The Coordination of Lanthanide Atoms with Stone–Wales Defects on Graphene: A Cluster DFT Analysis Using ECP Pseudopotentials
Abstract
:1. Introduction
2. Computational Methodology
3. Results and Discussion
- (1)
- HOMO is localized (completely or mainly) on the Ln atom, and LUMO is distributed throughout heavy atoms of the complex. This is the case with Pr, Nd, Pm, Gd, and Dy.
- (2)
- HOMO expands from the Ln atom to the adjacent C atoms, and LUMO is distributed throughout most atoms of the complex. This is the case with La and Ce.
- (3)
- HOMO and LUMO are distributed to a similar degree but with a different pattern throughout heavy atoms of the complex. This is the case with Eu.
- (4)
- Both HOMO and LUMO are centered on the Ln atom, with a limited extension to the (mostly adjacent) C atoms. This is the case with Sm, Ho, Er, Tm, and Lu.
- (5)
- HOMO is distributed throughout heavy atoms of the complex (similar to SWG + Eu), with dominating LUMO lobes on Ln (as with the Ho, Er, Tm, and Lu complexes). This is the case with Yb.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thrower, P.A. The study of defects in graphite by transmission electron microscopy. Chem. Phys. Carbon 1969, 5, 217–319. [Google Scholar]
- Stone, A.J.; Wales, D.J. Theoretical studies of icosahedral C60 and some related structures. Chem. Phys. Lett. 1986, 128, 501–503. [Google Scholar] [CrossRef]
- Leyssale, J.-M.; Vignoles, G.L. A large-scale molecular dynamics study of the divacancy defect in graphene. J. Phys. Chem. C 2014, 118, 8200–8216. [Google Scholar]
- Liao, Y.; Li, Z.; Chen, L.; Croll, A.B.; Xia, W. Crumpling defective graphene sheets. Nano Lett. 2023, 23, 3637–3644. [Google Scholar] [CrossRef]
- Dietrich, F.; Guevara, U.J.; Tiutiunnyk, A.; Laroze, D.; Cisternas, E. Vacancies and Stone–Wales defects in twisted bilayer graphene—A comparative theoretical study. FlatChem 2023, 41, 100541. [Google Scholar] [CrossRef]
- Chen, M.; Han, X.; Tang, K. Topological regulations of Stone-Wales graphene. Carbon 2024, 226, 119163. [Google Scholar] [CrossRef]
- Yang, F.O.; Huang, B.; Li, Z.; Xiao, J.; Wang, H.; Xu, H. Chemical functionalization of graphene nanoribbons by carboxyl groups on Stone-Wales defects. J. Phys. Chem. C 2008, 112, 12003–12007. [Google Scholar] [CrossRef]
- Chen, L.; Ouyang, Y.; Wang, Y.; Sun, Y.; Pan, H. The influence of Stone–Wales defects on magnetic properties in graphene. Phys. E Low-Dimens. Syst. Nanostruct. 2010, 43, 593–597. [Google Scholar] [CrossRef]
- Qin, X.; Meng, Q.; Zhao, W. Effects of Stone–Wales defect upon adsorption of formaldehyde on graphene sheet with or without Al dopant: A first principle study. Surf. Sci. 2011, 605, 930–933. [Google Scholar]
- Chen, L.; Li, J.; Li, D.; Wei, M.; Wang, X. Chemical functionalization of graphene by H adsorption on Stone-Thrower-Wales defects. Solid State Commun. 2012, 152, 1985–1989. [Google Scholar] [CrossRef]
- Guang, H.; Aoki, M.; Tanaka, S.; Kohyama, M. Hole doping by adsorption of oxygen on a Stone–Thrower–Wales defect in graphene. Solid State Commun. 2013, 174, 10–15. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, C.; Fu, Z.; Tang, Y.; Zhang, H. Adsorption of formaldehyde molecule on Stone–Wales defected graphene doped with Cr, Mn, and Co: A theoretical study. Comp. Mater. Sci. 2014, 83, 398–402. [Google Scholar] [CrossRef]
- Harman, A.J.; Raelynn, L. Density functional theory study of metal adatoms at or near a Stone-Wales defect in graphene. Procedia Eng. 2014, 93, 2–7. [Google Scholar] [CrossRef]
- Kim, D.; Lee, S.; Hwang, Y.; Yun, K.-H.; Chung, Y.-C. Hydrogen storage in Li dispersed graphene with Stone–Wales defects: A first-principles study. Int. J. Hydrogen Energy 2014, 39, 13189–13194. [Google Scholar] [CrossRef]
- Yildirim, H.; Kinaci, A.; Zhao, Z.-J.; Chan, M.K.Y.; Greeley, J.P. First-principles analysis of defect-mediated Li adsorption on graphene. ACS Appl. Mater. Interfaces 2014, 6, 21141–21150. [Google Scholar] [CrossRef]
- Long, X.J.; Zhao, F.P.; Liu, H.K.; Huang, J.Y.; Lin, Y.; Zhu, J.; Luo, S.N. Anisotropic shock response of Stone–Wales defects in graphene. J. Phys. Chem. C 2015, 119, 7453–7460. [Google Scholar] [CrossRef]
- Ebrahimi, S. Influence of Stone–Wales defects orientations on stability of graphene nanoribbons under a uniaxial compression strain. Solid State Commun. 2015, 220, 17–20. [Google Scholar] [CrossRef]
- Zhou, Q.; Fu, Z.; Wang, C.; Tang, Y.; Zhang, H.; Yuan, L.; Yang, X. The electronic and magnetic properties of B-doping Stone–Wales defected graphene decorated with transition-metal atoms. Phys. E Low-Dimens. Syst. Nanostruct. 2015, 73, 257–261. [Google Scholar] [CrossRef]
- Fu, Y.; Ragab, T.; Basaran, C. The effect of Stone-Wales defects on the mechanical behavior of graphene nano-ribbons. Comp. Mater. Sci. 2016, 124, 142–150. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, C.; Jiang, Q. Electric field induced enhancement of hydrogen storage capacity for Li atom decorated graphene with Stone-Wales defects. Int. J. Hydrogen Energy 2016, 41, 10776–10785. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; He, F.; Li, K.; Wu, Z. Haeckelite and N-doped haeckelite as catalysts for oxygen reduction reaction: Theoretical studies. J. Phys. Chem. C 2017, 121, 28339–28347. [Google Scholar] [CrossRef]
- Zaminpayma, E.; Razavi, M.E.; Nayebi, P. Electronic properties of graphene with single vacancy and Stone-Wales defects. Appl Surf. Sci. 2017, 414, 101–106. [Google Scholar] [CrossRef]
- Rudi, S.G.; Faez, R.; Moravvej-Farshi, M.K.; Saghafi, K. Effect of Stone-Wales defect on an armchair graphene nanoribbon-based photodetector. Superlattices Microstruct. 2019, 130, 127–138. [Google Scholar] [CrossRef]
- Basiuk, V.A.; Kakazey, M.; Vlasova, M.; Basiuk, E.V. Effect of structural defects on the strength of adsorption of La and Lu species on graphene. Diam. Relat. Mater. 2019, 100, 107597. [Google Scholar] [CrossRef]
- Sadeghzadeh, S.; Ghojavand, M.; Mahmoudi, J. Influence of Stone-Wales defects on the mechanical properties of graphene-like polyaniline (PANI) C3N nanosheets. Diam. Relat. Mater. 2020, 101, 107555. [Google Scholar] [CrossRef]
- Kumar, J.; Ansh; Shrivastava, M. Stone–Wales defect and vacancy-assisted enhanced atomic orbital interactions between graphene and ambient gases: A first-principles insight. ACS Omega 2020, 5, 31281–31288. [Google Scholar] [CrossRef]
- Arokiyanathan, A.L.; Panjulingam, N.; Lakshmipathi, S. Chemical properties of lithium cluster (Lix, x = 2–8) on Stone–Wales defect graphene sheet: A DFT study. J. Phys. Chem. C 2020, 124, 7229–7237. [Google Scholar] [CrossRef]
- Yang, S.; Qian, X.; Xu, H.; Xiong, J.; Wang, Z.; Gu, H. The improved CO adsorption/sensing performance of Stone-Wales defected graphene doped with Fe: A DFT study. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 128, 114603. [Google Scholar] [CrossRef]
- Mendoza-Domínguez, C.U.; Basiuk, V.A. Distortion and bonding strength of phthalocyanine molecules adsorbed on topological defects in graphene. Mater. Chem. Phys. 2021, 271, 124963. [Google Scholar] [CrossRef]
- Mendoza-Domínguez, C.U.; Basiuk, V.A. Adsorption of yttrium bisphthalocyanine on pristine and defect-contaning graphene models: A DFT study. Diam. Relat. Mater. 2022, 126, 109051. [Google Scholar] [CrossRef]
- Rudi, S.G.; Soleimani-Amiri, S. Bilayer armchair graphene nanoribbon photodetector with Stone-Wales defect: A computational study. Mater. Sci. Semicond. Proc. 2022, 150, 106918. [Google Scholar] [CrossRef]
- Mendoza-Domínguez, C.U.; Bolivar-Pineda, L.M.; Basiuk, V.A. Effect of structural defects in graphene on the geometry and electronic properties of adsorbed lanthanide bisphthalocyanines: A DFT analysis. Comp. Theor. Chem. 2023, 1225, 114152. [Google Scholar] [CrossRef]
- Oliveira, T.A.; Silva, P.V.; Meunier, V.; Girão, E.C. Tuning the carrier mobility and electronic structure of graphene nanoribbons using Stone–Wales defects. Carbon 2023, 201, 222–233. [Google Scholar] [CrossRef]
- Jovanović, A.Z.; Dobrota, A.S.; Skorodumova, N.V.; Pašti, I.A. Reactivity of Stone-Wales defect in graphene lattice—DFT study. FlatChem 2023, 42, 100573. [Google Scholar] [CrossRef]
- Wang, S.F.; Xue, D.; Liang, J.; Chen, L.Y.; Xie, Y.; Zhang, J.M. The synergistic regulation effect on the structure and electronic properties of graphene by methane plasma, Stone-Wales defect and equibiaxial strain. Diam. Relat. Mater. 2023, 140, 110426. [Google Scholar] [CrossRef]
- An, Y. Barrier height breakpoint in employing the Arrhenius equation to proton isotope permeation through Stone–Wales graphene. J. Phys. Chem. Lett. 2023, 14, 10779–10783. [Google Scholar] [CrossRef]
- Ghosh, M.; Chowdhury, S.; Majumdar, A.; Jana, D. Stone–Wales decorated phagraphene: A potential candidate for supercapacitor electrodes and thermal transport. ACS Appl. Electr. Mater. 2023, 5, 6725–6737. [Google Scholar] [CrossRef]
- Yuan, P.; Li, C.; Zhang, J.; Wang, F.; Chen, X. The special activity of Stone–Wales defect graphene for the oxygen reduction reaction: A comparison study between the charge-neutral model and the constant potential model calculated by density functional theory. J. Phys. Chem. C 2024, 128, 3250–3259. [Google Scholar] [CrossRef]
- Basiuk, V.A.; Wu, Y.; Prezhdo, O.V.; Basiuk, E.V. Lanthanide atoms induce strong graphene sheet distortion when adsorbed on Stone-Wales defects. J. Phys. Chem. Lett. 2024, 15, 9706–9713. [Google Scholar] [CrossRef]
- Basiuk, V.A.; Prezhdo, O.V.; Basiuk, E.V. Adsorption of lanthanide atoms on graphene: Similar, yet different. J. Phys. Chem. Lett. 2022, 13, 6042–6047. [Google Scholar] [CrossRef]
- Basiuk, E.V.; Prezhdo, O.V.; Basiuk, V.A. Strong bending distortion of supercoronene graphene model upon adsorption of lanthanide atoms. J. Phys. Chem. Lett. 2023, 14, 2910–2916. [Google Scholar] [CrossRef] [PubMed]
- Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Delley, B. Fast calculation of electrostatics in crystals and large molecules. J. Phys. Chem. 1996, 100, 6107–6110. [Google Scholar] [CrossRef]
- Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Delley, B.; Ellis, D.; Freeman, A.; Baerends, E.; Post, D. Binding energy and electronic structure of small copper particles. Phys. Rev. B 1983, 27, 2132–2144. [Google Scholar] [CrossRef]
- Perdew, J.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys. 1987, 86, 866. [Google Scholar] [CrossRef]
- Bergner, A.; Dolg, M.; Kuechle, W.; Stoll, H.; Preuss, H. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys. 1993, 80, 1431–1441. [Google Scholar] [CrossRef]
- Basiuk, V.A. DFT calculations on single lanthanide atoms: Is the task as simple as it seems? Comp. Theor. Chem. 2025, 1248, 115170. [Google Scholar] [CrossRef]
- Basiuk, V.A.; Prezhdo, O.V.; Basiuk, E.V. Thermal smearing in DFT calculations: How small is really small? A case of La and Lu atoms adsorbed on graphene. Mater. Today Commun. 2020, 25, 101595. [Google Scholar] [CrossRef]
- Colherinhas, G.; Fileti, E.E.; Chaban, V.V. The band gap of graphene is efficiently tuned by monovalent ions. J. Phys. Chem. Lett. 2015, 6, 302–307. [Google Scholar] [CrossRef]
- Basiuk, E.V.; Martínez-Herrera, M.; Álvarez-Zauco, E.; Henao-Holguín, L.V.; Puente-Lee, I.; Basiuk, V.A. Noncovalent functionalization of graphene with a Ni(II) tetraaza[14]annulene complex. Dalton Trans. 2014, 43, 7413–7428. [Google Scholar] [CrossRef]
- Basiuk, V.A.; Alzate-Carvajal, N.; Henao-Holguín, L.V.; Rybak-Akimova, E.V.; Basiuk, E.V. Coordination functionalization of graphene oxide with tetraazamacrocyclic complexes of nickel(II): Generation of paramagnetic centers. Appl. Surf. Sci. 2016, 371, 16–27. [Google Scholar] [CrossRef]
- Basiuk, V.A.; Rybak-Akimova, E.V.; Basiuk, E.V. Graphene oxide and nanodiamond: Same carboxylic groups, different complexation properties. RSC Adv. 2017, 7, 17442–17450. [Google Scholar] [CrossRef]
- Rodríguez-Otamendi, D.I.; Meza-Laguna, V.; Acosta, D.; Álvarez-Zauco, E.; Huerta, L.; Basiuk, V.A.; Basiuk, E.V. Eco-friendly synthesis of graphene oxide–silver nanoparticles hybrids: The effect of amine derivatization. Diamond Relat. Mater. 2020, 111, 108208. [Google Scholar] [CrossRef]
- Basiuk, V.A.; Acevedo-Guzmán, D.A.; Meza-Laguna, V.; Álvarez-Zauco, E.; Huerta, L.; Serrano, M.; Kakazey, M.; Basiuk, E.V. High-energy ball-milling preparation and characterization of Ln2O3−graphite nanocomposites. Mater. Today Commun. 2021, 26, 102030. [Google Scholar] [CrossRef]
- Slanina, Z.; Uhlík, F.; Akasaka, T.; Lu, X.; Adamowicz, L. Computational modeling of the Ce@C82 metallofullerene isomeric composition. ECS J. Solid State Sci. Technol. 2019, 8, M118–M121. [Google Scholar] [CrossRef]
- Slanina, Z.; Uhlík, F.; Akasaka, T.; Lu, X.; Adamowicz, L. Calculated relative thermodynamic stabilities of the Gd@C82 isomers. ECS J. Solid State Sci. Technol. 2021, 10, 071013. [Google Scholar] [CrossRef]
Atomic Number | Ln | ΔEfull (kcal/mol) | ΔEdist (kcal/mol) | ΔEbond (kcal/mol) | HOMO (eV) | LUMO (eV) | HOMO-LUMO Gap (eV) |
---|---|---|---|---|---|---|---|
57 | La | −116.3 | 24.4 | −140.7 | −3.358 | −3.133 | 0.225 |
58 | Ce | −100.6 | 25.2 | −125.8 | −3.380 | −3.153 | 0.227 |
59 | Pr | −83.9 | 21.8 | −105.7 | −3.398 | −3.114 | 0.284 |
60 | Nd | −79.9 | 21.6 | −101.5 | −3.600 | −3.119 | 0.481 |
61 | Pm | −77.4 | 21.4 | −98.8 | −3.387 | −3.116 | 0.271 |
62 | Sm | −26.2 | 19.2 | −45.4 | −3.638 | −3.280 | 0.358 |
63 | Eu | −23.0 | 19.8 | −42.8 | −4.114 | −3.119 | 0.995 |
64 | Gd | −50.2 | 13.0 | −63.2 | −4.111 | −3.178 | 0.933 |
66 | Dy | −80.4 | 14.5 | −94.9 | −4.634 | −4.222 | 0.412 |
67 | Ho | −49.4 | 20.4 | −69.8 | −3.741 | −3.266 | 0.475 |
68 | Er | 7.8 | 22.1 | −14.5 | −3.643 | −3.261 | 0.382 |
69 | Tm | −13.9 | 21.0 | −34.9 | −3.619 | −3.310 | 0.309 |
70 | Yb | −12.9 | 22.6 | −35.5 | −4.078 | −3.348 | 0.730 |
71 | Lu | −77.7 | 20.7 | −98.4 | −4.253 | −3.539 | 0.714 |
Atomic Number | Ln | dLn⋯C (Å) | dC–C (Å) | θ (°) | Ln Charge (e) | Ln Spin (e) |
---|---|---|---|---|---|---|
57 | La | 2.432, 2.442 | 1.418 | 142.9 | 0.995 | 0.504 |
58 | Ce | 2.425, 2.426 | 1.418 | 142.1 | 1.071 | −1.541 |
59 | Pr | 2.477, 2.479 | 1.421 | 145.2 | 0.764 | 2.900 |
60 | Nd | 2.452, 2.462 | 1.421 | 145.7 | 0.777 | 4.009 |
61 | Pm | 2.475, 2.488 | 1.424 | 146.4 | 1.071 | 5.050 |
62 | Sm | 2.476, 2.488 | 1.422 | 148.2 | 1.077 | 6.115 |
63 | Eu | 2.470, 2.471 | 1.423 | 147.9 | 1.089 | 7.099 |
64 | Gd | 2.530, 2.533 | 1.410 | 154.2 | 0.914 | −8.229 |
66 | Dy | 2.387, 2.387 | 1.381 | 148.0 | −0.434 | −4.276 |
67 | Ho | 2.391, 2.391 | 1.422 | 146.6 | 1.088 | 3.092 |
68 | Er | 2.383, 2.392 | 1.424 | 145.6 | 1.080 | 2.081 |
69 | Tm | 2.389, 2.391 | 1.425 | 146.2 | 1.080 | 1.009 |
70 | Yb | 2.378, 2.380 | 1.428 | 145.3 | 1.090 | 0.003 |
71 | Lu | 2.351, 2.351 | 1.417 | 145.8 | 0.718 | 0.990 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basiuk, V.A.; Basiuk, E.V. The Coordination of Lanthanide Atoms with Stone–Wales Defects on Graphene: A Cluster DFT Analysis Using ECP Pseudopotentials. Surfaces 2025, 8, 32. https://doi.org/10.3390/surfaces8020032
Basiuk VA, Basiuk EV. The Coordination of Lanthanide Atoms with Stone–Wales Defects on Graphene: A Cluster DFT Analysis Using ECP Pseudopotentials. Surfaces. 2025; 8(2):32. https://doi.org/10.3390/surfaces8020032
Chicago/Turabian StyleBasiuk, Vladimir A., and Elena V. Basiuk. 2025. "The Coordination of Lanthanide Atoms with Stone–Wales Defects on Graphene: A Cluster DFT Analysis Using ECP Pseudopotentials" Surfaces 8, no. 2: 32. https://doi.org/10.3390/surfaces8020032
APA StyleBasiuk, V. A., & Basiuk, E. V. (2025). The Coordination of Lanthanide Atoms with Stone–Wales Defects on Graphene: A Cluster DFT Analysis Using ECP Pseudopotentials. Surfaces, 8(2), 32. https://doi.org/10.3390/surfaces8020032