Studying the Photoactivity of Ag-Decorated TiO2 Nanotubes with Combined AFM and Raman Spectroscopy
Abstract
1. Introduction
2. Materials and Methods
2.1. Photocatalyst Preparation
2.2. Photocatalysis Measurements
2.3. Photocatalyst Regeneration
2.4. General Characterization of Photocatalysts
2.5. AFM-Raman Spectroscopy Characterization
3. Results and Discussion
3.1. Preliminary Characterization
3.2. Photocatalysis Cycles
3.3. Coupled AFM + Raman Spectroscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, H.; Zakersalehi, A.; Al-Abed, S.R.; Han, C.; Dionysiou, D.D. Nanostructured Titanium Oxide Film- and Membrane-Based Photocatalysis for Water Treatment. In Nanotechnology Applications for Clean Water; William Andrew Publishing: Norwich, NY, USA, 2014; pp. 123–132. [Google Scholar]
- Koukkari, P.; Pajarre, R.; Hack, K. Modelling TiO2 Production by Explicit Use of Reaction Kinetics. In The SGTE Casebook; Woodhead Publishing: Cambridge, UK, 2008; pp. 437–446. [Google Scholar]
- Mao, T.; Zha, J.; Hu, Y.; Chen, Q.; Zhang, J.; Luo, X. Research Progress of TiO2 Modification and Photodegradation of Organic Pollutants. Inorganics 2024, 12, 178. [Google Scholar] [CrossRef]
- Yan, X.; Chen, X. Titanium Dioxide Nanomaterials. In Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 1–38. [Google Scholar]
- Li, R.; Zhou, A.; Lu, Q.; Yang, C.; Zhang, J. In Situ Monitoring and Analysis of the Photocatalytic Degradation Process and Mechanism on Recyclable Au NPs-TiO2 NTs Substrate Using Surface-Enhanced Raman Scattering. Colloids Surf. A. Physicochem. Eng. Asp. 2013, 436, 270–278. [Google Scholar] [CrossRef]
- Wint, T.H.M.; Smith, M.F.; Chanlek, N.; Chen, F.; Oo, T.Z.; Songsiriritthigul, P. Physical Origin of Diminishing Photocatalytic Efficiency for Recycled TiO2 Nanotubes and Ag-Loaded TiO2 Nanotubes in Organic Aqueous Solution. Catalysts 2020, 10, 737. [Google Scholar] [CrossRef]
- Chong, X.; Zhao, B.; Li, R.; Ruan, W.; Yang, X. Photocatalytic Degradation of Rhodamine 6G on Ag Modified TiO2 Nanotubes: Surface-Enhanced Raman Scattering Study on Catalytic Kinetics and Substrate Recyclability. Colloids Surf. A. Physicochem. Eng. Asp. 2015, 481, 7–12. [Google Scholar] [CrossRef]
- de Oliveira, R.; Sant’Ana, A.C. Plasmonic Photocatalytic Degradation of Tebuconazole and 2,4-Dichlorophenoxyacetic Acid by Ag Nanoparticles-Decorated TiO2 Tracked by SERS Analysis. Chemosphere 2023, 338, 139490. [Google Scholar] [CrossRef]
- Xie, Y.; Jin, Y.; Zhou, Y.; Wang, Y. SERS Activity of Self-Cleaning Silver/Titania Nanoarray. Appl. Surf. Sci. 2014, 313, 549–557. [Google Scholar] [CrossRef]
- Székely, I.; Kovács, Z.; Rusu, M.; Gyulavári, T.; Todea, M.; Focșan, M.; Baia, M.; Pap, Z. Tungsten Oxide Morphology-Dependent Au/TiO2/WO3 Heterostructures with Applications in Heterogenous Photocatalysis and Surface-Enhanced Raman Spectroscopy. Catalysts 2023, 13, 1015. [Google Scholar] [CrossRef]
- Piazza, V.; Mazare, A.; Diamanti, M.V.; Pedeferri, M.; Schmuki, P. Key Oxidation Parameters That Influence Photo-Induced Properties and Applications of Anodic Titanium Oxides. J. Electrochem. Soc. 2016, 163, H119–H127. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Yu, H.; Zuo, Y.; Gao, J.; He, G.; Sun, Z. Facile Fabrication of Ag/Graphene Oxide/TiO2 Nanorod Array as a Powerful Substrate for Photocatalytic Degradation and Surface-Enhanced Raman Scattering Detection. Appl. Catal. B. 2019, 252, 174–186. [Google Scholar] [CrossRef]
- Serrano, G.; Bonanni, B.; Kosmala, T.; Di Giovannantonio, M.; Diebold, U.; Wandelt, K.; Goletti, C. In situ scanning tunneling microscopy study of Ca-modified rutile TiO2(110) in bulk water. Beilstein J. Nanotechnol. 2015, 6, 438–443. [Google Scholar] [CrossRef]
- Diamanti, M.V.; Gadelrab, K.R.; Pedeferri, M.P.; Stefancich, M.; Pehkonen, S.O.; Chiesa, M. Nanoscale Investigation of Photoinduced Hydrophilicity Variations in Anatase and Rutile Nanopowders. Langmuir 2013, 29, 14512–14518. [Google Scholar] [CrossRef] [PubMed]
- Verma, P. Tip-Enhanced Raman Spectroscopy: Technique and Recent Advances. Chem. Rev. 2017, 117, 6447–6466. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.-C.; Huang, S.-C.; Wu, D.-Y.; Meng, L.-Y.; Li, M.-H.; Huang, T.-X.; Zhong, J.-H.; Wang, X.; Yang, Z.-L.; Ren, B. Electrochemical Tip-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2015, 137, 11928–11931. [Google Scholar] [CrossRef] [PubMed]
- Bussetti, G.; Menegazzo, M.; Mitko, S.; Castiglioni, C.; Tommasini, M.; Lucotti, A.; Magagnin, L.; Russo, V.; Li Bassi, A.; Siena, M.; et al. A Combined Raman Spectroscopy and Atomic Force Microscopy System for In Situ and Real-Time Measures in Electrochemical Cells. Materials 2023, 16, 2239. [Google Scholar] [CrossRef] [PubMed]
- Pishkar, N.; Ghoranneviss, M.; Ghorannevis, Z.; Akbari, H. Study of the Highly Ordered TiO2 Nanotubes Physical Properties Prepared with Two-Step Anodization. Results Phys. 2018, 9, 1246–1249. [Google Scholar] [CrossRef]
- Montakhab, E.; Rashchi, F.; Sheibani, S. Modification and Photocatalytic Activity of Open Channel TiO2 Nanotubes Array Synthesized by Anodization Process. Appl. Surf. Sci. 2020, 534, 147581. [Google Scholar] [CrossRef]
- Ng, S.W.; Yam, F.K.; Hassan, Z. Electrochemical Impregnation of Silver Nanostructures in Titanium Dioxide Nanotubes. J Electrochem. Soc. 2012, 159, D742–D746. [Google Scholar] [CrossRef]
- Depero, L.E.; Bonzi, P.; Zocchi, M.; Casale, C.; De Michele, G. Study of the Anatase-Rutile Transformation in TiO2 Powders Obtained by Laser-Induced Synthesis. J. Mater. Res. 1993, 8, 2709–2715. [Google Scholar] [CrossRef]
- Redmond, P.L.; Hallock, A.J.; Brus, L.E. Electrochemical Ostwald Ripening of Colloidal Ag Particles on Conductive Substrates. Nano. Lett. 2005, 5, 131–135. [Google Scholar] [CrossRef]
- Nycz, M.; Arkusz, K.; Pijanowska, D.G. Fabrication of Electrochemical Biosensor Based on Titanium Dioxide Nanotubes and Silver Nanoparticles for Heat Shock Protein 70 Detection. Materials 2021, 14, 3767. [Google Scholar] [CrossRef]
- Zakaria, N.D.; Omar, M.H.; Ahmad Kamal, N.N.; Abdul Razak, K.; Sönmez, T.; Balakrishnan, V.; Hamzah, H.H. Effect of Supporting Background Electrolytes on the Nanostructure Morphologies and Electrochemical Behaviors of Electrodeposited Gold Nanoparticles on Glassy Carbon Electrode Surfaces. ACS Omega 2021, 6, 24419–24431. [Google Scholar] [CrossRef] [PubMed]
- Bellè, U.; Spini, D.; Del Curto, B.; Pedeferri, M.; Diamanti, M.V. Water-Based Photocatalytic Sol–Gel TiO2 Coatings: Synthesis and Durability. Catalysts 2023, 13, 494. [Google Scholar] [CrossRef]
- Zhang, W.F.; He, Y.L.; Zhang, M.S.; Yin, Z.; Chen, Q. Raman Scattering Study on Anatase TiO2 Nanocrystals. J. Phys. D. Appl. Phys. 2000, 33, 912–916. [Google Scholar] [CrossRef]
- Lim, S.P.; Pandikumar, A.; Lim, H.N.; Ramaraj, R.; Huang, N.M. Boosting Photovoltaic Performance of Dye-Sensitized Solar Cells Using Silver Nanoparticle-Decorated N,S-Co-Doped-TiO2 Photoanode. Sci. Rep. 2015, 5, 11922. [Google Scholar] [CrossRef]
- Sun, C.H.; Wang, M.L.; Feng, Q.; Liu, W.; Xu, C.X. Surface-Enhanced Raman Scattering (SERS) Study on Rhodamine B Adsorbed on Different Substrates. Russ. J. Phys. Chem. A 2015, 89, 291–296. [Google Scholar] [CrossRef]
- Majoube, M.; Henry, M. Fourier Transform Raman and Infrared and Surface-Enhanced Raman Spectra for Rhodamine 6G. Spectrochim. Acta A 1991, 47, 1459–1466. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinnur, M.V.; Menegazzo, M.; Bussetti, G.; Duò, L.; Pedeferri, M.; Diamanti, M.V. Studying the Photoactivity of Ag-Decorated TiO2 Nanotubes with Combined AFM and Raman Spectroscopy. Surfaces 2024, 7, 938-950. https://doi.org/10.3390/surfaces7040061
Shinnur MV, Menegazzo M, Bussetti G, Duò L, Pedeferri M, Diamanti MV. Studying the Photoactivity of Ag-Decorated TiO2 Nanotubes with Combined AFM and Raman Spectroscopy. Surfaces. 2024; 7(4):938-950. https://doi.org/10.3390/surfaces7040061
Chicago/Turabian StyleShinnur, Manjunath Veeranna, Marco Menegazzo, Gianlorenzo Bussetti, Lamberto Duò, MariaPia Pedeferri, and Maria Vittoria Diamanti. 2024. "Studying the Photoactivity of Ag-Decorated TiO2 Nanotubes with Combined AFM and Raman Spectroscopy" Surfaces 7, no. 4: 938-950. https://doi.org/10.3390/surfaces7040061
APA StyleShinnur, M. V., Menegazzo, M., Bussetti, G., Duò, L., Pedeferri, M., & Diamanti, M. V. (2024). Studying the Photoactivity of Ag-Decorated TiO2 Nanotubes with Combined AFM and Raman Spectroscopy. Surfaces, 7(4), 938-950. https://doi.org/10.3390/surfaces7040061