Recent Progress on Corrosion Behavior, Mechanism, and Protection Strategies of Bronze Artefacts
Abstract
1. Introduction
1.1. The Value Embodiment of Archaeological Bronze Artefacts
1.2. The Challenges to Bronze Artefacts Protection
1.3. The Main Content of This Review
2. Overview of Bronze Artefacts
2.1. Chemical Composition of Bronzes
2.2. Types of Bronze Artefacts
- (1)
- Ritual Vessels
- (2)
- Weapons
2.3. Distribution of Bronze Artefacts
- (1)
- China
- (2)
- West Asia
- (3)
- Europe
- (4)
- South Asia
- (5)
- Southeast Asia
- (6)
- Americas
- (7)
- Africa
2.4. Significance of Cultural Bronze Artefacts
- (1)
- Historical Value
- (2)
- Cultural Symbolism
- (3)
- Artistic Value
- (4)
- Technical Achievements
- (5)
- Evidence of Cultural Exchange
- (6)
- Modern Influence
3. Factors Affecting the Corrosion Behavior of Bronze Artefacts
3.1. Influence of Alloy Itself
3.1.1. Chemical Composition
- (1)
- The effects of tin and lead in bronze
- Enhance hardness and wear resistance: The addition of tin significantly increases the hardness of bronze, making it an ideal material for making tools, weapons, and vessels.
- Improve casting performance: Tin lowers the melting point of copper, enhancing the metal’s fluidity and making casting easier while reducing iron inclusions and improving the quality of castings.
- Enhance corrosion resistance: Bronze with a high tin content exhibits better corrosion resistance, enabling bronzes to maintain their good condition over an extended period.
- Adjustment of color: Variations in tin content can affect the color of the bronze, ranging from pale yellow to dark brown and even to a golden luster.
- Decrease hardness: The addition of lead can decrease the hardness, which is ascribed to the low hardness itself, as well as its weakening effect on the binding strength of the bronze grain boundaries
- Helpful for manufacturing parts with complex shapes or those that require close fitting.
- Decrease melting point: Lead can also decrease the melting point, thereby improving its fluidity and mold-filling capacity, which is conducive to pouring large pieces and bronze components with uneven thickness.
- Reduce oxidation and deterioration: Lead helps decrease oxidation and spoilage of bronze during the melting process, thereby reducing surface tension and promoting the fluidity of the melt.
- (2)
- Influence of Sn on the corrosion resistance of bronze
- (3)
- Effect of Pb on the corrosion resistance of bronze
3.1.2. Microstructure
3.2. Natural Environment
3.2.1. Water Environment
- (1)
- Influence of freshwater environment on corrosion of bronze artefacts
- (2)
- Influence of seawater environment on corrosion of bronze artefacts
3.2.2. Soil Environment
3.2.3. Atmospheric Environment
3.2.4. Microorganisms
3.3. Artificial Environment
4. Corrosion Products and Their Formation Mechanism
4.1. Causes of Bronze Corrosion
4.2. Material Exchange Between Bronzes and the Surrounding Environment
4.3. Corrosion Mechanism of Bronze Artefacts
4.3.1. Uniform Corrosion
4.3.2. Pitting Corrosion
4.4. Corrosion Products Formed on the Surface of Bronze
4.4.1. Harmless Corrosion Products
4.4.2. Harmful Corrosion Products
- (1)
- Open “Powder corrosion products”
- (2)
- Skin-type “powdery corrosion products”
5. Protection Strategies for Exhumed Bronze Artefacts
5.1. Surface Corrosion Inhibitors
5.2. Organic or Inorganic Coating Strategies
5.3. New Strategies
- (1)
- Photo-induced passivation
- (2)
- Three-dimensional scanning and printing techniques
- (3)
- Holographic projection technology/real and virtual technology
6. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Patterson, N.; Isakov, M.; Booth, T.; Büster, L.; Fischer, C.-E.; Olalde, I.; Ringbauer, H.; Akbari, A.; Cheronet, O.; Bleasdale, M.; et al. Large-scale migration into Britain during the Middle to Late Bronze Age. Nature 2022, 601, 588–594. [Google Scholar] [CrossRef]
- Iacono, F.; Borgna, E.; Cattani, M.; Cavazzuti, C.; Dawson, H.; Galanakis, Y.; Gori, M.; Iaia, C.; Ialongo, N.; Lachenal, T.; et al. Establishing the Middle Sea: The Late Bronze Age of Mediterranean Europe (1700–900 BC). J. Archaeol. Res. 2022, 30, 371–445. [Google Scholar] [CrossRef]
- Liu, R.; Pollard, A.M.; Cao, Q.; Liu, C.; Sainsbury, V.; Howarth, P.; Bray, P.; Huan, L.; Yao, B.; Fu, Y.; et al. Social hierarchy and the choice of metal recycling at Anyang, the last capital of Bronze Age Shang China. Sci. Rep. 2020, 10, 18794. [Google Scholar] [CrossRef] [PubMed]
- Yuanzheng, Y. Musical Archaeology and the Prehistory of Chinese Music. In The Oxford Handbook of Music in China and the Chinese Diaspora; Oxford Unversity Press: Oxford, UK, 2023; Volume 9. [Google Scholar]
- Yang, Y.; Li, H.; Lu, Y.; Xia, R.; James, N.; Chen, H.; Zhao, Y. The Agricultural Economy of the Sanxingdui Culture (3700–3100 BP): Archaeological and Historical Evidence from the Chengdu Plain. Land 2024, 13, 787. [Google Scholar] [CrossRef]
- Tian, F.; Li, K.; Huang, X.; Zhang, X.; Wang, N.; Song, Y.; Zhu, Q.; Li, Y. An empirical study of virtual museum based on dual-mode mixed visualization: The Sanxingdui bronzes. Herit. Sci. 2024, 12, 146. [Google Scholar] [CrossRef]
- Liu, W.; Li, M.; Wu, N.; Liu, S.; Chen, J. A new application of Fiber optics reflection spectroscopy (FORS): Identification of “bronze disease” induced corrosion products on ancient bronzes. J. Cult. Herit. 2021, 49, 19–27. [Google Scholar] [CrossRef]
- Kwon, H. Corrosion Behaviors of Artificial Chloride Patina for Studying Bronze Sculpture Corrosion in Marine Environments. Coatings 2023, 13, 1630. [Google Scholar] [CrossRef]
- Hou, B.; Li, X.; Ma, X.; Du, C.; Zhang, D.; Zheng, M.; Xu, W.; Lu, D.; Ma, F. The cost of corrosion in China. npj Mater. Degrad. 2017, 1, 4. [Google Scholar] [CrossRef]
- Zhao, Y.; Ding, S.; Du, Y.; Yang, K.; Liu, S. Effect of long-term thermal aging on lead-bismuth eutectic corrosion behavior of 9Cr ferritic/martensitic steel. J. Mater. Sci. Technol. 2025, 210, 299–311. [Google Scholar] [CrossRef]
- Bai, S.-B.; Zhao, Z.-Y.; Li, D.-Z.; Li, J.-Y.; Bai, P.-K.; Huang, Z.-Q.; Lu, H.-H. Realization of strength-ductility balance of 10 Mn-steel by tailoring symbiosis microstructure. Mater. Sci. Eng. A 2024, 901, 146570. [Google Scholar] [CrossRef]
- Bai, S.-B.; Li, D.-Z.; Lu, H.-H.; Niu, W.-Q.; Liang, W.; Bai, P.-K.; Huang, Z.-Q. Enhancing strength and ductility combination via tailoring the dislocation density in medium Mn steel. Mater. Sci. Eng. A 2023, 879, 145227. [Google Scholar] [CrossRef]
- Zhang, M.; Deng, W.-L.; Yang, X.-N.; Wang, Y.-K.; Zhang, X.-Y.; Hang, R.-Q.; Deng, K.-K.; Huang, X.-B. In vitro biodegradability of Mg–2Gd–xZn alloys with different Zn contents and solution treatments. Rare Met. 2019, 38, 620–628. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, J.; Hang, R.; Li, C.; Sun, Y.; Yao, X.; Hang, R. Effects of solid diffusion zinc treatment on corrosion behavior, antibacterial ability, and cytocompatibility of AZ31B magnesium alloy. Mater. Lett. 2019, 251, 30–33. [Google Scholar] [CrossRef]
- Zhang, M.; Xue, Y.; Huang, X.; Ma, D.; Gao, J.; Yu, S.; Zhu, L.; Wu, Y. Cytocompatibility and osteogenic activity of Ta-Ti-O nanotubes anodically grown on Ti6Al4V alloy. Appl. Surf. Sci. 2023, 614, 156165. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, L.; Wang, J.; Ye, N.; Dai, S.; Yu, S.; Wu, Y. Surface modification of biomedical metals by double glow plasma surface alloying technology: A review of recent advances. J. Mater. Res. Technol. 2023, 24, 3423–3452. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, Y.; Gao, J.; Hei, H.; Jia, W.; Bai, J.; Liu, Z.; Huang, X.; Xue, Y.; Yu, S.; et al. Mechanical, Electrochemical, and Osteoblastic Properties of Gradient Tantalum Coatings on Ti6Al4V Prepared by Plasma Alloying Technique. Coatings 2021, 11, 631. [Google Scholar] [CrossRef]
- Fang, N.; Wei, Z.; Zhu, D.; Zhu, L.; Dong, D.; Zou, C. Effect of solidification pressure on the corrosion behavior and mechanical properties of Al-7Si-3Cu-(0.4 Mg)-(0.5Ge) alloys. Mater. Des. 2024, 244, 113135. [Google Scholar] [CrossRef]
- Yan, J.; Zhu, D.; Dong, D.; Wang, Q.; Hu, M.; Wang, Y. Simultaneous enhancement of strength and toughness in TiAl composites via ductile Nb particle addition. Intermetallics 2025, 185, 108878. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, S.; Huang, R.; Xu, F.; Wang, J.; Dai, S.; Zhang, Y.; Zhu, L. Cold sprayed Cu-coated AlN reinforced copper matrix composite coatings with improved tribological and anticorrosion properties. Surf. Coat. Technol. 2025, 496, 131666. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, Y.-C.; Wang, J.-F.; Peng, K.-R.; Dai, S.; Wu, J.-M.; Zhu, L. Cold-sprayed Cu matrix composite coatings with core-shell structured Co@WC reinforcements on Q235 steel. Surf. Interfaces 2025, 56, 105577. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, J.; Wang, W.; Shao, L.; Dai, S.; Zhu, D.; Lu, Q.; Zhang, M.; Zhang, Y.; Zhu, L. Wear and corrosion properties of Cu–AlN composite coatings deposited by cold spray. J. Mater. Res. Technol. 2024, 30, 3986–3995. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Dai, R.; Shao, L.; Tu, Z.; Zhu, D.; Xu, Z.; Dai, S.; Zhu, L. Wear and electrochemical corrosion behaviors of Cu matrix WC-Co reinforced composite coating prepared by cold spray. Surf. Coat. Technol. 2024, 488, 131001. [Google Scholar] [CrossRef]
- Dai, S.; Cui, M.; Li, J.; Zhang, M. Cold Spray Technology and Its Application in the Manufacturing of Metal Matrix Composite Materials with Carbon-Based Reinforcements. Coatings 2024, 14, 822. [Google Scholar] [CrossRef]
- Liang, Z.; Jiang, K.; Zhang, T.-A. Corrosion behaviour of lead bronze from the Western Zhou Dynasty in an archaeological-soil medium. Corros. Sci. 2021, 191, 109721. [Google Scholar] [CrossRef]
- Huttunen-Saarivirta, E.; Isotahdon, E.; Metsäjoki, J.; Salminen, T.; Ronkainen, H.; Carpén, L. Behaviour of leaded tin bronze in simulated seawater in the absence and presence of tribological contact with alumina counterbody: Corrosion, wear and tribocorrosion. Tribol. Int. 2019, 129, 257–271. [Google Scholar] [CrossRef]
- Zhou, S.; Zhao, Z.S.; Mao, H.Y.; Wang, L.; Chen, J.Y.; Chen, J.C.; Huang, X. Bronze preservation by using composite hydrogel coating-loaded corrosion inhibitors. Herit. Sci. 2022, 10, 116. [Google Scholar] [CrossRef]
- Wang, T.; Wang, J.; Wu, Y. The inhibition effect and mechanism of l-cysteine on the corrosion of bronze covered with a CuCl patina. Corros. Sci. 2015, 97, 89–99. [Google Scholar] [CrossRef]
- MacLeod, I.D. Conservation of corroded copper alloys: A comparison of new and traditional methods for removing chloride ions. Stud. Conserv. 1987, 32, 25–40. [Google Scholar] [CrossRef]
- Oudbashi, O.; Wanhill, R. Long-Term Embrittlement of Ancient Copper and Silver Alloys. Heritage 2021, 4, 2287–2319. [Google Scholar] [CrossRef]
- Robbiola, L.; Blengino, J.M.; Fiaud, C. Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corros. Sci. 1998, 40, 2083–2111. [Google Scholar] [CrossRef]
- Witasiak, D.; Garbacz-Klempka, A.; Papaj, M.; Papaj, P.; Maj, M.; Piękoś, M.; Kozana, J. Effect of Alloying Additives and Moulding Technology on Microstructure, Tightness, and Mechanical Properties of CuSn10 Bronze. Materials 2023, 16, 7593. [Google Scholar] [CrossRef] [PubMed]
- Xu, H. Introduction: Starting with the Simuwu Ding. In Bronze Trend in East Asia: Millennial Changes in the Pre-Oracle Age; Springer Nature Singapore: Singapore, 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Zhao, H.; Sui, L. Design practice of cultural and creative products based on Bochi Li modeling. Orient. Collect. 2022, 110–112. [Google Scholar]
- Yin, P. What Did Ancestors Leave Behind? What Can You Leave Behind? World Archit. Rev. 2019, 34, 1. [Google Scholar]
- Wang, Z.; Li, Y.; Jiang, X.; Pan, C. Research progress on ancient bronze corrosion in different environments and using different conservation techniques: A review. MRS Adv. 2017, 2, 2033–2041. [Google Scholar] [CrossRef]
- So, S.-M.; Kim, K.-Y.; Lee, S.-J.; Yu, Y.-J.; Lim, H.-A.; Oh, M.-S. Effects of Sn content and hot deformation on microstructure and mechanical properties of binary high Sn content Cu–Sn alloys. Mater. Sci. Eng. A 2020, 796, 140054. [Google Scholar] [CrossRef]
- Chang, T.; Herting, G.; Goidanich, S.; Amaya, J.S.; Arenas, M.A.; Le Bozec, N.; Jin, Y.; Leygraf, C.; Wallinder, I.O. The role of Sn on the long-term atmospheric corrosion of binary Cu-Sn bronze alloys in architecture. Corros. Sci. 2019, 149, 54–67. [Google Scholar] [CrossRef]
- Constantinides, I.; Adriaens, A.; Adams, F. Surface characterization of artificial corrosion layers on copper alloy reference materials. Appl. Surf. Sci. 2002, 189, 90–101. [Google Scholar] [CrossRef]
- Wang, X. Research and discussion on corrosion mechanism of “crisp powder rust” in Sanxingdui bronzes. Sichuan Cult. Relics 2002, 7. [Google Scholar]
- Muller, J.; Laïk, B.; Guillot, I. α-CuSn bronzes in sulphate medium: Influence of the tin content on corrosion processes. Corros. Sci. 2013, 77, 46–51. [Google Scholar] [CrossRef]
- Sun, F.; Li, X.; Lu, L.; Wan, H.; Du, C.; Liu, Z. Corrosion behavior of copper alloys in deep ocean environment of South China Sea. Acta Met. Sin. 2013, 49, 1211–1218. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, M.; Xiong, Y. Bronze composition and the formation of powdery corrosion. J. Univ. Sci. Technol. China 1995, 25, 6. [Google Scholar]
- Zhou, J. A Preliminary Study on the Relationship Between Bronze Corrosion and Burial Environment; Northwest University: Xi’an, China, 2006. [Google Scholar]
- Scott, D.A.; Dodd, L.S. Examination, conservation and analysis of a gilded Egyptian bronze Osiris. J. Cult. Herit. 2002, 3, 333–345. [Google Scholar] [CrossRef]
- Quaranta, M.; Catelli, E.; Prati, S.; Sciutto, G.; Mazzeo, R. Chinese archaeological artefacts: Microstructure and corrosion behaviour of high-leaded bronzes. J. Cult. Herit. 2014, 15, 283–291. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, X.; Wen, X. Raman spectrum analysis of corrosion products on the bronze earcup. J. Light Scatt. 2017, 29, 148–152. [Google Scholar]
- Sadawy, M.; Ghanem, M.; Zohdy, K. Corrosion and Electrochemical Behavior of Leaded-Bronze Alloys in 3.5 wt% NaCl Solution. Am. J. Chem. Appl 2014, 1, 1–6. [Google Scholar]
- Predel, F. Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys KO… Y-Zr; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Kareem, K.; Sultan, S.; He, L. Fabrication, microstructure and corrosive behavior of different metallographic tin-leaded bronze alloys part II: Chemical corrosive behavior and patina of tin-leaded bronze alloys. Mater. Chem. Phys. 2016, 169, 158–172. [Google Scholar] [CrossRef]
- Bernardi, E.; Chiavari, C.; Martini, C.; Morselli, L. The atmospheric corrosion of quaternary bronzes: An evaluation of the dissolution rate of the alloying elements. Appl. Phys. A 2008, 92, 83–89. [Google Scholar] [CrossRef]
- Xu, X.; Lv, Y.; Hu, M.; Xiong, D.; Zhang, L.; Wang, L.; Lu, W. Influence of second phases on fatigue crack growth behavior of nickel aluminum bronze. Int. J. Fatigue 2016, 82, 579–587. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J. The effects of UV and visible light on the corrosion of bronze covered with an oxide film in aqueous solution. Corros. Sci. 2019, 154, 144–158. [Google Scholar] [CrossRef]
- Papadopoulou, O.; Vassiliou, P. The Influence of Archaeometallurgical Copper Alloy Castings Microstructure towards Corrosion Evolution in Various Corrosive Media. Corros. Mater. Degrad. 2021, 2, 227–247. [Google Scholar] [CrossRef]
- Yun, Y.; Scott, D.A. Characteristic features of metal artifacts excavated in western Yunnan in the Bronze Age. Archaeol. Anthropol. Sci. 2020, 12, 127. [Google Scholar] [CrossRef]
- Li, B.; Jiang, X.; Wu, R.; Wei, B.; Hu, T.; Pan, C. Formation of black patina on an ancient Chinese bronze sword of the Warring States Period. Appl. Surf. Sci. 2018, 455, 724–728. [Google Scholar] [CrossRef]
- Zhang, B. Analysis on the influence of occurrence environment on the corrosion of bronzes. Identif. Apprec. Cult. Relics 2022, 46–48. [Google Scholar]
- Wang, J.; Yang, H.; Du, M.; Peng, W.; Chen, H.; Guo, W.; Lin, C. Corrosion of B10 Cu-Ni Alloy in Seawater Polluted by High Concentration of NH4+. J. Chin. Soc. Corros. Prot. 2021, 41, 609–616. [Google Scholar]
- Zhang, X.; Wallinder, I.O.; Leygraf, C. Mechanistic studies of corrosion product flaking on copper and copper-based alloys in marine environments. Corros. Sci. 2014, 85, 15–25. [Google Scholar] [CrossRef]
- Chang, T.; Maltseva, A.; Volovitch, P.; Wallinder, I.O.; Leygraf, C. A mechanistic study of stratified patina evolution on Sn-bronze in chloride-rich atmospheres. Corros. Sci. 2020, 166, 108477. [Google Scholar] [CrossRef]
- Tang, Q.; Wang, J.; Ma, J. Morphology change and elements migration of bronze with high tin content after soil corrosion. Chin. J. Nonferrous Met. 2011, 21, 3175–3181. [Google Scholar]
- Veleva, L.; Farro, W. Influence of seawater and its aerosols on copper patina composition. Appl. Surf. Sci. 2012, 258, 10072–10076. [Google Scholar] [CrossRef]
- Nunez, L.; Reguera, E.; Corvo, F.; Gonzalez, E.; Vazquez, C. Corrosion of copper in seawater and its aerosols in a tropical island. Corros. Sci. 2005, 47, 461–484. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Xu, X.; Ma, Y.; Ma, L.; Wang, J. Study on the dissoloving process of powdery patina in neutral and in weak acid aquatic solution. Sci. Conserv. Archaeol. 2007, 19, 36–42. [Google Scholar]
- Gerwin, W.; Baumhauer, R. Effect of soil parameters on the corrosion of archaeological metal finds. Geoderma 2000, 96, 63–80. [Google Scholar] [CrossRef]
- Wang, C.; Wang, N.; Ji, B.; Liu, C. Analysis of corrosion condition and burial environment of unearthed bronzes in Yangjia village, Meixian County, Baoji. Emperor Qinshihuang’s Mausol. Site Mus. 2014, 2, 385–392. [Google Scholar]
- He, J.; Wang, J. Impacts of Initial pH and Cl− Concentration on Nantokite Hydrolysi. J. Chin. Soc. Corros. Prot. 2018, 38, 6. [Google Scholar]
- Scott, D.A. Periodic corrosion phenomena in bronze antiquities. Stud. Conserv. 1985, 30, 49–57. [Google Scholar] [CrossRef]
- Sun, S.; Ma, Z.; Jin, L.; Han, R.; Ke, J. Effect of humic acid in soil on the formation of “black lacquer” on copper mirror surface. Cult. Relics 1992, 12, 384–391. [Google Scholar]
- Tie, F.; Chen, W.; Yu, L.; Guan, S. Research on the corrosion and control of ancient bronze. Sci. Conserv. Archaeol. 1997, 9, 9–15. [Google Scholar]
- Drioli, E.; Gagliardi, R.; Donato, L.; Checchetti, A. CoPVDF membranes for protection of cultural heritages. J. Membr. Sci. 1995, 102, 131–138. [Google Scholar] [CrossRef]
- Li, Y.; Bao, Z.; Wu, T.; Jiang, J.; Chen, G.; Pan, C. Specific corrosion product on interior surface of a bronze wine vessel with loop-handle and its growth mechanism, Shang Dynasty, China. Mater. Charact. 2012, 68, 88–93. [Google Scholar] [CrossRef]
- Fan, C.; Minoru, S.; Miyoshi, I.; Tadahiro, A. The diffusion of element Cu in bronze powder corrosion—The key action of CuCl. Chem. J. Chin. Univ. 1994, 15, 5. [Google Scholar]
- Sasaki, T.; Itoh, J.; Horiguchi, Y.; Ohtsuka, T. Quantitative determination of corrosion products and adsorbed water on copper in humid air containing SO2 by IR-RAS measurements. Corros. Sci. 2006, 48, 4339–4351. [Google Scholar] [CrossRef]
- Rice, D.W. Atmospheric Corrosion of Copper and Silver. J. Electrochem. Soc. 1981, 128, 275–284. [Google Scholar] [CrossRef]
- Eriksson, P. Initial Stages of Copper Corrosion in Humid Air Containing SO2 and NO2. J. Electrochem. Soc. 1993, 140, 53. [Google Scholar] [CrossRef]
- Strandberg, H.; Johansson, L.G.; Rosvall, J. Outdoor bronze sculptures: A conservation view on the examination of the state of preservation. In Proceedings of the ICOM Committee for Conservation, 11th Triennial Meeting in Edinburgh, Scotland, Edinburgh, Scotland, 1–6 September 1996. [Google Scholar]
- Zhao, W.; Babu, R.P.; Chang, T.; Odnevall, I.; Hedström, P.; Johnson, C.M.; Leygraf, C. Initial atmospheric corrosion studies of copper from macroscale to nanoscale in a simulated indoor atmospheric environment. Corros. Sci. 2022, 195, 109995. [Google Scholar] [CrossRef]
- Fang, L. The Atmosphere Corrosion Factors of Bronze; East China University of Science and Technology: Shanghai, China, 2015. [Google Scholar]
- Bernardi, E.; Chiavari, C.; Lenza, B.; Martini, C.; Morselli, L.; Ospitali, F.; Robbiola, L. The atmospheric corrosion of quaternary bronzes: The leaching action of acid rain. Corros. Sci. 2009, 51, 159–170. [Google Scholar] [CrossRef]
- Chiavari, C.; Bernardi, E.; Martini, C.; Passarini, F.; Ospitali, F.; Robbiola, L. The atmospheric corrosion of quaternary bronzes: The action of stagnant rain water. Corros. Sci. 2010, 52, 3002–3010. [Google Scholar] [CrossRef]
- Mendoza, A.R.; Corvo, F.; Gomez, A.; Gomez, J. Influence of the corrosion products of copper on its atmospheric corrosion kinetics in tropical climate. Corros. Sci. 2004, 46, 1189–1200. [Google Scholar] [CrossRef]
- Yuan, X.; Hou, X. Scientific analysis, corrosion mechanism and protection methods of bronze cultural relics are briefly described. Archaeol. Luoyang 2013, 3, 85–89. [Google Scholar]
- Xu, D.K.; Gu, T.Y.; Lovley, D.R. Microbially mediated metal corrosion. Nat. Rev. Microbiol. 2023, 21, 705–718. [Google Scholar] [CrossRef]
- Ghiara, G.; Spotorno, R.; Delsante, S.; Formicola, F.; Franzetti, A.; Cristiani, P. Opposite corrosion behaviour of aluminum bronze induced by Pseudomonas fluorescens and its metabolites. Corros. Sci. 2022, 208, 110656. [Google Scholar] [CrossRef]
- Herrera, L.K.; Videla, H.A. Surface analysis and materials characterization for the study of biodeterioration and weathering effects on cultural property. Int. Biodeterior. Biodegrad. 2009, 63, 813–82214. [Google Scholar] [CrossRef]
- Derun, C. Effects of Environmental Change on the Corrosion of Historical Bronze Relics. Chin. J. Enviromental Sci. 1995, 16, 52. [Google Scholar]
- Luo, Y.; Gai, T.; Jiang, D. The effect of the biological factor for the form of bronze disease. Sci. Conserv. Archaeol. 1997, 9, 16–19. [Google Scholar]
- Zhang, X.; Hao, X. The corrosive effect of microorganisms on metal relics. Relics Museolgy 1998, 2, 91–93. [Google Scholar]
- Hao, F.; Huabing, L.I.; Pengchong, L.U.; Chuntian, Y.; Zhouhua, J.; Xiaolei, W. Investigation on Microbiologically Influenced Corrosion Behavior of CrCoNi Medium-Entropy Alloy by Pseudomonas Aeruginosa. Acta Metall. Sin. 2019, 55, 1457–1468. [Google Scholar]
- Liu, H.; Zhang, X.; Teng, Y.; Li, S. Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment. J. Chin. Soc. Corros. Prot. 2021, 41, 679–685. [Google Scholar]
- Ke, Y.; Shi, X.; Yan, W.; Zeng, Y.; Shan, Y.; Ren, Y. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels. Acta Metall Sin 2020, 56, 385–399. [Google Scholar]
- Zhao, J.; Csetenyi, L.; Gadd, G.M. Biocorrosion of copper metal by Aspergillus niger. Int. Biodeterior. Biodegrad. 2020, 154, 105081. [Google Scholar] [CrossRef]
- Videla, H.A.; Characklis, W.G. Biofouling and microbially influenced corrosion. Int. Biodeterior. Biodegrad. 1992, 29, 195–212. [Google Scholar] [CrossRef]
- Ghiara, G.; Spotorno, R.; Trasatti, S.P.; Cristiani, P. Effect of Pseudomonas fluorescens on the electrochemical behaviour of a single-phase Cu-Sn modern bronze. Corros. Sci. 2018, 139, 227–234. [Google Scholar] [CrossRef]
- Cicek, V. Corrosion Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Mödlinger, M.; Trebsche, P. Work on the cutting edge: Metallographic investigation of Late Bronze Age tools in southeastern Lower Austria. Archaeol. Anthropol. Sci. 2021, 13, 125. [Google Scholar] [CrossRef]
- Weinryb, I. The Bronze Object in the Middle Ages; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Edwards, M.; Ferguson, J.F.; Reiber, S.H. The pitting corrosion of copper. J. Am. Water Work. Assoc. 1994, 86, 74–90. [Google Scholar] [CrossRef]
- Klapper, H.; Rudolph, P. Defect generation and interaction during crystal growth. In Handbook of Crystal Growth; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1093–1141. [Google Scholar]
- Sosa, M.D.; Lombardo, G.; Rojas, G.; Oneto, M.E.; Negri, R.M.; D’Accorso, N.B. Superhydrophobic brass and bronze meshes based on electrochemical and chemical self-assembly of stearate. Appl. Surf. Sci. 2019, 465, 116–124. [Google Scholar] [CrossRef]
- Lucey, V. Developments leading to the present understanding of the mechanism of pitting corrosion of copper. Br. Corros. J. 1972, 7, 36–41. [Google Scholar] [CrossRef]
- Scott, D.A.; Podany, J.; Considine, B.B. Ancient & Historic Metals: Conservation and Scientific Research; Getty Publications: Los Angeles, CA, USA, 1994. [Google Scholar]
- Zhao, L.; Li, Q.; Zhao, T. Corrosion Behavior and Sealing Technologies of Bronze. J. Chin. Soc. Corros. Prot. 2023, 43, 1165–1177. [Google Scholar]
- Wang, H.; Song, D.; Zhu, H.; Jin, P.; Wang, X.; Wei, G.; Zhang, S. Study on corrosion mechanism and protection method of bronze cultural relics. Hum. Cult. Herit. Preserv. 2003, 5. [Google Scholar]
- Scott, D.A. Copper and Bronze in Art: Corrosion, Colorants, Conservation; Getty Publications: Los Angeles, CA, USA, 2002. [Google Scholar]
- Garmay, A.V.; Oskolok, K.V.; Monogarova, O.V. μXRF Analysis of XVIII Century Copper Coin: Patina Investigation and “Bronze Disease” Detection. Mosc. Univ. Chem. Bull. 2021, 76, 133–136. [Google Scholar] [CrossRef]
- Fan, X.; Wang, Q.; Wang, Y. Non-destructive in situ Raman spectroscopic investigation of corrosion products on the bronze dagger-axes from Yujiaba site in Chongqing, China. Archaeol. Anthropol. Sci. 2020, 12, 90. [Google Scholar] [CrossRef]
- Martens, W.N.; Frost, R.L.; Kloprogge, J.T.; Williams, P.A. Raman spectroscopic study of the basic copper sulphates-implications for copper corrosion and ‘bronze disease’. J. Raman Spectrosc. 2003, 34, 145–154. [Google Scholar] [CrossRef]
- Zhao, F.; Sun, M.; Li, P.; Scherillo, A.; Grazzi, F.; Kockelmann, W.; Guo, F.; Wu, C.; Wang, Y. Revealing the manufacturing and corrosion characteristics of Chinese archaeological metal arrows by non-destructive neutron techniques. Archaeol. Anthropol. Sci. 2024, 16, 50. [Google Scholar] [CrossRef]
- Cantini, F.; Scherillo, A.; Fedrigo, A.; Galeotti, M.; Cagnini, A.; Porcinai, S.; Patera, A.; Morandini, F.; Grazzi, F. The Vittoria Alata from Brescia: A combined neutron techniques and SEM-EDS approach to the study of the alloy of a bronze Roman statue. J. Archaeol. Sci. Rep. 2023, 51, 104112. [Google Scholar] [CrossRef]
- Lv, Y.; Ding, Y.; Cui, H.; Liu, G.; Wang, B.; Cao, L.; Li, L.; Qin, Z.; Lu, W. Investigation of microscopic residual stress and its effects on stress corrosion behavior of NiAl bronze alloy using in situ neutron diffraction/EBSD/tensile corrosion experiment. Mater. Charact. 2020, 164, 110351. [Google Scholar] [CrossRef]
- Song, Z.; Tegus, O. Microstructure and Chlorine Ion Corrosion Performance in Bronze Earring Relics. Materials 2024, 17, 1734. [Google Scholar] [CrossRef]
- Ling, H.; Qingrong, Z.; Min, G. Characterization of corroded bronze Ding from the Yin Ruins of China. Corros. Sci. 2007, 49, 2534–2546. [Google Scholar] [CrossRef]
- Liu, W.; Chen, J. The Advances in the Study of Tin-rich Patina on the Surface of Ancient Bronzes. J. Natl. Mus. China 2019, 5, 146–160. [Google Scholar]
- Ingo, G.; Angelini, E.; Bultrini, G.; Calliari, I.; Dabala, M.; De Caro, T. Study of long-term corrosion layers grown on high-tin leaded bronzes by means of the combined use of GDOES and SEM+ EDS. Surf. Interface Anal. 2002, 34, 337–342. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, G.; Cao, G.; Wang, C.; Wang, Z. Characterization of corrosion products formed on tin-bronze after 29 years of exposure to Shenyang, China. J. Mater. Res. Technol. 2023, 23, 5270–5279. [Google Scholar] [CrossRef]
- Tylecote, R.F. The effect of soil conditions on the long-term corrosion of buried tin-bronzes and copper. J. Archaeol. Sci. 1979, 6, 345–368. [Google Scholar] [CrossRef]
- Yang, X.; Wu, W.; Chen, K. Structural characteristics and classification of patina on ancient bronzes. Corros. Prot. 2023, 44, 42–50. [Google Scholar]
- Gettens, R.J. Tin-Oxide Patina of Ancient High-Tin Bronze. Bull. Fogg Art Mus. 1949, 11, 16–26. [Google Scholar]
- Chen, J.; Mai, Y.; Shang, Z.; Chen, L.; Huang, X. Review of Research on “Powdery Rust” of Ancient Bronze Ware. Corros. Prot. 2023, 44, 51–57. [Google Scholar]
- Ingo, G.M.; de Caro, T.; Riccucci, C.; Angelini, E.; Grassini, S.; Balbi, S.; Bernardini, P.; Salvi, D.; Bousselmi, L.; Çilingiroglu, A.; et al. Large scale investigation of chemical composition, structure and corrosion mechanism of bronze archeological artefacts from Mediterranean basin. Appl. Phys. A 2006, 83, 513–520. [Google Scholar] [CrossRef]
- Zhao, T.; Zhao, L.; Feng, Y.; Luo, Q.; Zhong, J.; Li, Q. Corrosion of ancient Chinese bronze fragments from different periods and protective effect of menthol coating. Corros. Commun. 2023, 12, 46–57. [Google Scholar] [CrossRef]
- Bozzini, B.; Aleman, B.; Amati, M.; Boniardi, M.; Caramia, V.; Giovannelli, G.; Gregoratti, L.; Abyaneh, M.K. Novel insight into bronze disease gained by synchrotron-based photoelectron spectro-microscopy, in support of electrochemical treatment strategies. Stud. Conserv. 2017, 62, 465–473. [Google Scholar] [CrossRef]
- Scott, D.A. Bronze Disease: A Review of Some Chemical Problems and the Role of Relative Humidity. J. Am. Inst. Conserv. 2013, 29, 193. [Google Scholar] [CrossRef]
- Monari, G.; Galeotti, M.; Matteini, M.; Salvadori, B.; Stifanese, R.; Traverso, P.; Vettori, S.; Letardi, P. Protective treatments for copper alloy artworks: Preliminary studies of sodium oxalate and limewater effectiveness against bronze disease. Environ. Sci. Pollut. Res. 2023, 30, 27441–27457. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhu, H.; Cai, L. Morphology and composition of the rust on bronze artifacts. Sci. Conserv. Archaeol. 2005, 17, 24–29. [Google Scholar]
- Rémazeilles, C.; Langlet-Marzloff, V.; Creus, J.; Lotte, G.; Deshayes, C.; Baleux, F.; Robbiola, L. Remarkable corrosion resumption of archaeological bronzes, induced by the oxidation of ternary Cu-Sn-S phases in atmosphere, after long-term burial with sulfides. Corros. Sci. 2020, 175, 108865. [Google Scholar] [CrossRef]
- Li, B.; Jiang, X.; Pan, C. Electrochemical Properties and Microstructure of Cu-Sn Bronze Wares During Corrosion. Mater. Rep. 2018, 31, 138–143. [Google Scholar]
- Shen, Y.; Zhang, G.; Zhou, X. Identification of an unusual pale green material on the surface of an ancient Chinese bronze vessel and application of laser cleaning to its removal. Herit. Sci. 2023, 11, 87. [Google Scholar] [CrossRef]
- Di Francia, E.; Lahoz, R.; Neff, D.; de Caro, T.; Angelini, E.; Grassini, S. Laser-cleaning effects induced on different types of bronze archaeological corrosion products: Chemical-physical surface characterisation. Appl. Surf. Sci. 2022, 573, 150884. [Google Scholar] [CrossRef]
- Ling, X.; Wang, G.; Zhang, C. Investigation of laser cleaning on bronze cultural relics. Laser Phys. 2016, 26, 055603. [Google Scholar] [CrossRef]
- Fernández, J.A.G. Control de la Corrosión: Estudio Y Medida Por Técnicas Electroquímicas; Editorial CSIC-CSIC Press: Madrid, Spain, 1989. [Google Scholar]
- Cano, E.; Lafuente, D. Corrosion inhibitors for the preservation of metallic heritage artefacts. Corros. Conserv. Cult. Herit. Met. Artefacts 2013, 65, 570–594. [Google Scholar]
- Balbo, A.; Chiavari, C.; Martini, C.; Monticelli, C. Effectiveness of corrosion inhibitor films for the conservation of bronzes and gilded bronzes. Corros. Sci. 2012, 59, 204–212. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Zhang, S. A new coating system modified with nano-sized particles for archaeological bronze protection. Stud. Conserv. 2014, 59, 268–275. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, S.; Liu, X.; You, S. Hybrid Corrosion Inhibitor for Anti-corrosion and Protection of Bronze Relics. J. Chin. Soc. Corros. Prot. 2021, 41, 517–522. [Google Scholar]
- Kosec, T.; Škrlep, L.; Švara Fabjan, E.; Sever Škapin, A.; Masi, G.; Bernardi, E.; Chiavari, C.; Josse, C.; Esvan, J.; Robbiola, L. Development of multi-component fluoropolymer based coating on simulated outdoor patina on quaternary bronze. Prog. Org. Coat. 2019, 131, 27–35. [Google Scholar] [CrossRef]
- Kosec, T.; Novak, Ž.; Fabjan, E.Š.; Škrlep, L.; Sever Škapin, A.; Ropret, P. Corrosion protection of brown and green patinated bronze. Prog. Org. Coat. 2021, 161, 106510. [Google Scholar] [CrossRef]
- Škrlep, L.; Kosec, T.; Finšgar, M.; Sever Škapin, A.; Švara Fabjan, E. Properties of the fluoroacrylate and methacryloxypropyl-trimethoxysilane applied to a layer of Cu2O on bronze as either single or multi-component coatings. Prog. Org. Coat. 2023, 177, 107440. [Google Scholar] [CrossRef]
- Zhao, L.; Wei, L.; Li, Q. A highly corrosion resistant and nondestructive menthol coating strategy for short-term protection of bronzes. Prog. Org. Coat. 2022, 170, 106947. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Y.; Wang, J.; Luo, W. Photo-induced passivation: A new corrosion mitigation strategy for bronze artefacts. Corros. Sci. 2024, 239, 112401. [Google Scholar] [CrossRef]
- Jian-yin, T.; Zhe, Z.; Ming-yu, L.; Jian-ping, J.; Wei, P.; Bo, Z. Research on the application of 3D scanning and 3D printing in the repro-duction of fine bronze cultural relics. In Proceedings of the 2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence, Shanghai, China, 20–22 September 2019; pp. 268–271. [Google Scholar]
- Jia, Z.; Jing, M.; Fan, L. Study on digital interactive display of bronze patterns in western Zhou dynasty under holographic projection technology. In Proceedings of the International Conference on Electronics, Electrical and Information Engineering, Haikou, China, 16–18 August 2024; pp. 802–808. [Google Scholar]
- Xiong, W.; Hao, L.; Rao, J. STEAM Teaching Research Based on Real and Virtual Technology: A Case Study of 3D Printing Replication and Holographic Interactive Display of Ancient Light-Transmitting Bronze Mirrors. In Proceedings of the International Conference on Human-Computer Interaction, Gothenburg, Sweden, 4 July 2024; pp. 243–250. [Google Scholar]
Oxides | Sulfate | Carbonate | Chloride | Sulfide | |
---|---|---|---|---|---|
Cu | Tenorite [CuO] Cuprite [Cu2O] | Antlerite [Cu3(SO4)(OH)4] Chalcanthite [CuSO4·5H2O] Brochantite [Cu4SO4(OH)6] | Azurite [Cu3(OH)2(CO3)2] Malachite [Cu2(OH)2(CO3)] | Paratacamite [Cu2(OH3)Cl] Atacamite [Cu2(OH)3Cl] Botallackite [Cu2(OH3)Cl] Melanothallite [Cu2(OH3)Cl] [CuCl] | Covelite [CuS] Chalcocite [Cu2S] |
Sn | Cassiterite [SnO2] | ||||
Pb | Massicot [PbO] Plattnerite [Pb2O] | Lanarkite [PbO·PbSO4] Linarite [PbCuSO4(OH)2] Anglesite [PbSO4] | Cerusite [PbCO3] [Pb3(CO3)2(OH)2] | Cotunnite [PbCl2] Pyromorphite [Pb3(PO4)3Cl] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhang, Z.; Guo, H.; Ren, C.; Liu, C.; Xiang, L. Recent Progress on Corrosion Behavior, Mechanism, and Protection Strategies of Bronze Artefacts. Heritage 2025, 8, 340. https://doi.org/10.3390/heritage8080340
Li H, Zhang Z, Guo H, Ren C, Liu C, Xiang L. Recent Progress on Corrosion Behavior, Mechanism, and Protection Strategies of Bronze Artefacts. Heritage. 2025; 8(8):340. https://doi.org/10.3390/heritage8080340
Chicago/Turabian StyleLi, Hongliang, Zilu Zhang, Hanjie Guo, Chao Ren, Chunyan Liu, and Li Xiang. 2025. "Recent Progress on Corrosion Behavior, Mechanism, and Protection Strategies of Bronze Artefacts" Heritage 8, no. 8: 340. https://doi.org/10.3390/heritage8080340
APA StyleLi, H., Zhang, Z., Guo, H., Ren, C., Liu, C., & Xiang, L. (2025). Recent Progress on Corrosion Behavior, Mechanism, and Protection Strategies of Bronze Artefacts. Heritage, 8(8), 340. https://doi.org/10.3390/heritage8080340