.-B. Deciphering pharmacokinetics and pharmacodynamics of fosfomycin. Rev. Española Quimioter. 2019, 32, 19–24. [Google Scholar]
- Lepak, A.J.; Zhao, M.; VanScoy, B.; Taylor, D.S.; Ellis-Grosse, E.; Ambrose, P.G.; Andes, D.R. In Vivo Pharmacokinetics and Pharmacodynamics of ZTI-01 (Fosfomycin for Injection) in the Neutropenic Murine Thigh Infection Model against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2017, 61, 10-1128. [Google Scholar] [CrossRef]
- Sumi, C.D.; Heffernan, A.J.; Lipman, J.; Roberts, J.A.; Sime, F.B. What Antibiotic Exposures Are Required to Suppress the Emergence of Resistance for Gram-Negative Bacteria? A Systematic Review. Clin. Pharmacokinet. 2019, 58, 1407–1443. [Google Scholar] [CrossRef]
- Bilal, H.; Peleg, A.Y.; McIntosh, M.P.; Styles, I.K.; Hirsch, E.B.; Landersdorfer, C.B.; Bergen, P.J. Elucidation of the pharmacokinetic/pharmacodynamic determinants of fosfomycin activity against Pseudomonas aeruginosa using a dynamic in vitro model. J. Antimicrob. Chemother. 2018, 73, 1570–1578. [Google Scholar] [CrossRef]
- Docobo-Perez, F.; Drusano, G.L.; Johnson, A.; Goodwin, J.; Whalley, S.; Ramos-Martin, V.; Ballestero-Tellez, M.; Rodriguez-Martinez, J.M.; Conejo, M.C.; van Guilder, M.; et al. Pharmacodynamics of fosfomycin: Insights into clinical use for antimicrobial resistance. Antimicrob. Agents Chemother. 2015, 59, 5602–5610. [Google Scholar] [CrossRef]
- Gatti, M.; Virgili, G.; Cojutti, P.G.; Gaibani, P.; Conti, M.; Sturiale, C.; Pea, F.; Viale, P. Real-Time Optimization of Pharmacodynamic Target Attainment at Infection Site during Treatment of Post-Neurosurgical Ventriculitis Caused by Carbapenem-Resistant Gram Negatives with Ceftazidime-Avibactam-Based Regimens: A Report of Two Cases. Microorganisms 2022, 10, 154. [Google Scholar] [CrossRef]
- Matzi, V.; Lindenmann, J.; Porubsky, C.; Kugler, S.A.; Maier, A.; Dittrich, P.; Smolle-Juttner, F.M.; Joukhadar, C. Extracellular concentrations of fosfomycin in lung tissue of septic patients. J. Antimicrob. Chemother. 2010, 65, 995–998. [Google Scholar] [CrossRef] [PubMed]
- Konig, C.; Martens-Lobenhoffer, J.; Czorlich, P.; Westphal, M.; Bode-Boger, S.M.; Kluge, S.; Grensemann, J. Cerebrospinal fluid penetration of fosfomycin in patients with ventriculitis: An observational study. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 29. [Google Scholar] [CrossRef] [PubMed]
- Pfausler, B.; Spiss, H.; Dittrich, P.; Zeitlinger, M.; Schmutzhard, E.; Joukhadar, C. Concentrations of fosfomycin in the cerebrospinal fluid of neurointensive care patients with ventriculostomy-associated ventriculitis. J. Antimicrob. Chemother. 2004, 53, 848–852. [Google Scholar] [CrossRef] [PubMed]
- Joukhadar, C.; Klein, N.; Dittrich, P.; Zeitlinger, M.; Geppert, A.; Skhirtladze, K.; Frossard, M.; Heinz, G.; Muller, M. Target site penetration of fosfomycin in critically ill patients. J. Antimicrob. Chemother. 2003, 51, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Legat, F.J.; Maier, A.; Dittrich, P.; Zenahlik, P.; Kern, T.; Nuhsbaumer, S.; Frossard, M.; Salmhofer, W.; Kerl, H.; Muller, M. Penetration of fosfomycin into inflammatory lesions in patients with cellulitis or diabetic foot syndrome. Antimicrob. Agents Chemother. 2003, 47, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Sauermann, R.; Karch, R.; Langenberger, H.; Kettenbach, J.; Mayer-Helm, B.; Petsch, M.; Wagner, C.; Sautner, T.; Gattringer, R.; Karanikas, G.; et al. Antibiotic abscess penetration: Fosfomycin levels measured in pus and simulated concentration-time profiles. Antimicrob. Agents Chemother. 2005, 49, 4448–4454. [Google Scholar] [CrossRef]
- Schintler, M.V.; Traunmuller, F.; Metzler, J.; Kreuzwirt, G.; Spendel, S.; Mauric, O.; Popovic, M.; Scharnagl, E.; Joukhadar, C. High fosfomycin concentrations in bone and peripheral soft tissue in diabetic patients presenting with bacterial foot infection. J. Antimicrob. Chemother. 2009, 64, 574–578. [Google Scholar] [CrossRef]
- ECDC. Healthcare-Associated Infections in Intensive Care Units. In ECDC Annual Epidemiological Report for 2017; ECDC: Brussels, Belgium, 2019. [Google Scholar]
- Drusano, G.L.; Neely, M.N.; Yamada, W.M.; Duncanson, B.; Brown, D.; Maynard, M.; Vicchiarelli, M.; Louie, A. The Combination of Fosfomycin plus Meropenem Is Synergistic for Pseudomonas aeruginosa PAO1 in a Hollow-Fiber Infection Model. Antimicrob. Agents Chemother. 2018, 62, 01682-18. [Google Scholar] [CrossRef]
- Louie, A.; Maynard, M.; Duncanson, B.; Nole, J.; Vicchiarelli, M.; Drusano, G.L. Determination of the Dynamically Linked Indices of Fosfomycin for Pseudomonas aeruginosa in the Hollow Fiber Infection Model. Antimicrob. Agents Chemother. 2018, 62, 02627-17. [Google Scholar] [CrossRef]
- Papp-Wallace, K.M.; Zeiser, E.T.; Becka, S.A.; Park, S.; Wilson, B.M.; Winkler, M.L.; D’Souza, R.; Singh, I.; Sutton, G.; Fouts, D.E.; et al. Ceftazidime-Avibactam in Combination With Fosfomycin: A Novel Therapeutic Strategy Against Multidrug-Resistant Pseudomonas aeruginosa. J. Infect. Dis. 2019, 220, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Anastasia, A.; Bonura, S.; Rubino, R.; Giammanco, G.M.; Micciche, I.; Di Pace, M.R.; Colomba, C.; Cascio, A. The Use of Intravenous Fosfomycin in Clinical Practice: A 5-Year Retrospective Study in a Tertiary Hospital in Italy. Antibiotics 2023, 12, 971. [Google Scholar] [CrossRef] [PubMed]
- Burastero, G.J.; Orlando, G.; Santoro, A.; Menozzi, M.; Franceschini, E.; Bedini, A.; Cervo, A.; Faltoni, M.; Bacca, E.; Biagioni, E.; et al. Ceftazidime/Avibactam in Ventilator-Associated Pneumonia Due to Difficult-to-Treat Non-Fermenter Gram-Negative Bacteria in COVID-19 Patients: A Case Series and Review of the Literature. Antibiotics 2022, 11, 1007. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Viaggi, B.; Rossolini, G.M.; Pea, F.; Viale, P. An Evidence-Based Multidisciplinary Approach Focused on Creating Algorithms for Targeted Therapy of Infection-Related Ventilator-Associated Complications (IVACs) Caused by Pseudomonas aeruginosa and Acinetobacter baumannii in Critically Ill Adult Patients. Antibiotics 2021, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Tsegka, K.G.; Voulgaris, G.L.; Kyriakidou, M.; Kapaskelis, A.; Falagas, M.E. Intravenous fosfomycin for the treatment of patients with bone and joint infections: A review. Expert. Rev. Anti. Infect. Ther. 2022, 20, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Benito, N.; Franco, M.; Ribera, A.; Soriano, A.; Rodriguez-Pardo, D.; Sorli, L.; Fresco, G.; Fernandez-Sampedro, M.; Dolores Del Toro, M.; Guio, L.; et al. Time trends in the aetiology of prosthetic joint infections: A multicentre cohort study. Clin. Microbiol. Infect. 2016, 22, 732.e1–732.e8. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, H.; Kurabayashi, K.; Tanimoto, K.; Tomita, H. Oxygen Limitation Enhances the Antimicrobial Activity of Fosfomycin in Pseudomonas aeruginosa Following Overexpression of glpT Which Encodes Glycerol-3-Phosphate/Fosfomycin Symporter. Front. Microbiol. 2018, 9, 1950. [Google Scholar] [CrossRef] [PubMed]
- Davey, P.; Wilcox, M.; Irving, W.; Thwaites, G.; Davey, P.; Wilcox, M.H.; Irving, W.; Thwaites, G. Bone and Joint Infections. In Antimicrobial Chemotherapy; Oxford University Press: Oxford, UK, 2015. [Google Scholar] [CrossRef]
- Kumon, H.; Ono, N.; Iida, M.; Nickel, J.C. Combination effect of fosfomycin and ofloxacin against Pseudomonas aeruginosa growing in a biofilm. Antimicrob. Agents Chemother. 1995, 39, 1038–1044. [Google Scholar] [CrossRef]
- Wang, L.; Di Luca, M.; Tkhilaishvili, T.; Trampuz, A.; Gonzalez Moreno, M. Synergistic Activity of Fosfomycin, Ciprofloxacin, and Gentamicin Against Escherichia coli and Pseudomonas aeruginosa Biofilms. Front. Microbiol. 2019, 10, 2522. [Google Scholar] [CrossRef]
- Mei, Q.; Ye, Y.; Zhu, Y.L.; Cheng, J.; Chang, X.; Liu, Y.Y.; Li, H.R.; Li, J.B. Testing the mutant selection window hypothesis in vitro and in vivo with Staphylococcus aureus exposed to fosfomycin. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 737–744. [Google Scholar] [CrossRef]
- Steinmetz, S.; Wernly, D.; Moerenhout, K.; Trampuz, A.; Borens, O. Infection after fracture fixation. EFORT Open Rev. 2019, 4, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Corti, N.; Sennhauser, F.H.; Stauffer, U.G.; Nadal, D. Fosfomycin for the initial treatment of acute haematogenous osteomyelitis. Arch. Dis. Child 2003, 88, 512–516. [Google Scholar] [CrossRef]
- Luengo, G.; Lora-Tamayo, J.; Paredes, D.; Munoz-Gallego, I.; Diaz, A.; Delgado, E. Daptomycin Plus Fosfomycin as Salvage Therapy in a Difficult-to-Treat Total Femoral Replacement Infection. J. Bone Jt. Infect. 2018, 3, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Meissner, A.; Haag, R.; Rahmanzadeh, R. Adjuvant fosfomycin medication in chronic osteomyelitis. Infection 1989, 17, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.; Wong, D.; Malhotra, S. Intravenous fosfomycin as salvage therapy for osteomyelitis caused by multidrug-resistant Pseudomonas aeruginosa. Am. J. Health Syst. Pharm. 2021, 78, 2209–2215. [Google Scholar] [CrossRef] [PubMed]
- Narayanasamy, S.; Nation, R.L.; Mahony, A.A.; Grayson, M.L.; Kwong, J.C.; Sherry, N.L.; Khumra, S.; Ellis, A.G.; Frauman, A.G.; Holmes, N.E. Cure of Limb-Threatening XDR Pseudomonas aeruginosa Infection: Combining Genome Sequencing, Therapeutic Drug Level Monitoring, and Surgical Debridement. Open Forum Infect. Dis. 2021, 8, ofaa572. [Google Scholar] [CrossRef] [PubMed]
- Karageorgopoulos, D.E.; Wang, R.; Yu, X.H.; Falagas, M.E. Fosfomycin: Evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J. Antimicrob. Chemother. 2012, 67, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Huttner, A.; Kowalczyk, A.; Turjeman, A.; Babich, T.; Brossier, C.; Eliakim-Raz, N.; Kosiek, K.; Martinez de Tejada, B.; Roux, X.; Shiber, S.; et al. Effect of 5-Day Nitrofurantoin vs Single-Dose Fosfomycin on Clinical Resolution of Uncomplicated Lower Urinary Tract Infection in Women: A Randomized Clinical Trial. JAMA 2018, 319, 1781–1789. [Google Scholar] [CrossRef]
- Van Pienbroek, E.; Hermans, J.; Kaptein, A.A.; Mulder, J.D. Fosfomycin trometamol in a single dose versus seven days nitrofurantoin in the treatment of acute uncomplicated urinary tract infections in women. Pharm. World Sci. 1993, 15, 257–262. [Google Scholar] [CrossRef]
- Elhanan, G.; Tabenkin, H.; Yahalom, R.; Raz, R. Single-dose fosfomycin trometamol versus 5-day cephalexin regimen for treatment of uncomplicated lower urinary tract infections in women. Antimicrob. Agents Chemother. 1994, 38, 2612–2614. [Google Scholar] [CrossRef]
- Christiaens, T.C.; De Meyere, M.; Verschraegen, G.; Peersman, W.; Heytens, S.; De Maeseneer, J.M. Randomised controlled trial of nitrofurantoin versus placebo in the treatment of uncomplicated urinary tract infection in adult women. Br. J. Gen. Pract. 2002, 52, 729–734. [Google Scholar] [PubMed]
- Iravani, A.; Klimberg, I.; Briefer, C.; Munera, C.; Kowalsky, S.F.; Echols, R.M. A trial comparing low-dose, short-course ciprofloxacin and standard 7 day therapy with co-trimoxazole or nitrofurantoin in the treatment of uncomplicated urinary tract infection. J. Antimicrob. Chemother. 1999, 43 (Suppl. A), 67–75. [Google Scholar] [PubMed]
- Guerin, F.; Henegar, C.; Spiridon, G.; Launay, O.; Salmon-Ceron, D.; Poyart, C. Bacterial prostatitis due to Pseudomonas aeruginosa harbouring the blaVIM-2 metallo-beta-lactamase gene from Saudi Arabia. J. Antimicrob. Chemother. 2005, 56, 601–602. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Rice, L.B.; Dane, A.L.; Stus, V.; Sagan, O.; Fedosiuk, E.; Das, A.F.; Skarinsky, D.; Eckburg, P.B.; Ellis-Grosse, E.J. Fosfomycin for Injection (ZTI-01) Versus Piperacillin-tazobactam for the Treatment of Complicated Urinary Tract Infection Including Acute Pyelonephritis: ZEUS, A Phase 2/3 Randomized Trial. Clin. Infect. Dis. 2019, 69, 2045–2056. [Google Scholar] [CrossRef] [PubMed]
- Neuner, E.A.; Sekeres, J.; Hall, G.S.; van Duin, D. Experience with fosfomycin for treatment of urinary tract infections due to multidrug-resistant organisms. Antimicrob. Agents Chemother. 2012, 56, 5744–5748. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rojas, A.; Macia, M.D.; Couce, A.; Gomez, C.; Castaneda-Garcia, A.; Oliver, A.; Blazquez, J. Assessing the emergence of resistance: The absence of biological cost in vivo may compromise fosfomycin treatments for P. aeruginosa infections. PLoS ONE 2010, 5, e10193. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.; Baxter, M.; Wong, M.; Mirzanejad, Y.; Lee, A.; Dhami, R.; Kosar, J.; Werry, D.; Irfan, N.; Tessier, J.F.; et al. Real-life experience with IV fosfomycin in Canada: Results from the Canadian LEadership on Antimicrobial Real-life usage (CLEAR) registry. J. Glob. Antimicrob. Resist. 2023, 33, 171–176. [Google Scholar] [CrossRef]
- Dinh, A.; Salomon, J.; Bru, J.P.; Bernard, L. Fosfomycin: Efficacy against infections caused by multidrug-resistant bacteria. Scand. J. Infect. Dis. 2012, 44, 182–189. [Google Scholar] [CrossRef]
- Giancola, S.E.; Mahoney, M.V.; Hogan, M.D.; Raux, B.R.; McCoy, C.; Hirsch, E.B. Assessment of Fosfomycin for Complicated or Multidrug-Resistant Urinary Tract Infections: Patient Characteristics and Outcomes. Chemotherapy 2017, 62, 100–104. [Google Scholar] [CrossRef]
- van Delden, C. Pseudomonas aeruginosa bloodstream infections: How should we treat them? Int. J. Antimicrob. Agents 2007, 30 (Suppl. 1), S71–S75. [Google Scholar] [CrossRef]
- Lu, C.L.; Liu, C.Y.; Huang, Y.T.; Liao, C.H.; Teng, L.J.; Turnidge, J.D.; Hsueh, P.R. Antimicrobial susceptibilities of commonly encountered bacterial isolates to fosfomycin determined by agar dilution and disk diffusion methods. Antimicrob. Agents Chemother. 2011, 55, 4295–4301. [Google Scholar] [CrossRef]
- Grabein, B.; Graninger, W.; Rodriguez Bano, J.; Dinh, A.; Liesenfeld, D.B. Intravenous fosfomycin-back to the future. Systematic review and meta-analysis of the clinical literature. Clin. Microbiol. Infect. 2017, 23, 363–372. [Google Scholar] [CrossRef]
- Tumbarello, M.; Repetto, E.; Trecarichi, E.M.; Bernardini, C.; De Pascale, G.; Parisini, A.; Rossi, M.; Molinari, M.P.; Spanu, T.; Viscoli, C.; et al. Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: Risk factors and mortality. Epidemiol. Infect. 2011, 139, 1740–1749. [Google Scholar] [CrossRef]
- Falagas, M.E.; Kastoris, A.C.; Karageorgopoulos, D.E.; Rafailidis, P.I. Fosfomycin for the treatment of infections caused by multidrug-resistant non-fermenting Gram-negative bacilli: A systematic review of microbiological, animal and clinical studies. Int. J. Antimicrob. Agents 2009, 34, 111–120. [Google Scholar] [CrossRef]
- Nau, R.; Sorgel, F.; Eiffert, H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin. Microbiol. Rev. 2010, 23, 858–883. [Google Scholar] [CrossRef]
- Nau, R.; Seele, J.; Djukic, M.; Eiffert, H. Pharmacokinetics and pharmacodynamics of antibiotics in central nervous system infections. Curr. Opin. Infect. Dis. 2018, 31, 57–68. [Google Scholar] [CrossRef]
- Drobnic, L.; Quiles, M.; Rodriguez, A. A study of the levels of fosfomycin in the cerebrospinal fluid in adult meningitis. Chemotherapy 1977, 23 (Suppl. 1), 180–188. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Vouloumanou, E.K.; Samonis, G.; Vardakas, K.Z. Fosfomycin. Clin. Microbiol. Rev. 2016, 29, 321–347. [Google Scholar] [CrossRef] [PubMed]
- Frattari, A.; Savini, V.; Polilli, E.; Cibelli, D.; Talamazzi, S.; Bosco, D.; Consorte, A.; Fazii, P.; Parruti, G. Ceftolozane-tazobactam and Fosfomycin for rescue treatment of otogenous meningitis caused by XDR Pseudomonas aeruginosa: Case report and review of the literature. IDCases 2018, 14, e00451. [Google Scholar] [CrossRef] [PubMed]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA-a scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 4, 5. [Google Scholar] [CrossRef]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef] [PubMed]
Ref. | Year | Country | Collection Period | Isolates— n (%) | Isolates with MIC ≤ 128 mg/L—n (%) | MIC Range for Fosfomycin (mg/L) | Method | Testing in Combination—n (%) | Antibiotic in Combination | Notes |
---|---|---|---|---|---|---|---|---|---|---|
[9] | 2020 | Italy | NA | 62 | 60 (97%) | 4–>256 | Standard agar dilution + G6P | NA | NA | In vitro |
[10] | 2017 | USA | 2017 | 4 | 4 (100%) | 16–≥64 | NA | 4 (100%) | Ceftolozane/Tazobactam | In vitro |
[11] | 2020 | Brasil & USA | 2019 | 27 | 12 (44%) | 32–>1024 | Etest VR gradient strips | 27 (100%) | Ceftolozane/Tazobactam | In vitro |
[12] | 2013 | Spain | 2013 | 206 | 178 (86.4%) | 2–≥1024 | Standard agar dilution + G6P | NA | Na | In vitro |
[13] | 2022 | Italy | 2021 | 6 | 5 (83%) | 32–>256 | Standard agar dilution + G6P | 6 (100%) | Cefiderocol 5 (97%); Ceftazidime/Avibactam 1 (3%) | In vivo |
[14] | 2008 | Greece | 2006–2007 | 30 | 27 (90%) | 4–≥512 | Standard agar dilution + G6P | NA | NA | In vitro |
[7] | 2007 | France | 1996–2004 | 59 | NA | NA | NA | NA | NA | In vitro |
[15] | 2007 | Japan | 2004–2006 | 45 | 42 (93.3%) | NA | NA | NA | NA | In vitro |
[16] | 1997 | France | 1994–1995 | 40 | 37 (92.5%) | 2–≥512 | Standard agar diluition + G6P | 40 | Ceftazidime, Imipenem, Amikacin and Ciprofloxacin | In vitro |
[17] | 2002 | Japan | 1995–1998 | 30 | 20 (66.66%) | 4–≥256 | Broth microdilution + G6P | 30 | Cefepime, Aztreonam, Meropenem, Imipenem, Ceftazidime, Gentamicin, Piperacillin, Levofloxacin | In vitro |
[18] | 1998 | Germany | 1996–1997 | 210 | 4 (1.9%) | NA | Standard agar dilution + G6P | 2 | Rifampin, Amikacin | In vitro |
[19] | 1996 | France | NA | 214 | 95 (44.4%) | ≤8–≥128 | Standard agar dilution + G6P | 12 | Ceftazidime | In vitro |
[8] | 2008 | UK | 2005–2008 | 26 | NA | NA | NA | 26 | Colistin, Ciprfloxacin, Piperacillin/Tazobactam, Tobramicin | In vivo |
[20] | 2016 | Spain | NA | 47 | 47 (100%) | 2–128 | Agar + Etest strips | NA | NA | In vitro |
[21] | 2018 | Canada | 2005–2013 | 24 | 18 (75%) | 2–>1024 | Broth microdilution + G6P | NA | NA | In vitro |
[22] | 2019 | India | 2016 | 32 | 16 (50%) | 16–>1024 | Standard agar dilution + G6P | NA | NA | In vitro |
[23] | 2021 | Italy | 2019 | 38 | 33 (87%) | 2–≥128 | Standard agar dilution + G6P | NA | NA | In vitro |
[24] | 2019 | Brazil | NA | 19 | 15 (79%) | 32–>512 | NA | 19 (100%) | Meropenem | In vitro |
[25] | 2020 | Egypt | 2018 | 50 | 29 (58%) | 2–>128 | Agar + Etest strips | NA | NA | In vitro |
[26] | 2019 | USA | NA | 21 | 10 (48%) | 4–>512 | Broth microdilution | 21 (100%) | Ceftazidime-Avibactam, Amikacin, Aztreonam, Colistin, Meropenem | In vitro |
[27] | 2022 | Netherland | NA | 57 | 53 (93%) | 1–>256 | Standard agar dilution + G6P | NA | NA | In vitro |
[28] | 2020 | USA | 2013 | 198 | 118 (60%) | 1–>256 | Standard agar dilution + G6P | NA | NA | In vitro |
Agar + G6P | Other Methods | Total | p-Value | |
---|---|---|---|---|
MIC ≤ 128 mg/L–n (%) | 626 (46%) | 197 (14.5%) † | 823 (60.5%) | p < 0.00001 |
MIC ≥ 256 mg/L–n (%) | 467 (34.4%) | 70 (5.1%) † | 537 (39.5%) | |
Isolates–n (%) | 1093 (80.4%) | 267 (19.6%) † | 1360 (100%) † |
Site of Infection | Dose | Absolute Concentrations | Penetration Rate (AUCtissue/AUCplasma) | PK/PD Target Attainment | References |
---|---|---|---|---|---|
Lung | 4 g single dose | AUC 1221 mg × h/L | 0.53 ± 0.31 | Up to MIC of 16 mg/L | [43] |
CNS | 24 g/day CI 8 g q 8 h over a 30-min infusion | Median Css 104 mg/L (IQR 65–269 mg/L) Median AUC 2381 mg × h/L (IQR 1585–3456 mg × h/L) AUC 885 mg × h/L | 0.46 (IQR 0.36–0.59) 0.27 ± 0.08 | Up to MIC of 32 mg/L Up to MIC of 16 mg/L | [44] [45] |
Muscle | 8 g single dose | Median AUC0–4 477 mg × h/L (IQR 226–860 mg × h/L) AUC0–24 2862 mg/L | 0.71 (IQR 0.34–1.05) | Up to MIC of 64 mg/L | [46] |
Subcutaneous tissue | 15.5 g ± 3.9 g/day in three doses over a 30-min infusion | AUC0–24 2346 mg/L | 0.60–0.73 | Up to MIC of 32 mg/L | [47] |
Abdominal abscess | 8 g single dose | Mean Css 162 ± 64 mg/L AUC0–24 986 mg/L | 0.42 | Up to MIC of 16 mg/L | [48] |
Bone | 100 mg/kg/day | Cmax 96.4 ± 14.5 mg/kg AUC0–12 511.0 ± 100.7 mg∙h/kg | 0.43 | Up to MIC of 16 mg/L | [49] |
Plasma | 24 g/day CI | AUC0–24 4800 mg × h/L (IQR 3816–7152 mg × h/L) | - | Up to MIC of 64 mg/L | [44] |
Lung Infections | Bone/PJI | UTI | CNS Infections | BSI | |
---|---|---|---|---|---|
MIC < 16 | 15–18 g/24 h | 15 g/24 h | 12 g/24 h | 18 g/24 h | 18 g/24 h |
MIC 16–32 | 24 g/24 h (HAP/VAP) | 24 g/24 h | 18 g/24 h | 24 g/24 h | 24 g/24 h |
Combination suggested | Ceftolozane/Tazobactam Meropenem or Imipenem Levofloxacin | Guided by microbiological culture. Remove infected prosthesis. | Aminoglycoside Cefepime Ceftolozane/Tazobactam Meropenem or Imipenem Colistin | Meropenem or Imipenem Aztreonam * Quinolones Ceftolozane/Tazobactam * | Aminoglycoside, Cefepime, Ceftazidime, Ceftolozane/Tazobactam, Meropenem or Imipenem, Colistin, |
Alternative | Cefepime, Ceftazidime Piperacillin/Tazobactam Ceftazidime/Avibactam Aztreonam * Colistin * Aminoglycoside * | Hemodynamical instable: Levofloxacin Cefepime, Ceftazidime Ceftolozane/Tazobactam Tigecycline Meropenem Aztreonam | Ceftazidime Piperacillin/Tazobactam Ceftazidime/Avibactam Aztreonam Quinolones | Remove the device, if any. Evaluate co-administration of intrathecal Aminoglycoside or Colistin | Piperacillin/Tazobactam Aztreonam Ceftazidime/Avibactam |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pipitone, G.; Di Bella, S.; Maraolo, A.E.; Granata, G.; Gatti, M.; Principe, L.; Russo, A.; Gizzi, A.; Pallone, R.; Cascio, A.; et al. Intravenous Fosfomycin for Systemic Multidrug-Resistant Pseudomonas aeruginosa Infections. Antibiotics 2023, 12, 1653. https://doi.org/10.3390/antibiotics12121653
Pipitone G, Di Bella S, Maraolo AE, Granata G, Gatti M, Principe L, Russo A, Gizzi A, Pallone R, Cascio A, et al. Intravenous Fosfomycin for Systemic Multidrug-Resistant Pseudomonas aeruginosa Infections. Antibiotics. 2023; 12(12):1653. https://doi.org/10.3390/antibiotics12121653
Chicago/Turabian StylePipitone, Giuseppe, Stefano Di Bella, Alberto Enrico Maraolo, Guido Granata, Milo Gatti, Luigi Principe, Alessandro Russo, Andrea Gizzi, Rita Pallone, Antonio Cascio, and et al. 2023. "Intravenous Fosfomycin for Systemic Multidrug-Resistant Pseudomonas aeruginosa Infections" Antibiotics 12, no. 12: 1653. https://doi.org/10.3390/antibiotics12121653
APA StylePipitone, G., Di Bella, S., Maraolo, A. E., Granata, G., Gatti, M., Principe, L., Russo, A., Gizzi, A., Pallone, R., Cascio, A., & Iaria, C. (2023). Intravenous Fosfomycin for Systemic Multidrug-Resistant Pseudomonas aeruginosa Infections. Antibiotics, 12(12), 1653. https://doi.org/10.3390/antibiotics12121653