Preparation, Characterization and CO Oxidation Performance of Ag2O/γ-Al2O3 and (Ag2O+RuO2)/γ-Al2O3 Catalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Ag2O/γ-Al2O3 and (Ag2O+RuO2)/γ-Al2O3 Catalysts
2.2. The CO Oxidation Experiment
2.3. Materials Characterization
3. Results and Discussions
3.1. Crystallinity Studies of the NMs and Catalysts
3.2. The Surface Morphological and Elemental Analysis
3.3. The Surface Chemical Analysis of the Catalysts
3.4. Thermal Stability of the NMs and Catalysts
3.5. Pore Statistics and Surface Area of the Catalysts
4. The CO Oxidation Performance of the Catalysts
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Manikandan, V.; Velmurugan, P.; Park, J.-H.; Chang, W.-S.; Park, Y.-J.; Jayanthi, P.; Cho, M.; Oh, B.-T. Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens. 3 Biotech 2017, 7, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Ananth, A.; Dharaneedharan, S.; Gandhi, M.S.; Heo, M.-S.; Mok, Y.S. Novel RuO2 nanosheets—Facile synthesis, characterization and application. Chem. Eng. J. 2013, 223, 729–736. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, T.; Li, X.; Pang, H.; Xue, H. Noble metal-based materials in high-performance supercapacitors. Inorg. Chem. Front. 2017, 4, 33–53. [Google Scholar] [CrossRef]
- Hong, S.-C.; Kim, S.; Jang, W.-J.; Han, T.-H.; Hong, J.-P.; Oh, J.-S.; Hwang, T.; Lee, Y.; Lee, J.; Nam, J.-D. Supercapacitor characteristics of pressurized RuO2/carbon powder as binder-free electrodes. RSC Adv. 2014, 4, 48276–48284. [Google Scholar] [CrossRef]
- Lu, C.A.; Lin, P.; Lin, H.-C.; Wang, S.-F. Effects of Silver Oxide Addition on the Electrical Resistivity and Microstructure of Low-Temperature-Curing Metallo-Organic Decomposition Silver Pastes. Jpn. J. Appl. Phys. 2007, 46, 4179–4183. [Google Scholar] [CrossRef]
- Liu, Z.-P.; Hu, P. Mechanism for the high reactivity of CO oxidation on a ruthenium–oxide. J. Chem. Phys. 2001, 114, 5956–5957. [Google Scholar] [CrossRef]
- Ananth, A.; Gregory, D.H.; Mok, Y.S. Synthesis, Characterization and Shape-Dependent Catalytic CO Oxidation Performance of Ruthenium Oxide Nanomaterials: Influence of Polymer Surfactant. Appl. Sci. 2015, 5, 344–358. [Google Scholar] [CrossRef]
- Imamura, S.; Sawada, H.; Uemura, K.; Ishida, S. Oxidation of Carbon Monoxide Catalyzed by Manganese-Silver Composite Oxides. J. Catal. 1988, 109, 198–205. [Google Scholar] [CrossRef]
- Taylor, S.H.; Rhodes, C. Ambient temperature oxidation of carbon monoxide using a Cu2Ag2O3 catalyst. Catal. Lett. 2005, 101, 31–33. [Google Scholar] [CrossRef]
- Chen, L.; Ma, D.; Pietruszka, B.; Bao, X. Carbon-Supported Silver Catalysts for CO Selective Oxidation in Excess Hydrogen. J. Nat. Gas Chem. 2006, 15, 181–190. [Google Scholar] [CrossRef]
- Wang, H.; Luo, S.; Li, X.; Liu, W.; Wu, X.; Weng, D.; Liu, S. Thermally stable Ag/Al2O3 confined catalysts with high diffusion-induced oxidation activity. Catal. Today 2019, 332, 189–194. [Google Scholar] [CrossRef]
- Gerenser, L.J. Photoemission investigation of silver/poly (ethylene terephthalate) interfacial chemistry: The effect of oxygen-plasma treatment. J. Vac. Sci. Technol. A 1990, 8, 3682. [Google Scholar] [CrossRef]
- Tjeng, L.H.; Meinders, M.B.J.; van Elp, J.; Ghijsen, J.; Sawatzky, G.A. Electronic structure of Ag2O. Phys. Rev. B 1990, 41, 3190–3199. [Google Scholar] [CrossRef] [PubMed]
- Hess, A.; Kemnitz, E.; Lippitz, A.; Unger, W.E.S.; Menz, D.H. ESCA, XRD, and IR characterization of aluminum oxide, hydroxyfluoride, and fluoride surfaces in correlation with their catalytic activity in heterogeneous halogen exchange reactions. J. Catal. 1994, 148, 270–280. [Google Scholar] [CrossRef]
- Wagner, C.D.; Passoja, D.E.; Hillery, H.F.; Kinisky, T.G.; Six, H.A.; Jansen, W.T.; Taylor, J.A. Auger and photoelectron line energy relationships in aluminum-oxygen and silicon-oxygen compounds. J. Vac. Sci. Technol. 1982, 21, 933. [Google Scholar] [CrossRef]
- Venezia, A.M.; Bertoncello, R.; Deganello, G. X-ray photoelectron spectroscopy investigation of pumice-supported nickel catalysts. Surf. Interface Anal. 1995, 23, 239–247. [Google Scholar] [CrossRef]
- Morgan, D.J. Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 2015, 47, 1072–1079. [Google Scholar] [CrossRef]
- Selvaganesh, S.V.; Selvarani, G.; Sridhar, P.; Pitchumani, S.; Shukla, A.K. A Durable RuO2-Carbon-Supported Pt Catalyst for PEFCs: A Cause and Effect Study. J. Electrochem. Soc. 2012, 159, B463–B470. [Google Scholar] [CrossRef]
- Farkas, A.; Mellau, G.C.; Over, H. Novel Insight in the CO Oxidation on RuO2 (110) by in Situ Reflection-Absorption Infrared Spectroscopy. J. Phys. Chem. C 2009, 113, 4341–14355. [Google Scholar] [CrossRef]
- Bianchi, C.L.; Ragaini, V.; Cattania, M.G. An XPS study on ruthenium compounds. Mater. Chem. Phys. 1991, 29, 297–306. [Google Scholar] [CrossRef]
- Taufik, A.; Saleh, R. The Influence of Graphene on Silver Oxide Synthesis Through Microwave Assisted Method. AIP Conf. Proc. 2018, 2023, 020018–020021. [Google Scholar]
- Ananth, A.; Mok, Y.S. Dielectric Barrier Discharge (DBD) Plasma Assisted Synthesis of Ag2O Nanomaterials and Ag2O/RuO2 Nanocomposites. Nanomaterials 2016, 6, 42. [Google Scholar] [CrossRef]
- Yuan, C.; Chen, L.; Gao, B.; Su, L.; Zhang, X. Synthesis and utilization of RuO2.xH2O nanodots well dispersed on poly (sodium 4-styrene sulfonate) functionalized multi-walled carbon nanotubes for supercapacitors. J. Mater. Chem. 2009, 19, 246–252. [Google Scholar] [CrossRef]
- Garner, W.E.; Reeves, L.W. The thermal decomposition of silver oxide. Trans. Faraday Soc. 1954, 50, 254–260. [Google Scholar] [CrossRef]
- Nagy, A.J.; Mestl, G.; Herein, D.; Weinberg, G.; Kitzelmann, E.; Schlogl, R. The Correlation of Subsurface Oxygen Diffusion with Variations of Silver Morphology in the Silver–Oxygen System. J. Catal. 1999, 182, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Li, W.-X.; Stampfl, C.; Scheffler, M. Insights into the function of silver as an oxidation catalyst by ab initio, atomistic thermodynamics. Phys. Rev. B 2003, 68, 165412–165427. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.A.; Sajid, N.; Badshah, A.; Wattoo, M.H.S.; Anjum, D.H.; Nadeem, M.A. CO Oxidation Catalyzed by Ag Nanoparticles Supported on SnO/CeO2. J. Braz. Chem. Soc. 2015, 26, 695–704. [Google Scholar] [CrossRef]
- Zhang, X.; Qu, Z.; Li, X.; Wen, M.; Quan, X.; Ma, D.; Wu, J. Studies of silver species for low-temperature CO oxidation on Ag/SiO2 catalysts. Sep. Pur. Technol. 2010, 72, 395–400. [Google Scholar] [CrossRef]
- Li, G.; Zhang, X.; Feng, W.; Fang, X.; Liu, J. Nanoporous CeO2-Ag catalysts prepared by etching the CeO2/CuO/Ag2O mixed oxides for CO oxidation. Corros. Sci. 2018, 134, 140–148. [Google Scholar] [CrossRef]
- Gardner, S.D.; Hoflund, G.B. Catalytic Behavior of Noble Metal/Reducible Oxide Materials for Low-Temperature CO Oxidation. 1. Comparison of Catalyst Performance. Langmuir 1991, 7, 2135–2139. [Google Scholar] [CrossRef]
- Kolobova, E.; Pestryakov, A.; Shemeryankina, A.; Kotolevich, Y.; Martynyuk, O.; Vazquez, H.J.T.; Bogdanchikova, N. Formation of silver active states in Ag/ZSM-5 catalysts for CO oxidation. Fuel 2014, 138, 65–71. [Google Scholar] [CrossRef]
- Dey, S.; Dhal, G.C. Applications of silver nanocatalysts for low-temperature oxidation of carbon monoxide. Inorg. Chem. Commun. 2019, 110, 107614–107625. [Google Scholar] [CrossRef]
- Lachkov, P.T.; Chin, Y.-H.C. Catalytic Consequences of Reactive Intermediates during CO Oxidation on Ag Clusters. ACS Catal. 2018, 8, 11987–11998. [Google Scholar] [CrossRef]
- Qu, Z.; Zhang, X.; Yu, F.; Liu, X.; Fu, Q. Role of the Al chemical environment in the formation of silver species and its CO oxidation activity. J. Catal. 2015, 321, 113–122. [Google Scholar] [CrossRef]
- Gac, W. The influence of silver on the structural, redox and catalytic properties of the cryptomelane-type manganese oxides in the low-temperature CO oxidation reaction. Appl. Catal. B Environ. 2007, 75, 107–117. [Google Scholar] [CrossRef]
- Park, J.-N.; Shon, J.K.; Jin, M.; Kong, S.S.; Moon, K.; Park, G.O.; Boo, J.H.; Kim, J.M. Room-temperature CO oxidation over a highly ordered mesoporous RuO2 catalyst. Reac. Kinet. Mech. Catal. 2011, 103, 87–99. [Google Scholar] [CrossRef]
- Iizuka, Y.; Hiragi, Y.; Yakushiji, H.; Miura, T. An examination of active sites on Au-Ag bimetallic catalysts based on CO oxidation over Au/Ag2O and a comparison to Ag-contaminated Au powder. Chin. J. Catal. 2016, 37, 1712–1720. [Google Scholar] [CrossRef]
- Li, L.; Yang, Q.; Zhang, C.; Yan, J.; Peng, Y.; Li, J. Hollow-Structural Ag/Co3O4 Nanocatalyst for CO Oxidation: Interfacial Synergistic Effect. ACS Appl. Nano Mater. 2019, 2, 3480–3489. [Google Scholar] [CrossRef]
- Khan, Z.; Dummer, N.F.; Edwards, J.K. Silver–palladium catalysts for the direct synthesis of hydrogen peroxide. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170058. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Liu, F.; Huang, J.; Luo, W.; Yu, J.; Fang, X.; Lebedeva, O.E.; Wang, X. The Influence of RuO2 Distribution and Dispersion on the Reactivity of RuO2-SnO2 Composite Oxide Catalysts Probed by CO Oxidation. ChemCatChem 2019, 11, 2473–2483. [Google Scholar] [CrossRef]
Catalyst Name | BET Surface Area (m2/g) | Total Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|
SLOAL | 112.9 | 0.23 | 7.98 |
RUOAL | 124.6 | 0.24 | 7.89 |
SLORUOAL | 96.5 | 0.19 | 8.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ananth, A.; Jeong, R.H.; Boo, J.-H. Preparation, Characterization and CO Oxidation Performance of Ag2O/γ-Al2O3 and (Ag2O+RuO2)/γ-Al2O3 Catalysts. Surfaces 2020, 3, 251-264. https://doi.org/10.3390/surfaces3020019
Ananth A, Jeong RH, Boo J-H. Preparation, Characterization and CO Oxidation Performance of Ag2O/γ-Al2O3 and (Ag2O+RuO2)/γ-Al2O3 Catalysts. Surfaces. 2020; 3(2):251-264. https://doi.org/10.3390/surfaces3020019
Chicago/Turabian StyleAnanth, Antony, Rak Hyun Jeong, and Jin-Hyo Boo. 2020. "Preparation, Characterization and CO Oxidation Performance of Ag2O/γ-Al2O3 and (Ag2O+RuO2)/γ-Al2O3 Catalysts" Surfaces 3, no. 2: 251-264. https://doi.org/10.3390/surfaces3020019
APA StyleAnanth, A., Jeong, R. H., & Boo, J. -H. (2020). Preparation, Characterization and CO Oxidation Performance of Ag2O/γ-Al2O3 and (Ag2O+RuO2)/γ-Al2O3 Catalysts. Surfaces, 3(2), 251-264. https://doi.org/10.3390/surfaces3020019