Integrated Documentation and Non-Destructive Surface Characterization of Ancient Egyptian Sandstone Blocks at Karnak Temples (Luxor, Egypt)
Abstract
1. Introduction
2. Methodology
3. Results
3.1. Planimetry and On-Site Observation
3.2. Reflectance Transformation Imaging (RTI)
3.3. Photogrammetry
3.4. Spectral and Gloss Analysis
3.5. Infrared Thermographic Survey (IRT)
3.6. Surface Hydric Behavior
3.7. Ultrasonic Pulse Velocity (UPV)
4. Interventive Conservation Plan
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NDT | Non-destructive testing | |
RTI | Reflectance Transformation Imaging | |
IRT | Infrared Thermography | |
UPV | Ultrasonic Pulse Velocity | |
KSP | Karnak Stones Project (https://karnakstonesproject.com/) | |
H-RTI | Highlight Reflectance Transformation Imaging | |
PTM | Polynomial texture mapping | |
SCE | Specular component excluded | |
WC | Water absorption coefficient (kg/m2√s) | |
V | Volume | |
A | Area | |
t | Time | |
W | Water absorption coefficient (mL/s) | |
T | Transmitter | |
R | Receiver | |
M1-M2-M3 | Mastaba ID | |
UCA | University of Cádiz |
References
- Vicente, R.; Lagomarsino, S.; Ferreira, T.M.; Cattari, S.; Da Silva, J.A.R.M. Cultural heritage monuments and historical buildings: Conservation works and structural retrofitting. In Building Pathology and Rehabilitation; Springer: Berlin/Heidelberg, Germany, 2017; pp. 25–57. [Google Scholar] [CrossRef]
- Caner-Saltık, E.N. Atmospheric weathering of historic monuments and their related conservation issues. MATEC Web Conf. 2018, 149, 01009. [Google Scholar] [CrossRef]
- Fahmy, A.; Molina-Piernas, E.; Martínez-López, J.; Machev, P.; Domínguez-Bella, S. Coastal environment impact on the construction materials of Anfushi’s Necropolis (Pharos’s Island) in Alexandria, Egypt. Minerals 2022, 12, 1235. [Google Scholar] [CrossRef]
- Charola, A.E. Salts in the Deterioration of Porous Materials: An Overview. J. Am. Inst. Conserv. 2000, 39, 327–343. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate change impacts on cultural heritage: A literature review. Wiley Interdiscip. Rev. Clim. Change 2021, 12, e710. [Google Scholar] [CrossRef]
- Fahmy, A.; Molina-Piernas, E.; Martínez-López, J.; Domínguez-Bella, S. Salt weathering impact on Nero/Ramses II Temple at El-Ashmonein archaeological site (Hermopolis Magna), Egypt. Herit. Sci. 2022, 10, 125. [Google Scholar] [CrossRef]
- Bolborea, B.; Baeră, C.; Gruin, A.; Vasile, A.; Barbu, A. A review of non-destructive testing methods for structural health monitoring of earthen constructions. Alex. Eng. J. 2024, 114, 55–81. [Google Scholar] [CrossRef]
- Ottosen, L.M.; Kunther, W.; Ingeman-Nielsen, T.; Karatosun, S. Non-Destructive Testing for Documenting Properties of Structural Concrete for Reuse in New Buildings: A Review. Materials 2024, 17, 3814. [Google Scholar] [CrossRef]
- Tejedor, B.; Lucchi, E.; Bienvenido-Huertas, D.; Nardi, I. Non-destructive techniques (NDT) for the diagnosis of heritage buildings: Traditional procedures and futures perspectives. Energy Build. 2022, 263, 112029. [Google Scholar] [CrossRef]
- Menna, F.; Nocerino, E.; Morabito, D.; Farella, E.M.; Perini, M.; Remondino, F. An open source low-cost automatic system for image-based 3D digitization. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 155–162. [Google Scholar] [CrossRef]
- Miles, J.; Pitts, M.; Pagi, H.; Earl, G. New applications of photogrammetry and reflectance transformation imaging to an Easter Island statue. Antiquity 2014, 88, 596–605. [Google Scholar] [CrossRef]
- Porter, S.T.; Huber, N.; Hoyer, C.; Floss, H. Portable and low-cost solutions to the imaging of Paleolithic art objects: A comparison of photogrammetry and reflectance transformation imaging. J. Archaeol. Sci. Rep. 2016, 10, 859–863. [Google Scholar] [CrossRef]
- Chastre, C.; Ludovico-Marques, M. Nondestructive testing methodology to assess the conservation of historic stone buildings and monuments. In Elsevier eBooks; Elsevier: Amsterdam, The Netherlands, 2018; pp. 255–294. [Google Scholar] [CrossRef]
- Menéndez, B. Non-Destructive techniques applied to monumental stone conservation. In InTech eBooks; InTech: London, UK, 2016. [Google Scholar] [CrossRef]
- Pamuk, E.; Büyüksaraç, A. Investigation of strength characteristics of natural stones in Ürgüp (Nevşehir/Turkey). Bitlis Eren Univ. J. Sci. Technol. 2017, 7, 74–79. [Google Scholar] [CrossRef]
- Kim, H.; Lamichhane, N.; Kim, C.; Shrestha, R. Innovations in building Diagnostics and condition Monitoring: A Comprehensive review of Infrared Thermography applications. Buildings 2023, 13, 2829. [Google Scholar] [CrossRef]
- Barreira, E.; Almeida, R.; Delgado, J. Infrared thermography for assessing moisture related phenomena in building components. Constr. Build. Mater. 2016, 110, 251–269. [Google Scholar] [CrossRef]
- Lo Monaco, A.; Marabelli, M.; Pelosi, C.; Picchio, R. Colour measurements of surfaces to evaluate the restoration materials. In Proceedings of the SPIE, the International Society for Optical Engineering/Proceedings of SPIE, Bellingham, WA, USA, 22–24 May 2011. [Google Scholar] [CrossRef]
- Boust, C.; Arteaga, Y. Color and gloss measurements in cultural heritage conservation science: Recent advances in France. Lond. Imaging Meet. 2023, 4, 60–65. Available online: https://hal.science/hal-04150337/file/boust%20londres%20ok-preprint.pdf (accessed on 16 February 2025). [CrossRef]
- Hendrickx, R. Using the Karsten tube to estimate water transport parameters of porous building materials. Mater. Struct. 2012, 46, 1309–1320. [Google Scholar] [CrossRef]
- Duarte, R.; Flores-Colen, I.; De Brito, J.; Hawreen, A. Variability of in-situ testing in wall coating systems—Karsten tube and moisture meter techniques. J. Build. Eng. 2019, 27, 100998. [Google Scholar] [CrossRef]
- Cantini, L. Assessment of Historical Masonry Buildings: Research on Appropriate Non-Destructive Diagnostic Techniques. Doctoral Dissertation, Politecnico di Milano, Department of Architectural Projects and Department of Structural Engineering, Milan, Italy, 2011. Available online: https://www.politesi.polimi.it/retrieve/a81cb059-f2ea-616b-e053-1605fe0a889a/2012_03_PhD_Cantini.pdf (accessed on 3 March 2025).
- Bard, K.A. Encyclopedia of the Archaeology of Ancient Egypt; Shubert, S.B., Ed.; Routledge: Abingdon, UK, 1999; Available online: https://ia800208.us.archive.org/11/items/EncyclopediaOfTheArchaeologyOfAncientEgypt/EncyclopediaOfTheArchaeologyOfAncientEgypt.pdf (accessed on 22 February 2025).
- Sullivan. The development of the Temple of Karnak. In Digital Karnak; University of California: Los Angeles, CA, USA, 2010; Available online: https://digitalkarnak.ucsc.edu/wp-content/uploads/2020/10/developement-of-karnak-pdf_compressed.pdf (accessed on 18 January 2025).
- Fahmy, A.; Molina-Piernas, E.; Domínguez-Bella, S. Conservation assessment of the stone blocks in the northeast corner of the Karnak temples in Luxor, Egypt. Minerals 2024, 14, 890. [Google Scholar] [CrossRef]
- Tamayo, S.N.M.; Andrés, J.C.V.; Pons, M.J.O. Applications of reflectance transformation imaging for documentation and surface analysis in conservation. Int. J. Conserv. Sci. 2013, 4, 535–548. Available online: https://riunet.upv.es/home (accessed on 1 July 2025).
- Historic England. Multi-Light Imaging for Cultural Heritage; Historic England: London/Swindon, UK, 2018; Available online: https://historicengland.org.uk/images-books/publications/multi-light-imaging-heritage-applications/heag069-multi-light-imaging/ (accessed on 22 February 2025).
- Robitaille, J. Reflectance transformation imaging at a microscopic level: A new device and method for collaborative research on artifact use-wear analysis. J. Archaeol. Sci. Rep. 2024, 61, 104914. [Google Scholar] [CrossRef]
- Gibeaux, S.; Thomachot-Schneider, C.; Eyssautier-Chuine, S.; Marin, B.; Vazquez, P. Simulation of acid weathering on natural and artificial building stones according to the current atmospheric SO2/NOx rate. Environ. Earth Sci. 2018, 77, 327. [Google Scholar] [CrossRef]
- Zha, J.; Wei, S.; Wang, C.; Li, Z.; Cai, Y.; Ma, Q. Weathering mechanism of red discolorations on Limestone object: A case study from Lingyan Temple, Jinan, Shandong Province, China. Herit. Sci. 2020, 8, 54. [Google Scholar] [CrossRef]
- Sandak, J.; Sandak, A.; Riggio, M. Characterization and monitoring of surface weathering on exposed timber structures with a Multi-Sensor approach. Int. J. Archit. Herit. 2015, 9, 674–688. [Google Scholar] [CrossRef]
- Meißner, F.; Sonntag, H.; Morandell-Meißner, A. Water uptake measurement for thermal renovations—Comparison between non-destructive method, the Karsten tube, and automatic laboratory measurements. In NSB 2023—Book of Technical Papers: 13th Nordic Symposium on Building Physics; Alborg University: Alborg, Denmark, 2023. [Google Scholar] [CrossRef]
- Vasanelli, E.; Colangiuli, D.; Calia, A.; Sileo, M.; Aiello, M.A. Ultrasonic pulse velocity for the evaluation of physical and mechanical properties of a highly porous building limestone. Ultrasonics 2015, 60, 33–40. [Google Scholar] [CrossRef]
- Kumar, T.U.; Kumar, M.V.; Salunkhe, S.; Cep, R. Evaluation of non-destructive testing and long-term durability of geopolymer aggregate concrete. Front. Built Environ. 2024, 10, 1454687. [Google Scholar] [CrossRef]
- Citra, Z.; Wibowo, P.D.; Malinda, Y.; Wibisono, A.; Apdeni, R.; Herol, H. Testing of Concrete Structures with Non-Destructive Test Method (NDT) Using Ultrasonic Pulse Velocity (UPV) at the Building on the Ancol Beach. CIVED 2024, 11, 217–225. [Google Scholar] [CrossRef]
- 58-E4800; Manual 58-E4800 Ultrasonic Pulse Velocity Tester. Controls: 2012. Available online: https://laeem.unir.br/uploads/69225823/arquivos/MANUAL___ULTRASONIC_PULSE_VELOCITY_TESTER_1819516732.pdf (accessed on 18 December 2024).
- ISO 16823:2025; Non-Destructive Testing, Ultrasonic Testing, Through-Transmission Technique. International Organization for Standardization: Geneva, Switzerland, 2025. Available online: https://cdn.standards.iteh.ai/samples/77357/60f662c0010c46bcb39cd67e6213f16b/SIST-EN-ISO-16823-2025.pdf (accessed on 22 July 2025).
- Shen, Y.; Zhang, Y.; Gao, F.; Yang, G.; Lai, X. Influence of temperature on the microstructure deterioration of sandstone. Energies 2018, 11, 1753. [Google Scholar] [CrossRef]
- Lü, C.; Sun, Q.; Zhang, W.; Geng, J.; Qi, Y.; Lu, L. The effect of high temperature on tensile strength of sandstone. Appl. Therm. Eng. 2016, 111, 573–579. [Google Scholar] [CrossRef]
- Hartlieb, P.; Toifl, M.; Kuchar, F.; Meisels, R.; Antretter, T. Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution. Miner. Eng. 2015, 91, 34–41. [Google Scholar] [CrossRef]
- Fahmy, A.; Basell, L.; Domínguez-Bella, S.; Molina-Piernas, E. Assessing the impact of Nile water level fluctuations on the structural stability of the Philae temples in Aswan, Egypt. J. Archaeol. Sci. 2025, 180, 106278. [Google Scholar] [CrossRef]
- Vigroux, M.; Eslami, J.; Beaucour, A.; Bourgès, A.; Noumowé, A. High temperature behaviour of various natural building stones. Constr. Build. Mater. 2020, 272, 121629. [Google Scholar] [CrossRef]
- Fahmy, A.; Martínez-López, J.; Sánchez-Bellón, Á.; Domínguez-Bella, S.; Molina-Piernas, E. Multianalytical diagnostic approaches for the assessment of materials and decay of the archaeological sandstone of Osiris Temple (The Abaton) in Bigeh Island, Philae (Aswan, Egypt). J. Cult. Herit. 2022, 58, 167–178. [Google Scholar] [CrossRef]
- Franzoni, E.; Graziani, G.; Sassoni, E.; Bacilieri, G.; Griffa, M.; Lura, P. Solvent-based ethyl silicate for stone consolidation: Influence of the application technique on penetration depth, efficacy and pore occlusion. Mater. Struct. 2014, 48, 3503–3515. [Google Scholar] [CrossRef]
- Franzoni, E.; Graziani, G.; Sassoni, E. TEOS-based treatments for stone consolidation: Acceleration of hydrolysis–condensation reactions by poulticing. J. Sol-Gel Sci. Technol. 2015, 74, 398–405. [Google Scholar] [CrossRef]
- Ludovico-Marques, M.; Chastre, C. Effect of consolidation treatments on mechanical behaviour of sandstone. Constr. Build. Mater. 2014, 70, 473–482. [Google Scholar] [CrossRef]
- Wang, G.; Chai, Y.; Li, Y.; Luo, H.; Zhang, B.; Zhu, J. Sandstone protection by using nanocomposite coating of silica. Appl. Surf. Sci. 2022, 615, 156193. [Google Scholar] [CrossRef]
- Stucchi, N.M.E.; Tesser, E.; Antonelli, F.; Benedetti, A. Synthesis and characterization of nanosilica products for the consolidation of stones. In Proceedings of the 2019 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage, Florence, Italy, 4–6 December 2019; pp. 299–304. Available online: https://air.iuav.it/handle/11578/296496 (accessed on 22 February 2025).
- Fahmy, A.; Gołąbiewska, A.; Wojnicz, W.; Stanisławska, A.; Kowalski, J.; Łuczak, J.; Zaleska-Medynska, A.; Domínguez-Bella, S.; Martínez-López, J.; Molina-Piernas, E. Multi-functional monodispersed SiO2–TiO2 core-shell nanostructure and TEOS in the consolidation of archaeological lime mortars surfaces. J. Build. Eng. 2023, 79, 107809. [Google Scholar] [CrossRef]
- Gulotta, D.; Wilhelm, K.; Desarnaud, J.; Otero, J.; Grove, R.; Leslie, A.; Viles, H. Integrated Strategy to assess conservation treatments on Sandstone. Stud. Conserv. 2020, 65 (Suppl. S1), P119–P123. [Google Scholar] [CrossRef]
- Praticò, Y.; Caruso, F.; Rodrigues, J.D.; Girardet, F.; Sassoni, E.; Scherer, G.W.; Vergès-Belmin, V.; Weiss, N.R.; Wheeler, G.; Flatt, R.J. Stone consolidation: A critical discussion of theoretical insights and field practice. RILEM Tech. Lett. 2020, 4, 145–153. [Google Scholar] [CrossRef]
- Barack, S.; Webb, E.K.; Walthew, J. Technical note: Blue and White Light RTI for Imaging Micro-Features on glass surfaces. Heritage 2025, 8, 269. [Google Scholar] [CrossRef]
- Saha, S.; Siatou, A.; Mansouri, A.; Sitnik, R. Supervised segmentation of RTI appearance attributes for change detection on cultural heritage surfaces. Herit. Sci. 2022, 10, 173. [Google Scholar] [CrossRef]
- Haddad, N.A. Insight on 3D virtual reconstruction of architectural and archaeological cultural heritage: Critical assessment, comprehensive guidelines, and recommendations. Stud. Conserv. 2025, 1–20. [Google Scholar] [CrossRef]
- Benavente, D.; Martínez-Verdú, F.; Bernabeu, A.; Viqueira, V.; Fort, R.; Del Cura, M.G.; Illueca, C.; Ordóñez, S. Influence of surface roughness on color changes in building stones. Color Res. Appl. 2003, 28, 343–351. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Cai, Z.; Guo, H.; He, X. Quantifying blistering on Vajrasana pagoda using complementary in-situ non-destructive techniques. Humanit. Soc. Sci. Commun. 2025, 12, 1–12. [Google Scholar] [CrossRef]
- Centauro, I.; Vitale, J.G.; Calandra, S.; Salvatici, T.; Natali, C.; Coppola, M.; Intrieri, E.; Garzonio, C.A. A multidisciplinary methodology for technological knowledge, characterization and diagnostics: Sandstone facades in Florentine Architectural Heritage. Appl. Sci. 2022, 12, 4266. [Google Scholar] [CrossRef]
- Junique, T.; Vazquez, P.; Thomachot-Schneider, C.; Hassoun, I.; Jean-Baptiste, M.; Géraud, Y. The use of infrared thermography on the measurement of microstructural changes of reservoir rocks induced by temperature. Appl. Sci. 2021, 11, 559. [Google Scholar] [CrossRef]
- Fahmy, A. Structural pathology and vulnerability assessment of monolithic stone columns at El Ashmonein Site, Egypt. Npj Herit. Sci. 2025, 13, 353. [Google Scholar] [CrossRef]
Block ID | Location (East Wall, Sector B) | Dimensions (Width, Length, and Height, in cm) | Dynasty and King | Description and Features | Condition and Observations |
---|---|---|---|---|---|
3615 | Mastaba 1 | 100 × 120 × 60 | 19th Dynasty, Seti I | Parallelepiped sandstone block with front face reliefs (city of Behdet, wings, wheel). Hole in the upper face for joining blocks. Mortar-filled cavities with Egyptian blue pigment; traces of white paint. | Structurally intact but weathered. Crust partially covers reliefs. Biofilms and pictorial layer peeling. Cross lamination present. |
3577 | Mastaba 1 | 160 × 75 × 40 | 19th Dynasty, Seti I | Sandstone block with inscriptions on the west face. Upper face has a 12 mm-wide keying mark. Irregular faces, altered microstructure. | Significant erosion and cracking along horizontal lamination planes. Conservation measures needed to protect inscriptions. |
3502 | Mastaba 2 | 90 (height) × 220 (diameter) | 19th Dynasty, Seti I | Cylindrical sandstone block with lower zone hieroglyphic reliefs and cartouches. Upper part finely chiseled with dovetail joints. Rear surface retains white mortar traces. | Well-preserved walls. No polychrome remains. Later anthropic keying marks, some repaired with mortar. |
3553 | Mastaba 3 | 145 × 85 × 65 | 19th Dynasty, Seti I | Sandstone block with high-relief carvings (sun symbol, vulture, Seti I cartouches). Inverted orientation. Inscription mentioning “Sḫt ȝt Mr.t Ptḥ” | Upper surface deteriorated and sandy. Irregular fractures, salt efflorescence, biofilm growth. Despite weathering, carvings remain important for further study. |
L* | a* | b* | Hue | Chroma | GU (%) | Pseudo Color | ||
---|---|---|---|---|---|---|---|---|
M1-33615 | 1 | 61.51 | 6.26 | 17.61 | 70 | 18.69 | 0.5 | |
2 | 57.69 | 6.70 | 17.77 | 69 | 18.99 | 1.3 | ||
3 | 68.23 | 2.02 | 11.58 | 80 | 11.75 | 0.8 | ||
4 | 69.95 | 4.91 | 16.04 | 72 | 15.91 | 2.5 | ||
M1-3577 | 1 | 57.76 | 5.53 | 16.61 | 72 | 17.50 | 2.7 | |
2 | 60.84 | 5.97 | 17.69 | 71 | 18.67 | 2.3 | ||
3 | 54.90 | 5.55 | 16.45 | 71 | 17.36 | 4.2 | ||
4 | 43.03 | 6.65 | 20.29 | 72 | 21.32 | 1.5 | ||
M2-3502 | 1 | 62.12 | 6.01 | 17.68 | 71 | 18.67 | 0.8 | |
2 | 63.15 | 5.19 | 15.51 | 71.5 | 16.36 | 1.7 | ||
3 | 58.25 | 6.24 | 16.24 | 69 | 17.40 | 1.8 | ||
4 | 54.28 | 6.92 | 17.59 | 70.5 | 18.66 | 1.4 | ||
M3-3553 | 1 | 61.77 | 5.83 | 16.95 | 71 | 17.92 | 2.3 | |
2 | 60.94 | 6.91 | 19.52 | 71 | 20.70 | 0.5 | ||
3 | 50.49 | 6.18 | 16.99 | 70 | 18.07 | 3.8 | ||
4 | 77.99 | 2.11 | 15.98 | 82 | 16.11 | 4.3 |
Block ID | Path Label | Measurement Type | Distance (cm) | Velocity (km/s) |
---|---|---|---|---|
M1-3615 | 1–12 | Semidirect | 15 | 0.2 |
2–11 | Semidirect | 15 | 0.4 | |
3–10 | Semidirect | 15 | 0.6 | |
4–9 | Semidirect | 15 | 0.9 | |
5–8 | Semidirect | 15 | 1.1 | |
6–7 | Semidirect | 15 | 1.3 | |
7–8 | Direct (L1) | 10 | 1.4 | |
8–9 | Direct (L1) | 10 | 1.45 | |
9–10 | Direct (L1) | 10 | 1.55 | |
10–11 | Direct (L1) | 10 | 1.6 | |
13–14 | Direct (L2) | 10 | 1.6 | |
14–15 | Direct (L2) | 10 | 1.5 | |
15–16 | Direct (L2) | 10 | 1.4 | |
16–17 | Direct (L2) | 10 | 1.3 | |
17–18 | Direct (L2) | 10 | 1.2 | |
18–19 | Direct (L2) | 10 | 1.1 | |
20–21 | Direct (L3) | 10 | 0.9 | |
21–22 | Direct (L3) | 10 | 0.8 | |
22–23 | Direct (L3) | 10 | 0.6 | |
23–24 | Direct (L3) | 10 | 0.45 | |
24–25 | Direct (L3) | 10 | 0.3 | |
25–26 | Direct (L3) | 10 | 0.2 | |
M1-3577 | 1–2 | Direct (L1) | 10 | 1.2 |
2–3 | Direct (L1) | 10 | 1.3 | |
3–4 | Direct (L1) | 10 | 1.35 | |
4–5 | Direct (L1) | 10 | 1.45 | |
6–7 | Direct (L2) | 10 | 1.3 | |
7–8 | Direct (L2) | 10 | 1.35 | |
8–9 | Direct (L2) | 10 | 1.45 | |
9–10 | Direct (L2) | 10 | 1.5 | |
11–12 | Direct (L3) | 10 | 1.3 | |
12–13 | Direct (L3) | 10 | 1.2 | |
13–14 | Direct (L3) | 10 | 1.1 | |
14–15 | Direct (L3) | 10 | 1 | |
M2-3502 | 1–1 | Semidirect (NE Corner) | 15 | 2 |
2–2 | Semidirect (NE Corner) | 15 | 1.85 | |
3–3 | Semidirect (NE Corner) | 15 | 1.7 | |
4–4 | Semidirect (NE Corner) | 15 | 1.5 | |
5–6 | Direct | 10 | 1.25 | |
6–7 | Direct | 10 | 1 | |
7–8 | Direct | 10 | 0.75 | |
8–9 | Direct | 10 | 0.6 | |
9–10 | Direct | 10 | 0.45 | |
10–11 | Direct | 10 | 0.3 | |
11–12 | Direct | 10 | 0.2 | |
12–13 | Direct | 10 | 0.15 | |
13–14 | Direct | 10 | 0.1 | |
M3-3553 | 1–1 | Semidirect (NE Corner) | 15 | 1.8 |
2–2 | Semidirect (NE Corner) | 15 | 1.65 | |
3–3 | Semidirect (NE Corner) | 15 | 1.4 | |
4–4 | Semidirect (NE Corner) | 15 | 1.1 | |
1–5 | Direct (L1) | 10 | 1.2 | |
2–6 | Direct (L1) | 10 | 1 | |
3–7 | Direct (L1) | 10 | 0.8 | |
4–8 | Direct (L1) | 10 | 0.6 | |
5–9 | Direct (L1) | 10 | 0.45 | |
2–10 | Direct (L2) | 10 | 0.9 | |
3–11 | Direct (L2) | 10 | 0.75 | |
4–12 | Direct (L2) | 10 | 0.6 | |
5–13 | Direct (L2) | 10 | 0.45 | |
6–14 | Direct (L2) | 10 | 0.3 | |
1–2 | Direct (Crack) | 10 | 0.2 | |
2–3 | Direct (Crack) | 10 | 0.15 | |
3–4 | Direct (Crack) | 10 | 0.1 | |
4–5 | Direct (Crack) | 10 | 0.08 | |
5–6 | Direct (Crack) | 10 | 0.05 | |
6–7 | Direct (Crack) | 10 | 0.03 | |
7–8 | Direct (Crack) | 10 | 0.02 | |
8–9 | Direct (Crack) | 10 | 0.01 | |
9–14 | Direct (Crack) | 10 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahmy, A.; Domínguez-Bella, S.; Durante-Macías, A.; Martínez-Viñas, F.; Molina-Piernas, E. Integrated Documentation and Non-Destructive Surface Characterization of Ancient Egyptian Sandstone Blocks at Karnak Temples (Luxor, Egypt). Heritage 2025, 8, 320. https://doi.org/10.3390/heritage8080320
Fahmy A, Domínguez-Bella S, Durante-Macías A, Martínez-Viñas F, Molina-Piernas E. Integrated Documentation and Non-Destructive Surface Characterization of Ancient Egyptian Sandstone Blocks at Karnak Temples (Luxor, Egypt). Heritage. 2025; 8(8):320. https://doi.org/10.3390/heritage8080320
Chicago/Turabian StyleFahmy, Abdelrhman, Salvador Domínguez-Bella, Ana Durante-Macías, Fabiola Martínez-Viñas, and Eduardo Molina-Piernas. 2025. "Integrated Documentation and Non-Destructive Surface Characterization of Ancient Egyptian Sandstone Blocks at Karnak Temples (Luxor, Egypt)" Heritage 8, no. 8: 320. https://doi.org/10.3390/heritage8080320
APA StyleFahmy, A., Domínguez-Bella, S., Durante-Macías, A., Martínez-Viñas, F., & Molina-Piernas, E. (2025). Integrated Documentation and Non-Destructive Surface Characterization of Ancient Egyptian Sandstone Blocks at Karnak Temples (Luxor, Egypt). Heritage, 8(8), 320. https://doi.org/10.3390/heritage8080320