Microstructure, Phase Composition, Mechanical Properties and Tribological Properties of Plasma Sprayed Al-25Si Wear-Resistant Coatings
Abstract
:1. Introduction
2. Experimental Investigation
2.1. Coating Spray Material and Process
2.2. Powder and Coating Microstructure/Composition Characterization Methods
2.3. Microhardness, Bond Strength and Wear Resistance Test of the Coating
3. Results and Discussion
3.1. Microstructure of the Powder and Al-25Si Coating
3.2. Mechanical Properties of Inner Pore Al-25Si Coating
3.2.1. Microhardness of Inner Pore Al-25Si Coating
3.2.2. Bonding Strength of Inner Hole Al-25Si Coating
3.3. Wear Resistance of Inner Hole Al-25Si Coating
- (a)
- Choice of load
- (b) Selection of reciprocating frequency and stroke
- (c) Selection of lubrication method and temperature
3.3.1. Friction Coefficient and Wear Volume
3.3.2. Wear Scar Morphology and Wear Mechanism
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, X.D.; Lu, J.B.; Sun, J.; Peng, M.; Zhang, R. Fabrication of the all-aluminum engine cylinder and the treatment process of the internal surface of the cylinder liner. Light Alloy. Process. Technol. 2018, 46, 46–50. [Google Scholar]
- Wang, Z.T. Russia launched the world’s first all-aluminum aircraft engine. Light Alloy. Process. Technol. 2018, 46, 24. [Google Scholar] [CrossRef]
- Miller, W.S.; Zhuang, L.; Bottema, J.; Wittebrood, A.J.; De Smet, P.; Haszler, A.; Vieregge, A. Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 2000, 280, 37–49. [Google Scholar] [CrossRef]
- Reyes, R.V.; Bello, T.S.; Kakitani, R.; Costa, T.A.; Garcia, A.; Cheung, N.; Spinelli, J.E. Tensile properties and related microstructural aspects of hypereutectic Al-Si alloys directionally solidified under different melt superheats and transient heat flow conditions. Mater. Sci. Eng. A 2017, 685, 235–243. [Google Scholar] [CrossRef]
- Li, Z.M.; Sun, X.F.; Song, W. Research on Surface Welding Repair and RoUing Strengthening Process on Inner HoIe Parts of Equipment. J. Armored Forces Eng. Coll. 2014, 28, 92–96. [Google Scholar]
- Samuel, A.M.; Garza-Elizondo, G.H.; Doty, H.W.; Samuel, F. Role of modification and melt thermal treatment processes on the microstructure and tensile properties of Al-Si alloys. Mater. Des. 2015, 80, 99–108. [Google Scholar] [CrossRef]
- Lin, X.; Liu, C.; Zhai, Y.; Wang, K. Influences of Si and Mg contents on microstructures of Al–xSi–yMg functionally gradient composites reinforced with in situ primary Si and Mg2Si particles by centrifugal casting. J. Mater. Sci. 2011, 46, 1058–1075. [Google Scholar] [CrossRef]
- Lin, X.; Liu, C.; Xiao, H. Fabrication of Al-Si-Mg functionally graded materials tube reinforced with in situ Si/Mg2Si particles by centrifugal casting. Compos. Part B Eng. 2013, 45, 8–21. [Google Scholar] [CrossRef]
- Mehran, Q.M.; Fazal, M.A.; Bushroa, A.R.; Rubaiee, S. A critical review on physical vapor deposition coatings applied on different engine components. Crit. Rev. Solid State Mater. Sci. 2018, 43, 158–175. [Google Scholar] [CrossRef]
- Zhai, Y.B.; Liu, C.M.; Wang, K.; Zou, M.; Xie, Y. Characteristics of two Al based functionally gradient composites reinforced by primary Si particles and Si/in situ Mg2Si particles in centrifugal casting. Trans-Actions Nonferrous Met. Soc. China 2010, 20, 361–370. [Google Scholar] [CrossRef]
- Lin, X.D.; Liu, C.M.; Lü, X.J. Effects of Si and Mg contents on the structures and wear resistance of centrifugal Al-xSi-yMg composites reinforced with in situ particles. J. Compos. Mater. 2013, 30, 155–164. [Google Scholar]
- Lin, X.D.; He, T.; Lu, J.B.; Ye, J.C. Manufacturing Technology of the Water-Cooled Aluminum Alloy Engine Cylinder Liner/Body and its Heat Transferring Behavior. Spec. Cast. Nonferrous Alloy. 2016, 36, 345–348. [Google Scholar]
- Lin, X.D.; He, T. Preparation Technology of Aluminum Alloy Engine Cylinder Liner-Cylinder Body and Their Heat Transfer Performance. Foundry 2016, 65, 119–123. [Google Scholar]
- Villafuerte, J. Plasma transferred wire arc process fortifies aluminum engine blocks. Adv. Mater. Process. 2014, 172, 37–38. [Google Scholar]
- Kramer, M.S.; Rivard, C.J.; Koltuniak, F.A. Thermally Sprayed Aluminum-Bronze Coatings on Aluminum Engine Bores. U.S. Patent 5,080,056, 1992. [Google Scholar]
- Ichikawa, H.; Nakada, N.; Yajima, J. The New High-Performance V6 Gasoline Turbocharged Engine from NISSAN; SAE Technical Paper 2009-01-1067; SAE International: Warrendale, PA, USA, 2009. [Google Scholar]
- Furumata, S.; Kakinuma, T.; Tochiki, H. Development of New 3.5 L V6 Turbocharged Gasoline Direct Injection Engine. In Advances in Turbocharged Racing Engines; SAE International: Warrendale, PA, USA, 2019; pp. 171–186. [Google Scholar]
- Hwang, K.; Hwang, I.; Lee, H.; Park, H.; Choi, H.; Lee, K.; Kim, W.; Kim, H.; Han, B.; Lee, J.S.; et al. Development of New High-Efficiency Kappa 1.6 L GDI Engine. In SAE 2016 World Congress and Exhibition; SAE International: Warrendale, PA, USA, 2016. [Google Scholar]
- Hahn, M.; Fischer, A. Characterization of thermally sprayed micro- and nanocrystalline cylinder wall coatings by means of a cavitation test. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2009, 223, 27–37. [Google Scholar] [CrossRef]
- San, Y.L.C. Produce of Aluminium Complex Electroplating Cylinder. CN Patent 01130934.2, 27 August 2001. [Google Scholar]
- DaimlerChrysler, A.G. Coating of Cylinder Walls of Internal Combustion Engine with Aluminum-Silicon Alloys or Aluminum Silicon Composites. U.S. Patent 6,080,360, 27 June 2000. [Google Scholar]
- Alshmri, F. Rapid Solidification Processing: Melt Spinning of Al-High Si Alloys. Adv. Mater. Res. 2011, 383–390, 1740–1746. [Google Scholar] [CrossRef]
- Qian, L.; Lin, J.; Xiong, H. A Fitting Formula for Predicting Droplet Mean Diameter for Various Liquid in Effervescent Atomization Spray. J. Therm. Spray Technol. 2010, 19, 586–601. [Google Scholar] [CrossRef]
- Cava, R.D.; Bolfarini, C.; Kiminami, C.S.; Mazzer, E.M.; Botta Filho, W.J.; Gargarella, P.; Eckert, J. Spray forming of Cu-11.85 Al-3.2 Ni-3Mn (wt%) shape memory alloy. J. Alloy. Compd. 2014, 615, 602–606. [Google Scholar] [CrossRef]
- Nagarajan, B.; Hu, Z.; Song, X.; Zhai, W.; Wei, J. Development of micro selective laser melting: The state of the art and future perspectives. Engineering 2019, 8, 37–44. [Google Scholar] [CrossRef]
- He, P.F.; Tang, L.; Ma, G.Z.; Wang, H.D.; Chen, S.Y.; Liu, M.; Ding, S.Y.; Bai, Y.; Tang, J.J.; He, D.Y. Understanding the formation mechanism of supersonic atmospheric plasma sprayed in-situ hypereutectic Al-25 wt.%Si coating with nanostructured coupled eutectic: From powder, in-flight droplet, splat to coating. Appl. Surf. Sci. 2020, 530, 147–246. [Google Scholar] [CrossRef]
- Wang, H.J.; Liu, M.; Li, X.Q.; Ma, G.Z. The Development of Internal Plasma Spraying Device. J. Therm. Spray Technol. 2011, 3, 10. [Google Scholar]
- Zhang, G.Z.; Wang, H.J.; Zhao, W.H. High-Energy Inner Hole Plasma Spray Gun. Beijing: CN 2,038,814, 6 July 1989. [Google Scholar]
- Dong, X.Q.; Zhang, Y. Application of internal plasma arc spraying on reinforcing the cylinder bore of engine. Weld. Technol. 2010, 39, 77. [Google Scholar]
- Rong, C.; Shen, B. Nanocrystalline and nanocomposite permanent magnets by melt spinning technique. Chin. Phys. B 2018, 27, 117–121. [Google Scholar] [CrossRef]
- Rajabi, M.; Simchi, A.; Davami, P. Microstructure and mechanical properties of Al-20Si-5Fe-2X(X = Cu, Ni, Cr) alloys produced by melt-spinning. Mater. Sci. Eng. A 2008, 492, 443–449. [Google Scholar] [CrossRef]
- Kang, N.; Coddet, P.; Liao, H.; Baur, T.; Coddet, C. Wear behavior and microstructure of hypereutectic Al-Si alloys prepared by selective laser melting. Appl. Surf. Sci. 2016, 378, 142–149. [Google Scholar] [CrossRef]
- Uzun, O.; Karaaslan, T.; Gogebakan, M.; Keskin, M.U. Hardness and microstructural characteristics of rapidly solidified Al-8-16 wt.% Si alloys. J. Alloy. Compd. 2004, 376, 149–157. [Google Scholar] [CrossRef]
- Gao, B.; Hu, L.; Li, S.; Hao, Y.; Zhang, Y.D.; Tu, G.F.; Grosdidier, T. Study on the nanostructure formation mechanism of hypereutectic Al-17.5 Si alloy induced by high current pulsed electron beam. Appl. Surf. Sci. 2015, 346, 147–157. [Google Scholar] [CrossRef]
- Wang, H.J. A Guide for Thermal Spray Engineers; National Defense Industry Press: Beijing, China, 2010; pp. 35–38. [Google Scholar]
- Bhushan, B. Introduction to Tribology; John Wiley & Sons, National Defense Industry Press: Beijing, China, 2010. [Google Scholar]
- Hartfield-Wünsch, S.E.; Tung, S.C. The Effect of Microstructure on the Wear Behavior of Thermal Spray Coatings; ASM International: Materials Park, OH, USA, 1994; p. 38. [Google Scholar]
Element | Al | Si | Cu | Zn | Fe | Mn | Mg | Ni | Sn |
---|---|---|---|---|---|---|---|---|---|
Content (wt.%) | 84.1 | 10.8 | 3.1 | 0.7 | 0.4 | 0.3 | 0.2 | 0.2 | 0.2 |
Parameters | Values |
---|---|
Total spray gas flow (Ar + H2); | 115 L/min |
H2 content | 7.5% |
Ar flow | 106 L/min |
H2 flow | 9 L/min |
Spraying voltage | 86 V |
Spraying current | 430 A |
Spraying distance | 90 mm |
Powder feeding rate | 30 g/min |
Powder feeding pressure | 0.4 MPa |
Powder air flow | 12.5 L/min |
Position | Al | Si | Cu | O |
---|---|---|---|---|
Point 1 | 11.26 | 84.50 | 1.11 | 3.13 |
Point 2 | 19.24 | 67.61 | 1.67 | 11.47 |
Point 3 | 29.49 | 57.40 | 3.14 | 9.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Q.; Liu, M.; Huang, Y.; Zhou, X.; Ma, G.; Wang, H.; Xing, Z. Microstructure, Phase Composition, Mechanical Properties and Tribological Properties of Plasma Sprayed Al-25Si Wear-Resistant Coatings. Surfaces 2022, 5, 350-364. https://doi.org/10.3390/surfaces5030026
Peng Q, Liu M, Huang Y, Zhou X, Ma G, Wang H, Xing Z. Microstructure, Phase Composition, Mechanical Properties and Tribological Properties of Plasma Sprayed Al-25Si Wear-Resistant Coatings. Surfaces. 2022; 5(3):350-364. https://doi.org/10.3390/surfaces5030026
Chicago/Turabian StylePeng, Qiqing, Ming Liu, Yanfei Huang, Xinyuan Zhou, Guozheng Ma, Haidou Wang, and Zhiguo Xing. 2022. "Microstructure, Phase Composition, Mechanical Properties and Tribological Properties of Plasma Sprayed Al-25Si Wear-Resistant Coatings" Surfaces 5, no. 3: 350-364. https://doi.org/10.3390/surfaces5030026
APA StylePeng, Q., Liu, M., Huang, Y., Zhou, X., Ma, G., Wang, H., & Xing, Z. (2022). Microstructure, Phase Composition, Mechanical Properties and Tribological Properties of Plasma Sprayed Al-25Si Wear-Resistant Coatings. Surfaces, 5(3), 350-364. https://doi.org/10.3390/surfaces5030026