Charged Hybrid Microstructures in Transparent Thin-Film ITO Traps: Localization and Optical Control
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RF | Radio-frequency |
ITO | Indium tin oxide |
UV | Ultraviolet |
SW | Single-well |
DW | Double-well |
Appendix A. ITO Double Well Trap Model
References
- Paul, W. Electromagnetic traps for charged and neutral particles (Nobel lecture). Angew. Chem. Int. Ed. Engl. 1990, 29, 739–748. [Google Scholar] [CrossRef]
- Kajita, M. Ion Traps: A Gentle Introduction; IOP Publishing: Bristol, UK, 2022. [Google Scholar]
- Mihalcea, B.M.; Giurgiu, L.C.; Stan, C.; Vişan, G.T.; Ganciu, M.; Filinov, V.; Lapitsky, D.; Deputatova, L.; Syrovatka, R. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions. J. Appl. Phys. 2016, 119, 114303. [Google Scholar] [CrossRef][Green Version]
- Nolting, D.; Malek, R.; Makarov, A. Ion traps in modern mass spectrometry. Mass Spectrom. Rev. 2019, 38, 150–168. [Google Scholar] [CrossRef]
- Guo, Q.; Gao, L.; Zhai, Y.; Xu, W. Recent developments of miniature ion trap mass spectrometers. Chin. Chem. Lett. 2018, 29, 1578–1584. [Google Scholar] [CrossRef]
- Häffner, H.; Roos, C.F.; Blatt, R. Quantum computing with trapped ions. Phys. Rep. 2008, 469, 155–203. [Google Scholar] [CrossRef][Green Version]
- Monroe, C.; Kim, J. Scaling the ion trap quantum processor. Science 2013, 339, 1164–1169. [Google Scholar] [CrossRef][Green Version]
- Nop, G.N.; Paudyal, D.; Smith, J.D. Ytterbium ion trap quantum computing: The current state-of-the-art. AVS Quantum Sci. 2021, 3, 044101. [Google Scholar] [CrossRef]
- Noel, C.; Kozhanov, A.; Cetina, M.; Monroe, C. Trapped ion quantum computers: Challenges and opportunities. In Proceedings of the APS March Meeting 2023, Las Vegas, NV, USA, 5–10 March 2023. [Google Scholar]
- Ghosh, I.; Saxena, V.; Krishnamachari, A. Study of Plasma Distribution Function in a Paul Trap using Palette Mapped 3D Plots. In Proceedings of the 2022 IEEE International Conference of Electron Devices Society Kolkata Chapter (EDKCON), Kolkata, India, 26–27 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 312–318. [Google Scholar]
- Deputatova, L.; Syrovatka, R.; Vasilyak, L.; Filinov, V.; Lapitsky, D.; Vladimirov, V.; Pecherkin, V.Y. Linear electrodynamic trap as a tool for cleaning dusty surfaces. Contrib. Plasma Phys. 2019, 59, 340–344. [Google Scholar] [CrossRef]
- Rybin, V.; Rudyi, S.; Rozhdestvensky, Y. Nano-and microparticle Nonlinear Damping Identification in quadrupole trap. Int. J. Non-Linear Mech. 2022, 147, 104227. [Google Scholar] [CrossRef]
- Xiong, C.; Liu, H.; Liu, C.; Xue, J.; Zhan, L.; Nie, Z. Mass, size, and density measurements of microparticles in a quadrupole ion trap. Anal. Chem. 2019, 91, 13508–13513. [Google Scholar] [CrossRef]
- Farr, A.; Allen, C.; Hilleke, R.; Clark, R. Fluorescent Quantum-Sized Carbon Dots Isolated in an rf Paul Trap. In Proceedings of the APS March Meeting Abstracts, Baltimore, MD, USA, 18–22 March 2013; Volume 2013, pp. 1–114. [Google Scholar]
- Nemova, G. Laser cooling and trapping of rare-earth-doped particles. Appl. Sci. 2022, 12, 3777. [Google Scholar] [CrossRef]
- Howder, C.R.; Long, B.A.; Bell, D.M.; Furakawa, K.H.; Johnson, R.C.; Fang, Z.; Anderson, S.L. Photoluminescence of charged CdSe/ZnS quantum dots in the gas phase: Effects of charge and heating on absorption and emission probabilities. ACS Nano 2014, 8, 12534–12548. [Google Scholar] [CrossRef]
- March, R.E. Quadrupole ion traps. Mass Spectrom. Rev. 2009, 28, 961–989. [Google Scholar] [CrossRef]
- Fernandez-Gonzalvo, X.; Keller, M. A fully fiber-integrated ion trap for portable quantum technologies. Sci. Rep. 2023, 13, 523. [Google Scholar] [CrossRef]
- Eltony, A.M.; Wang, S.X.; Akselrod, G.M.; Herskind, P.F.; Chuang, I.L. Transparent ion trap with integrated photodetector. Appl. Phys. Lett. 2013, 102, 054106. [Google Scholar] [CrossRef]
- Stockett, M.H.; Houmøller, J.; Støchkel, K.; Svendsen, A.; Brøndsted Nielsen, S. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy. Rev. Sci. Instrum. 2016, 87, 053103. [Google Scholar] [CrossRef]
- Araneda, G.; Cerchiari, G.; Higginbottom, D.B.; Holz, P.C.; Lakhmanskiy, K.; Obšil, P.; Colombe, Y.; Blatt, R. The Panopticon device: An integrated Paul-trap–hemispherical mirror system for quantum optics. Rev. Sci. Instrum. 2020, 91, 113201. [Google Scholar] [CrossRef]
- Torres, I.; Fernández, S.; Fernández-Vallejo, M.; Arnedo, I.; Gandía, J.J. Graphene-based electrodes for silicon heterojunction solar cell technology. Materials 2021, 14, 4833. [Google Scholar] [CrossRef]
- Salih, E.Y.; Ramizy, A.; Aldaghri, O.; Mohd Sabri, M.F.; Madkhali, N.; Alinad, T.; Ibnaouf, K.H.; Eisa, M.H. In-depth optical analysis of Zn (Al) O mixed metal oxide film-based Zn/Al-layered double hydroxide for TCO application. Crystals 2022, 12, 79. [Google Scholar] [CrossRef]
- Cirocka, A.; Zarzeczańska, D.; Wcisło, A. Good Choice of Electrode Material as the Key to Creating Electrochemical Sensors—Characteristics of Carbon Materials and Transparent Conductive Oxides (TCO). Materials 2021, 14, 4743. [Google Scholar] [CrossRef]
- Ji, C.; Liu, D.; Zhang, C.; Jay Guo, L. Ultrathin-metal-film-based transparent electrodes with relative transmittance surpassing 100%. Nat. Commun. 2020, 11, 3367. [Google Scholar] [CrossRef] [PubMed]
- Kurdesau, F.; Khripunov, G.; Da Cunha, A.; Kaelin, M.; Tiwari, A. Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature. J. Non-Cryst. Solids 2006, 352, 1466–1470. [Google Scholar] [CrossRef]
- Tuna, O.; Selamet, Y.; Aygun, G.; Ozyuzer, L. High quality ITO thin films grown by dc and RF sputtering without oxygen. J. Phys. D Appl. Phys. 2010, 43, 055402. [Google Scholar] [CrossRef][Green Version]
- Kosarian, A.; Shakiba, M.; Farshidi, E. Role of sputtering power on the microstructural and electro-optical properties of ITO thin films deposited using DC sputtering technique. IEEJ Trans. Electr. Electron. Eng. 2018, 13, 27–31. [Google Scholar] [CrossRef]
- Amalathas, A.P.; Alkaisi, M.M. Effects of film thickness and sputtering power on properties of ITO thin films deposited by RF magnetron sputtering without oxygen. J. Mater. Sci. Mater. Electron. 2016, 27, 11064–11071. [Google Scholar] [CrossRef]
- Cruz, L.; Legnani, C.; Matoso, I.; Ferreira, C.; Moutinho, H. Influence of pressure and annealing on the microstructural and electro-optical properties of RF magnetron sputtered ITO thin films. Mater. Res. Bull. 2004, 39, 993–1003. [Google Scholar] [CrossRef]
- Amosova, L. Electrooptical properties and structural features of amorphous ITO. Semiconductors 2015, 49, 414–418. [Google Scholar] [CrossRef]
- Amosova, L.; Isaev, M. Deposition of transparent indium tin oxide electrodes by magnetron sputtering of a metallic target on a cold substrate. Tech. Phys. 2014, 59, 1545–1549. [Google Scholar] [CrossRef]
- Konshina, E.; Shcherbinin, D.; Kurochkina, M. Comparison of the properties of nematic liquid crystals doped with TiO2 and CdSe/ZnS nanoparticles. J. Mol. Liq. 2018, 267, 308–314. [Google Scholar] [CrossRef]
- Zhang, X.; Zeng, Q.; Xiong, Y.; Ji, T.; Wang, C.; Shen, X.; Lu, M.; Wang, H.; Wen, S.; Zhang, Y.; et al. Energy level modification with carbon dot interlayers enables efficient perovskite solar cells and quantum dot based light-emitting diodes. Adv. Funct. Mater. 2020, 30, 1910530. [Google Scholar] [CrossRef]
- Almaev, A.V.; Kopyev, V.V.; Novikov, V.A.; Chikiryaka, A.V.; Yakovlev, N.N.; Usseinov, A.B.; Karipbayev, Z.T.; Akilbekov, A.T.; Koishybayeva, Z.K.; Popov, A.I. ITO Thin Films for Low-Resistance Gas Sensors. Materials 2022, 16, 342. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, L.; Hui, L.; Jin, X.; Ma, B. Indium tin oxide thin-film thermocouple probe based on sapphire microrod. Sensors 2020, 20, 1289. [Google Scholar] [CrossRef][Green Version]
- Kokorina, O.O.; Rybin, V.V.; Rudyi, S.S.; Rozhdestvensky, Y.V. Double-well effective potential in a linear Paul trap with end-cap electrodes. In Proceedings of the Quantum Nanophotonic Materials, Devices, and Systems 2021, International Society for Optics and Photonics, San Diego, CA, USA, 1 August 2021; Volume 11806, p. 118060U. [Google Scholar]
- Wang, X.-Y.; Ren, Y.; Hong, Y.; Huang, Q.; Chen, Z.-G.; Yuan, L.-Y.; Huang, Z.-X.; Li, M.; Zhou, Z. Design and Simulation of a Double Potential Well Flat Ion Trap. J. Chin. Mass Spectrom. Soc. 2023, 44, 34. [Google Scholar]
- Malek, R.; Wanczek, K. Trapping and excitation of ions in a double well potential. Rapid Commun. Mass Spectrom. 1997, 11, 1616–1618. [Google Scholar] [CrossRef]
- Tanaka, U.; Suzuki, K.; Ibaraki, Y.; Urabe, S. Design of a surface electrode trap for parallel ion strings. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 035301. [Google Scholar] [CrossRef][Green Version]
- Tao, J.; Likforman, J.P.; Zhao, P.; Li, H.Y.; Henner, T.; Lim, Y.D.; Seit, W.W.; Guidoni, L.; Tan, C.S. Large-Scale Fabrication of Surface Ion Traps on a 300 mm Glass Wafer. Phys. Status Solidi 2021, 258, 2000589. [Google Scholar] [CrossRef]
- Kurshanov, D.A.; Khavlyuk, P.D.; Baranov, M.A.; Dubavik, A.; Rybin, A.V.; Fedorov, A.V.; Baranov, A.V. Magneto-fluorescent hybrid sensor CaCO3-Fe3O4-AgInS2/ZnS for the detection of heavy metal ions in aqueous media. Materials 2020, 13, 4373. [Google Scholar] [CrossRef]
- Peng, W.P.; Lin, H.C.; Chu, M.L.; Chang, H.C.; Lin, H.H.; Yu, A.L.; Chen, C.H. Charge monitoring cell mass spectrometry. Anal. Chem. 2008, 80, 2524–2530. [Google Scholar] [CrossRef]
- Gerlich, D. Inhomogeneous RF fields: A versatile tool for the study of processes with slow ions. State-Sel. State-Ion-Mol. React. Dyn. Part 1 Exp. 1992, 82, 1–176. [Google Scholar]
- Rudyi, S.S.; Vovk, T.A.; Rozhdestvensky, Y.V. Features of the effective potential formed by multipole ion trap. J. Phys. B At. Mol. Opt. Phys. 2019, 52, 095001. [Google Scholar] [CrossRef]
- Lechner, K. Classical Electrodynamics; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Abbas, M.; Craven, P.; Spann, J.; Witherow, W.; West, E.; Gallagher, D.; Adrian, M.; Fishman, G.; Tankosic, D.; LeClair, A.; et al. Radiation pressure measurements on micron-size individual dust grains. J. Geophys. Res. Space Phys. 2003, 108, A6. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shcherbinin, D.; Rybin, V.; Rudyi, S.; Dubavik, A.; Cherevkov, S.; Rozhdestvensky, Y.; Ivanov, A. Charged Hybrid Microstructures in Transparent Thin-Film ITO Traps: Localization and Optical Control. Surfaces 2023, 6, 133-144. https://doi.org/10.3390/surfaces6020010
Shcherbinin D, Rybin V, Rudyi S, Dubavik A, Cherevkov S, Rozhdestvensky Y, Ivanov A. Charged Hybrid Microstructures in Transparent Thin-Film ITO Traps: Localization and Optical Control. Surfaces. 2023; 6(2):133-144. https://doi.org/10.3390/surfaces6020010
Chicago/Turabian StyleShcherbinin, Dmitrii, Vadim Rybin, Semyon Rudyi, Aliaksei Dubavik, Sergei Cherevkov, Yuri Rozhdestvensky, and Andrei Ivanov. 2023. "Charged Hybrid Microstructures in Transparent Thin-Film ITO Traps: Localization and Optical Control" Surfaces 6, no. 2: 133-144. https://doi.org/10.3390/surfaces6020010
APA StyleShcherbinin, D., Rybin, V., Rudyi, S., Dubavik, A., Cherevkov, S., Rozhdestvensky, Y., & Ivanov, A. (2023). Charged Hybrid Microstructures in Transparent Thin-Film ITO Traps: Localization and Optical Control. Surfaces, 6(2), 133-144. https://doi.org/10.3390/surfaces6020010