AI Chatbots and Remote Sensing Archaeology: Current Landscape, Technical Barriers, and Future Directions
Abstract
1. Introduction
2. History of Chatbots
2.1. Foundations and Architectures of Chatbots
2.2. Conversational Artificial Intelligence for Remote Sensing Analysis
2.3. Artificial Intelligence Applications in Archaeology
3. Chatbots in Remote Sensing
3.1. Remote Sensing Fields
3.2. Remote Sensing in Archaeology
4. Current Challenges and Research Gaps
4.1. Challenges
4.2. Gaps and Research Opportunities
4.3. Ethical Considerations and Data Governance
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Djindjian, F. Archaeology and Computers: A Long Story in the Making of Modern Archaeology. Archeol. Calc. 2019, 30, 13–20. [Google Scholar]
- Grosman, L. Reaching the Point of No Return: The Computational Revolution in Archaeology. Annu. Rev. Anthropol. 2016, 45, 129–145. [Google Scholar] [CrossRef]
- Hetrick, V.; Leventhal, R.M.; Read, D.M. A Design to Use Computational Science for Archaeological Interpretation. Comput. Graph. 1992, 26, 179–181. [Google Scholar] [CrossRef]
- McManamon, F.P.; Kintigh, K.W. Transforming Archaeological Data into Knowledge. SAA Archaeol. Rec. 2010, 10, 37–40. [Google Scholar]
- Cobb, P.J. Large Language Models and Generative AI, Oh My! Archaeology in the Time of ChatGPT, Midjourney, and Beyond. Adv. Archaeol. Pract. 2023, 11, 363–369. [Google Scholar] [CrossRef]
- Agapiou, A.; Lysandrou, V. Interacting with the Artificial Intelligence (AI) Language Model ChatGPT: A Synopsis of Earth Observation and Remote Sensing in Archaeology. Heritage 2023, 6, 4072–4085. [Google Scholar] [CrossRef]
- Abu Shawar, B.; Atwell, E. Chatbots: Are They Really Useful? J. Lang. Technol. Comput. Linguist. 2007, 22, 29–49. [Google Scholar] [CrossRef]
- Weizenbaum, J. ELIZA—A Computer Program for the Study of Natural Language Communication Between Man and Machine. Commun. ACM 1966, 9, 36–45. [Google Scholar] [CrossRef]
- Colby, K. Artificial Paranoia: A Computer Simulation of Paranoid Processes; Pergamon Press: Oxford, UK, 1975. [Google Scholar]
- Shum, H.Y.; He, X.; Li, D. From Eliza to XiaoIce: Challenges and Opportunities with Social Chatbots. Front. Inf. Technol. Electron. Eng. 2018, 19, 10–26. [Google Scholar] [CrossRef]
- Vidya, G.; Vernekar, N.K.; Kelkar, G. Comparative Study on Chatbot Frameworks. Int. J. Res. Appl. Sci. Eng. Technol. (IJRASET) 2023, 11, 3602–3610. [Google Scholar] [CrossRef]
- Adamopoulou, E.; Moussiades, L. An Overview of Chatbot Technology. In Artificial Intelligence Applications and Innovations (AIAI 2020); Maglogiannis, I., Iliadis, L., Pimenidis, E., Eds.; Springer: Cham, Switzerland, 2020; pp. 373–383. [Google Scholar] [CrossRef]
- Thoppilan, R.; De Freitas, D.; Hall, J.; Shazeer, N.; Kulshreshtha, A.; Cheng, H.T.; Jin, A.; Bos, T.; Baker, L.; Du, Y.; et al. LaMDA: Language Models for Dialog Applications. arXiv 2022, arXiv:2201.08239. Available online: https://arxiv.org/abs/2201.08239 (accessed on 3 August 2025).
- Casillo, M.; Clarizia, F.; D’Aniello, G.; De Santo, M.; Lombardi, M.; Santaniello, D. CHATBot: A Cultural Heritage Aware TellerBot for Supporting Touristic Experiences. Pattern Recognit. Lett. 2020, 131, 234–243. [Google Scholar] [CrossRef]
- AlAmin, M.; Ali, M.S.; Salam, A.; Khan, A.; Ali, A.; Ullah, A.; Alam, M.N.; Chowdhury, S.K. History of Generative Artificial Intelligence (AI) Chatbots: Past, Present, and Future Development. arXiv 2024, arXiv:2402.05122. [Google Scholar] [CrossRef]
- Chakraborty, C.; Pal, S.; Bhattacharya, M.; Dash, S.; Lee, S.S. Overview of Chatbots with Special Emphasis on Artificial Intelligence–Enabled ChatGPT in Medical Science. Front. Artif. Intell. 2023, 6, 1237704. [Google Scholar] [CrossRef] [PubMed]
- Shrager, J. ELIZA Reinterpreted: The World’s First Chatbot Was Not Intended as a Chatbot at All. arXiv 2024, arXiv:2406.17650. [Google Scholar]
- Lombardi, M.; Pascale, F.; Santaniello, D. An Application for Cultural Heritage Using a Chatbot. In Proceedings of the 2019 2nd International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 1–3 May 2019. [Google Scholar]
- Godewithana, N.; Kirindage, G. Intelligent Hybrid Chatbot Solution for Archaeological Sites Tracking. In Proceedings of the Sixth International Conference on Inventive Computation Technologies (ICICT 2021), Coimbatore, India, 20–22 January 2021; pp. 517–522. [Google Scholar] [CrossRef]
- Paijmans, H.; Brandsen, A. Searching in Archaeological Texts: Problems and Solutions Using an Artificial Intelligence Approach. PalArch’s J. Archaeol. Egypt/Egyptol. 2010, 7, 1–6. [Google Scholar]
- Kuska, M.T.; Wahabzada, M.; Paulus, S. AIChatbots for Agriculture, Where Can Large Language Models Provide Substantial Value? Comput. Electron. Agric. 2024, 221, 108924. [Google Scholar] [CrossRef]
- Deng, P.; Zhou, W.; Wu, H. ChangeChat: An Interactive Model for Remote Sensing Change Analysis via Multimodal Instruction Tuning. In Proceedings of the 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Hyderabad, India, 6–11 April 2025. [Google Scholar]
- Osco, L.P.; de Lemos, E.L.; Gonçalves, W.N.; Ramos, A.P.M.; Marcato Junior, J. The Potential of Visual ChatGPT for Remote Sensing. Remote Sens. 2023, 15, 3232. [Google Scholar] [CrossRef]
- Wikipedia Contributors. ELIZA. In Wikipedia, The Free Encyclopedia; Wikimedia Foundation, Last Edited 31 October 2025. Available online: https://en.wikipedia.org/wiki/ELIZA (accessed on 15 June 2025).
- Adamopoulou, E.; Moussiades, L. Chatbots: History, Technology, and Applications. Mach. Learn. Appl. 2020, 2, 100006. [Google Scholar] [CrossRef]
- Rudolph, J.; Tan, S.; Tan, S. War of the Chatbots: Bard, Bing Chat, ChatGPT, Ernie and Beyond. The New AI Gold Rush and Its Impact on Higher Education. J. Appl. Learn. Teach. 2023, 6, 364–389. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef]
- Dritsas, E.; Trigka, M. Remote Sensing and Geospatial Analysis in the Big Data Era: A Survey. Remote Sens. 2025, 17, 550. [Google Scholar] [CrossRef]
- Fiorucci, M.; Verschoofvan der Vaart, W.B.; Soleni, P.; Le Saux, B.; Traviglia, A. Deep Learning for Archaeological Object Detection on LiDAR: New Evaluation Measures and Insights. Remote Sens. 2022, 14, 1694. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar] [CrossRef]
- Ning, H.; Li, Z.; Akinboyewa, T.; Lessani, M.N. An Autonomous GIS Agent Framework for Geospatial Data Retrieval. Int. J. Digit. Earth 2025, 18, 2458688. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; van der Meijde, M.; Carranza, E.J.M.; de Smeth, J.B.; Woldai, T. Multi- and Hyperspectral Geologic Remote Sensing: A Review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Kuckreja, K.; Danish, M.S.; Naseer, M.; Das, A.; Khan, S.; Khan, F.S. GeoChat: Grounded Large Vision–Language Model for Remote Sensing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–22 June 2024; pp. 27831–27840. [Google Scholar]
- Vahidnia, M.H. Empowering Geoportals HCI with TaskOriented Chatbots Through NLP and Deep Transfer Learning. Big Earth Data 2024, 8, 608–648. [Google Scholar] [CrossRef]
- Rane, J.; Kaya, Ö.; Mallick, S.K.; Rane, N.L. Artificial IntelligencePowered Spatial Analysis and ChatGPTDriven Interpretation of Remote Sensing and GIS Data. In Generative Artificial Intelligence in Agriculture, Education, and Business; Deep Science Publishing: San Francisco, CA, USA, 2024; pp. 162–217. [Google Scholar]
- Pierdicca, R.; Muralikrishna, N.; Tonetto, F.; Ghianda, A. On the Use of Large Language Models for GIS-Based Spatial Analysis. ISPRS Int. J. Geo-Inf. 2025, 14, 401. [Google Scholar] [CrossRef]
- Ciccone, G. ChatGPT as a Digital Assistant for Archaeology: Insights from the Smart Anomaly Detection Assistant Development. Heritage 2024, 7, 5428–5445. [Google Scholar] [CrossRef]
- Labba, C.; Alcouffe, A.; Crubézy, E.; Boyer, A. IArch: An AI Tool for Digging Deeper into Archaeological Data. In Proceedings of the 2023 IEEE 35th International Conference on Tools with Artificial Intelligence (ICTAI), Atlanta, GA, USA, 6–8 November 2023; 2023; pp. 22–29. [Google Scholar]
- Bellat, M.; Orellana Figueroa, J.D.; Reeves, J.S.; TaghizadehMehrjardi, R.; Tennie, C.; Scholten, T. Machine Learning Applications in Archaeological Practices: A Review. arXiv 2025, arXiv:2501.03840. [Google Scholar] [CrossRef]
- Ali, G.; Mijwil, M.M.; Adamopoulos, I.; Ayad, J. Leveraging the Internet of Things, Remote Sensing and Artificial Intelligence for Sustainable Forest Management. Babylonian J. Internet Things 2025, 1, 1–65. [Google Scholar] [CrossRef] [PubMed]
- BroniBediako, C.; Xia, J.; Yokoya, N. Real-Time Semantic Segmentation: A brief survey and comparative study in remote sensing. IEEE Geosci. Remote Sens. Mag. 2023, 11, 94–124. [Google Scholar] [CrossRef]
- Patel, N. Generative Artificial Intelligence and Remote Sensing: A Perspective on the Past and the Future. IEEE Geosci. Remote Sens. Mag. 2023, 11, 86–88. [Google Scholar] [CrossRef]
- Lin, H.; Hong, D.; Ge, S.; Luo, C.; Jiang, K.; Jin, H.; Wen, C. RSMoE: A VisionLanguage Model with Mixture of Experts for Remote Sensing Image Captioning and Visual Question Answering. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5614918. [Google Scholar] [CrossRef]
- Casini, L.; Orr, V.; Montanucci, A.; Marchetti, N.; Roccetti, M. Archaeological Sites Detection with a HumanAI Collaboration Workflow. arXiv 2023, arXiv:2302.05286. [Google Scholar] [CrossRef]
- Agapiou, A. Unequal Horizons: Global North–South Disparities in Archaeological Earth Observation (2000–2025). Remote Sens. 2025, 17, 3371. [Google Scholar] [CrossRef]
- Drpinghaus, J.; Weil, V.; Rockenfeller, R.; Mangroliya, M.P. A Novel Approach Towards the Robustness of Centrality Measures in Networks. Soc. Sci. Humanit. Open 2025, 11, 101183. [Google Scholar] [CrossRef]
- Hazan, S. The Promise of Pastiche: How AI Systems Pervade the Cultural Heritage Sector. In The Arts and Computational Culture: Real and Virtual Worlds; Giannini, T., Bowen, J.P., Eds.; Springer: Cham, Switzerland, 2024; pp. 253–274. [Google Scholar] [CrossRef]
- AI in QGIS: Integration of LargeLanguageModel Plugins (Promptly, QLLM, and Others). QGIS Repository Documentation 2025. Available online: https://plugins.qgis.org (accessed on 3 August 2025).
- Gattiglia, G. Managing Artificial Intelligence in Archaeology: An Overview. J. Cult. Herit. 2025, 71, 225–233. [Google Scholar] [CrossRef]
- Zeynali, R.; Mandanici, E.; Bitelli, G. A Technical Note on AI-Driven Archaeological Object Detection in Airborne LiDAR Derivative Data, with CNN as the Leading Technique. Remote Sens. 2025, 17, 2733. [Google Scholar] [CrossRef]
- Casini, L.; Marchetti, N.; Montanucci, A.; Orr, V.; Roccetti, M. A HumanAI Collaboration Workflow for Archaeological Sites Detection. Sci. Rep. 2023, 13, 8699. [Google Scholar] [CrossRef]
- Klein, K.; Müller, A.; Wohde, A.; Gorelik, A.V.; Heyd, V.; Lämmel, R.; Diekmann, Y.; Brami, M. AutArch: An AI-Assisted Workflow for Object Detection and Data Collection from Archaeological Catalogues. J. Archaeol. Sci. 2025, 179, 106244. [Google Scholar] [CrossRef]
- El Behairy, R.A.; El Arwash, H.M.; El Baroudy, A.A.; Ibrahim, M.M.; Mohamed, E.S.; Rebouh, N.Y.; Shokr, M.S. Artificial Intelligence Integrated GIS for Land Suitability Assessment of Wheat Crop Growth in Arid Zones to Sustain Food Security. Agronomy 2023, 13, 1281. [Google Scholar] [CrossRef]
- Sundar, A.; Heck, L. Multimodal Conversational AI: A Survey of Datasets and Approaches. In Proceedings of the 4th Workshop on NLP for Conversational AI. 2022. Available online: https://aclanthology.org/2022.nlp4convai-1.12/ (accessed on 1 August 2025).
- Carolan, K.; Fennelly, L.F.; Smeaton, A.F. A review of multimodal large language and vision models. arXiv 2024, arXiv:2404.01322. [Google Scholar] [CrossRef]
- Singh, G. A Review of Multimodal Vision–Language Models: Foundations, Applications, and Future Directions. 2025; preprint. [Google Scholar] [CrossRef]
- Tao, L.; Zhang, H.; Jing, H.; Liu, Y.; Yan, D.; Wei, G.; Xue, X. Advancements in Vision–Language Models for Remote Sensing: Datasets, Capabilities, and Enhancement Techniques. Remote Sens. 2025, 17, 162. [Google Scholar] [CrossRef]
- Xu, W.; Yu, R.; Xue, M.; Wang, X.; Zhang, Y.; Wei, Z.; Zhang, Z.; Peng, M.; Wu, Y. A survey on Earth observation multimodal large language models: Framework, core technologies, and future perspectives. J. Radars, 2025; in press. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, H.; Liu, Y.; Ma, C.; Zhang, X.; Pan, Y.; Liu, M.; Gu, P.; Xia, S.; Li, W.; et al. A comprehensive review of multimodal large language models: Performance and challenges across different tasks. arXiv 2024, arXiv:2408.01319. [Google Scholar] [CrossRef]
- Abate, N.; Visone, F.; Sileo, M.; Danese, M.; Minervino Amodio, A.; Lasaponara, R.; Masini, N. Potential Impact of Using ChatGPT3.5 in the Theoretical and Practical MultiLevel Approach to OpenSource RemoteSensing Archaeology: Preliminary Considerations. Heritage 2023, 6, 7640–7659. [Google Scholar] [CrossRef]
- Floridi, L.; Cowls, J.; Beltrametti, M.; Chatila, R.; Chazerand, P.; Dignum, V.; Luetge, C.; Madelin, R.; Pagallo, U.; Rossi, F.; et al. AI4People—An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds Mach. 2018, 28, 689–707. [Google Scholar] [CrossRef]
- Mittelstadt, B.D.; Allo, P.; Taddeo, M.; Wachter, S.; Floridi, L. The ethics of algorithms: Mapping the debate. Big Data Soc. 2016, 3, 2053951716679679. [Google Scholar] [CrossRef]
- Tapete, D.; Cigna, F. Detection of archaeological looting from space: Methods, achievements and challenges. Remote Sens. 2019, 11, 2389. [Google Scholar] [CrossRef]
- Carroll, S.; Garba, I.; Figueroa-Rodríguez, O.; Holbrook, J.; Lovett, R.; Materechera, S.; Parsons, M.; Raseroka, K.; Rodriguez-Lonebear, D.; Rowe, R.; et al. The CARE Principles for Indigenous Data Governance. Data Sci. J. 2020, 19, 43. [Google Scholar] [CrossRef]
- Nicholas, G.P. Indigenous archaeology. In Oxford Bibliographies in Anthropology; Oxford University Press: Oxford, UK, 2020. [Google Scholar] [CrossRef]
- Rainie, S.C.; Kukutai, T.; Walter, M.; Figueroa-Rodríguez, O.L.; Walker, J.; Axelsson, P. Indigenous data sovereignty. In State of Open Data: Histories and Horizons; Davies, T., Walker, S., Rubinstein, M., Perini, F., Eds.; African Minds: Cape Town, South Africa, 2019; pp. 300–319. [Google Scholar] [CrossRef]
- Cochran, P.A.L.; Marshall, C.A.; Garcia-Downing, C.; Kendall, E.; Cook, D.; McCubbin, L.; Gover, R.M.S. Indigenous ways of knowing: Implications for participatory research and community engagement. Am. J. Public Health 2008, 98, 22–27. [Google Scholar] [CrossRef]
- OpenAI. GPT-4 technical report. arXiv 2023, arXiv:2303.08774. [Google Scholar] [CrossRef]
- Ji, Z.; Lee, N.; Frieske, R.; Yu, T.; Su, D.; Xu, Y.; Ishii, E.; Bang, Y.J.; Madotto, A.; Fung, P. A survey of hallucination in natural language generation. ACM Comput. Surv. 2023, 55, 1–38. [Google Scholar] [CrossRef]




| Generation | Period | Core Technology | Presentative Systems | Main Capabilities | Key Limitations | References |
|---|---|---|---|---|---|---|
| Rule-based | 1960s–1990s | Pattern matching, decision trees | ELIZA [8], PARRY [26], ALICE [10] | Predefined dialogue, basic text substitution | No contextual understanding, static rules | [8,10,26] |
| Statistical/NLP-based | 2000s | Probabilistic models, ngram, HMM | Early FAQ bots, retrieval models | Learned responses from corpora, improved relevance | Limited coherence, domain specific tuning required | [15] |
| Deep learning/Seq2Seq | 2010s | Recurrent neural networks, attention | Early neural dialogue models | Contextual learning, adaptive phrasing | Poor long term memory, training data dependency | [12,15] |
| Transformer-based LLMs | 2018–present | Self attention, largescale pretraining | GPT3/4 [13], LaMDA [13], XiaoIce [12] | Contextaware, multiturn dialogue, multimodal input | High computational cost, potential bias | [16,17] |
| AI Approach Category | Primary Data Types | Typical Archaeological Applications | Level of Disciplinary Adoption | Analytical Role |
|---|---|---|---|---|
| Machine learning and predictive modelling | Spatial, environmental, remote sensing data | Site prediction, landscape modelling, settlement pattern analysis | High | Core analytical methodology |
| Computer vision and deep learning | Satellite imagery, LiDAR, photogrammetry | Feature detection, classification, automated mapping | Increasing | Automated interpretation |
| Rule-based and retrieval-oriented chatbots | Textual archives, metadata | Education, heritage communication, information access | Low | Interface and access support |
| Multimodal conversational systems | Text and imagery | Experimental analytical mediation, exploratory interaction | Emerging | Potential future interface |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Melillos, N.; Agapiou, A. AI Chatbots and Remote Sensing Archaeology: Current Landscape, Technical Barriers, and Future Directions. Heritage 2026, 9, 32. https://doi.org/10.3390/heritage9010032
Melillos N, Agapiou A. AI Chatbots and Remote Sensing Archaeology: Current Landscape, Technical Barriers, and Future Directions. Heritage. 2026; 9(1):32. https://doi.org/10.3390/heritage9010032
Chicago/Turabian StyleMelillos, Nicolas, and Athos Agapiou. 2026. "AI Chatbots and Remote Sensing Archaeology: Current Landscape, Technical Barriers, and Future Directions" Heritage 9, no. 1: 32. https://doi.org/10.3390/heritage9010032
APA StyleMelillos, N., & Agapiou, A. (2026). AI Chatbots and Remote Sensing Archaeology: Current Landscape, Technical Barriers, and Future Directions. Heritage, 9(1), 32. https://doi.org/10.3390/heritage9010032

