Formation of Organic Monolayers on KF-Etched Si Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Surface Modification
2.2.1. Silicon Preparation
2.2.2. Copper-Catalysed Azide–Alkyne “Click” Reaction
2.3. Surface Characterization
2.3.1. Electrochemical Measurements
2.3.2. Static Water Contact Angle Analysis
2.3.3. Atomic Force Microscopy (AFM)
2.3.4. X-ray Photoelectron Spectroscopy (XPS)
3. Results
3.1. Contact Angle
3.2. Atomic Force Microscopy (AFM)
3.3. X-ray Photoelectron Spectroscopy (XPS)
3.4. Electrochemical Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peiris, C.R.; Ferrie, S.; Ciampi, S.; Rickard, W.D.; Darwish, N. Memristor arrays formed by reversible formation and breakdown of nanoscale silica layers on Si–H surfaces. ACS Appl. Nano Mater. 2022, 5, 6609–6617. [Google Scholar] [CrossRef]
- Fritz, P.A.; Lange, S.C.; Giesbers, M.; Zuilhof, H.; Boom, R.M.; Schroën, C. Simultaneous silicon oxide growth and electrophoretic deposition of graphene oxide. Langmuir 2019, 35, 3717–3723. [Google Scholar] [CrossRef] [PubMed]
- Van den Boom, A.F.; Ferro, S.; Gelvez-Rueda, M.; Zuilhof, H.; Ehrler, B. Toward Improving Triplet Energy Transfer from Tetracene to Silicon Using a Covalently Bound Tetracene Seed Layer. J. Phys. Chem. Lett. 2023, 14, 4454–4461. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Yan, H.; McCreery, R.L.; Bergren, A.J. Electron-beam evaporated silicon as a top contact for molecular electronic device fabrication. Phys. Chem. Chem. Phys. 2011, 13, 14318–14324. [Google Scholar] [CrossRef] [PubMed]
- Ru, J.; Szeto, B.; Bonifas, A.; McCreery, R.L. Microfabrication and integration of diazonium-based aromatic molecular junctions. ACS Appl. Mater. Interfaces 2010, 2, 3693–3701. [Google Scholar] [CrossRef] [PubMed]
- Mooste, M.; Kibena-Põldsepp, E.; Ossonon, B.D.; Bélanger, D.; Tammeveski, K. Oxygen reduction on graphene sheets functionalised by anthraquinone diazonium compound during electrochemical exfoliation of graphite. Electrochim. Acta 2018, 267, 246–254. [Google Scholar] [CrossRef]
- De Villeneuve, C.H.; Pinson, J.; Bernard, M.; Allongue, P. Electrochemical formation of close-packed phenyl layers on Si (111). J. Phys. Chem. B 1997, 101, 2415–2420. [Google Scholar] [CrossRef]
- Hetemi, D.; Pinson, J. Surface functionalisation of polymers. Chem. Soc. Rev. 2017, 46, 5701–5713. [Google Scholar] [CrossRef]
- Hetemi, D.; Noël, V.; Pinson, J. Grafting of diazonium salts on surfaces: Application to biosensors. Biosensors 2020, 10, 4. [Google Scholar] [CrossRef]
- Ha, T.Q.; Planje, I.J.; White, J.R.; Aragones, A.C.; Díez-Pérez, I. Charge transport at the protein–electrode interface in the emerging field of BioMolecular Electronics. Curr. Opin. Electrochem. 2021, 28, 100734. [Google Scholar] [CrossRef]
- Li, T.; Dief, E.M.; Lyu, X.; Rahpeima, S.; Ciampi, S.; Darwish, N. Nanoscale silicon oxide reduces electron transfer kinetics of surface-bound ferrocene monolayers on silicon. J. Phys. Chem. C 2021, 125, 27763–27770. [Google Scholar] [CrossRef]
- Henry-de-Villeneuve, C.; Nguyen-Le, T.L.; Ozanam, F.; Allongue, P. Structure of Mixed Acid/Decyl Monolayers Grafted on Oxide-Free Si (111) Surfaces. Langmuir 2019, 35, 2547–2553. [Google Scholar] [CrossRef] [PubMed]
- Fabre, B.; Hauquier, F. Boronic acid-functionalized oxide-free silicon surfaces for the electrochemical sensing of dopamine. Langmuir 2017, 33, 8693–8699. [Google Scholar] [CrossRef] [PubMed]
- Peiris, C.R.; Vogel, Y.B.; Le Brun, A.P.; Aragonès, A.C.; Coote, M.L.; Díez-Pérez, I.; Ciampi, S.; Darwish, N. Metal–single-molecule–semiconductor junctions formed by a radical reaction bridging gold and silicon electrodes. J. Am. Chem. Soc. 2019, 141, 14788–14797. [Google Scholar] [CrossRef] [PubMed]
- Allongue, P.; Kieling, V.; Gerischer, H. Etching mechanism and atomic structure of H-Si (111) surfaces prepared in NH4F. Electrochim. Acta 1995, 40, 1353–1360. [Google Scholar] [CrossRef]
- Frank, C.J.; McCreery, R.L.; Redd, D.C.; Gansler, T.S. Detection of silicone in lymph node biopsy specimens by near-infrared Raman spectroscopy. Appl. Spectrosc. 1993, 47, 387–390. [Google Scholar] [CrossRef]
- Dasog, M.; Kehrle, J.; Rieger, B.; Veinot, J.G. Silicon nanocrystals and silicon-polymer hybrids: Synthesis, surface engineering, and applications. Angew. Chem. Int. Ed. 2016, 55, 2322–2339. [Google Scholar] [CrossRef] [PubMed]
- Aragonès, A.C.; Martín-Rodríguez, A.; Aravena, D.; Puigmartí-Luis, J.; Amabilino, D.B.; Aliaga-Alcalde, N.; González-Campo, A.; Ruiz, E.; Díez-Pérez, I. Tuning Single-Molecule Conductance in Metalloporphyrin-Based Wires via Supramolecular Interactions. Angew. Chem. Int. Ed. 2020, 132, 19355–19363. [Google Scholar] [CrossRef]
- Tong, Q.-Y.; Gan, Q.; Fountain, G.; Hudson, G.; Enquist, P. Low-temperature bonding of silicon-oxide-covered wafers using diluted HF etching. Appl. Phys. Lett. 2004, 85, 2762–2764. [Google Scholar] [CrossRef]
- Tsuboi, T.; Sakka, T.; Ogata, Y.H. Chemical etching of porous silicon in diluted hydrofluoric acid. Solid State Commun. 1998, 109, 195–199. [Google Scholar] [CrossRef]
- Hu, S.M.; Kerr, D.R. Observation of Etching of n-Type Silicon in Aqueous HF Solutions. J. Electrochem. Soc. 1967, 114, 414. [Google Scholar] [CrossRef]
- Noguchi, H.; Adachi, S. Chemical treatment effects of silicon surfaces in aqueous KF solution. Appl. Surf. Sci. 2005, 246, 139–148. [Google Scholar] [CrossRef]
- Machavaram, V.; Badcock, R.; Fernando, G. Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching. Sens. Actuators A Phys. 2007, 138, 248–260. [Google Scholar] [CrossRef]
- Tomioka, K.; Adachi, S. Strong and stable ultraviolet emission from porous silicon prepared by photoetching in aqueous KF solution. Appl. Phys. Lett. 2005, 87, 251920. [Google Scholar] [CrossRef]
- Seo, Y.H.; Nahm, K.S.; Lee, K.B. Mechanistic Study of Silicon Etching in HF-KBrO3-H2O Solution. J. Electrochem. Soc. 1993, 140, 1453. [Google Scholar] [CrossRef]
- Takai, C.; Ishino, T.; Fuji, M.; Shirai, T. Rapid and high yield synthesis of hollow silica nanoparticles using an NH4F catalyst. Colloids Surf. A Physicochem. Eng. Asp. 2014, 446, 46–49. [Google Scholar] [CrossRef]
- Suratwala, T.I.; Miller, P.E.; Bude, J.D.; Steele, W.A.; Shen, N.; Monticelli, M.V.; Feit, M.D.; Laurence, T.A.; Norton, M.A.; Carr, C.W. HF-based etching processes for improving laser damage resistance of fused silica optical surfaces. J. Am. Ceram. Soc. 2011, 94, 416–428. [Google Scholar] [CrossRef]
- Tomita, N.; Adachi, S. Chemical treatment effects on Si (111) surfaces in aqueous NaF solution. Jpn. J. Appl. Phys. 2001, 40, 6705. [Google Scholar] [CrossRef]
- Sun, L.; Shao, T.; Zhou, X.; Li, F.; Chen, S.; Li, W.; Ye, X.; Huang, J.; Li, B.; Yang, L. KOH-based shallow etching for exposing subsurface damage and increasing laser damage resistance of fused silica optical surface. Opt. Mater. 2020, 108, 110249. [Google Scholar] [CrossRef]
- Scarpetta-Pizo, L.; Venegas, R.; Barrias, P.; Muñoz-Becerra, K.; Vilches-Labbé, N.; Mura, F.; Méndez-Torres, A.M.; Ramírez-Tagle, R.; Toro-Labbé, A.; Hevia, S. Electron Spin-Dependent Electrocatalysis for the Oxygen Reduction Reaction in a Chiro-Self-Assembled Iron Phthalocyanine Device. Angew. Chem. Int. Ed. 2023, 136, e202315146. [Google Scholar] [CrossRef]
- Li, T.; Dief, E.M.; Kalužná, Z.; MacGregor, M.; Foroutan-Nejad, C.; Darwish, N. On-Surface Azide–Alkyne Cycloaddition Reaction: Does It Click with Ruthenium Catalysts? Langmuir 2022, 38, 5532–5541. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Peiris, C.R.; Aragonès, A.C.; Hurtado, C.; Kicic, A.; Ciampi, S.; MacGregor, M.; Darwish, T.; Darwish, N. Terminal Deuterium Atoms Protect Silicon from Oxidation. ACS Appl. Mater. Interfaces 2023, 15, 47833–47844. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.M.; Bergren, A.J.; McCreery, R.L. Derivatization of optically transparent materials with diazonium reagents for spectroscopy of buried interfaces. Anal. Chem. 2009, 81, 6972–6980. [Google Scholar] [CrossRef] [PubMed]
- Bentley, C.L.; Kang, M.; Unwin, P.R. Time-resolved detection of surface oxide formation at individual gold nanoparticles: Role in electrocatalysis and new approach for sizing by electrochemical impacts. J. Am. Chem. Soc. 2016, 138, 12755–12758. [Google Scholar] [CrossRef] [PubMed]
- Escobar, G.; Venegas, R.; Ponce, I.; Toro-Labbé, A.; Zagal, J.H.; Recio, F.J.; Muñoz-Becerra, K. Elucidating the electronic synergetic effects in heteroatomic doped FeN4-CNR (R=-F,-Cl,-Br) oxygen reduction catalysts. Electrochim. Acta 2023, 466, 143060. [Google Scholar] [CrossRef]
- Veerbeek, J.; Steen, R.; Vijselaar, W.; Rurup, W.F.; Korom, S.A.; Rozzi, A.; Corradini, R.; Segerink, L.; Huskens, J. Selective functionalization with PNA of silicon nanowires on silicon oxide substrates. Langmuir 2018, 34, 11395–11404. [Google Scholar] [CrossRef]
- Ciampi, S.; Eggers, P.K.; Le Saux, G.; James, M.; Harper, J.B.; Gooding, J.J. Silicon (100) electrodes resistant to oxidation in aqueous solutions: An unexpected benefit of surface acetylene moieties. Langmuir 2009, 25, 2530–2539. [Google Scholar] [CrossRef]
- Ciampi, S.; Böcking, T.; Kilian, K.A.; James, M.; Harper, J.B.; Gooding, J.J. Functionalization of acetylene-terminated monolayers on Si (100) surfaces: A click chemistry approach. Langmuir 2007, 23, 9320–9329. [Google Scholar] [CrossRef] [PubMed]
- Golvari, P.; Alkameh, K.; Kuebler, S.M. Si–H surface groups inhibit methacrylic polymerization: Thermal hydrosilylation of allyl methacrylate with silicon nanoparticles. Langmuir 2022, 38, 8366–8373. [Google Scholar] [CrossRef]
- Darwish, N.; Eggers, P.K.; Ciampi, S.; Tong, Y.; Ye, S.; Paddon-Row, M.N.; Gooding, J.J. Probing the effect of the solution environment around redox-active moieties using rigid anthraquinone terminated molecular rulers. J. Am. Chem. Soc. 2012, 134, 18401–18409. [Google Scholar] [CrossRef]
- Engelhardt, G.R.; Case, R.P.; Macdonald, D.D. Electrochemical impedance spectroscopy optimization on passive metals. J. Electrochem. Soc. 2016, 163, C470. [Google Scholar] [CrossRef]
- Barsukov, Y.; Macdonald, J.R. Electrochemical impedance spectroscopy. Mater. Charact. 2012, 2, 898–913. [Google Scholar]
- Hirschorn, B.; Orazem, M.E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta 2010, 55, 6218–6227. [Google Scholar] [CrossRef]
- Bentley, C.L.; Kang, M.; Unwin, P.R. Scanning electrochemical cell microscopy: New perspectives on electrode processes in action. Curr. Opin. Electrochem. 2017, 6, 23–30. [Google Scholar] [CrossRef]
- Jones, R.; Pollock, H.M.; Cleaver, J.A.; Hodges, C.S. Adhesion forces between glass and silicon surfaces in air studied by AFM: Effects of relative humidity, particle size, roughness, and surface treatment. Langmuir 2002, 18, 8045–8055. [Google Scholar] [CrossRef]
- Wu, Y.; Tilley, R.D.; Gooding, J.J. Challenges and Solutions in Developing Ultrasensitive Biosensors. J. Am. Chem. Soc. 2019, 141, 1162–1170. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Datson, Z.; Darwish, N. Formation of Organic Monolayers on KF-Etched Si Surfaces. Surfaces 2024, 7, 358-368. https://doi.org/10.3390/surfaces7020022
Li T, Datson Z, Darwish N. Formation of Organic Monolayers on KF-Etched Si Surfaces. Surfaces. 2024; 7(2):358-368. https://doi.org/10.3390/surfaces7020022
Chicago/Turabian StyleLi, Tiexin, Zane Datson, and Nadim Darwish. 2024. "Formation of Organic Monolayers on KF-Etched Si Surfaces" Surfaces 7, no. 2: 358-368. https://doi.org/10.3390/surfaces7020022
APA StyleLi, T., Datson, Z., & Darwish, N. (2024). Formation of Organic Monolayers on KF-Etched Si Surfaces. Surfaces, 7(2), 358-368. https://doi.org/10.3390/surfaces7020022