Perception of Vertical Greening Applications on Historic Buildings
Abstract
1. Introduction
2. Methods
2.1. Survey Design
- (A1)
- Do you think there are any benefits to growing VGS on historic building facades?
- (A2)
- Do you have any concerns about installing VGS on historic building facades?
- (B1)
- If you think VGS has any positive impact on historic building facades, please tick those that apply:
- ENVIRONMENTAL (e.g., reduces surface temperature, increases biodiversity)
- SOCIAL (e.g., improves health and well-being, provides recreational space)
- ECONOMIC (e.g., reduces energy costs, increases property values)
- CULTURAL (e.g., improves the aesthetics of the facade, enhances the city’s image)
- LEGAL (e.g., provides green certificates, supports community-led development)
- TECHNICAL (e.g., expands the lifespan of the building facade)
- No positive impacts
- (B2)
- If you think VGS has any negative impact on historic building facades, please tick those that apply:
- ENVIRONMENTAL (e.g., induces mold, attracts pests and mosquitoes)
- SOCIAL (e.g., triggers allergies)
- ECONOMIC (e.g., high installation and maintenance costs lead to unaffordable housing)
- CULTURAL (e.g., hides facade details, causes stains and dirt accumulation)
- LEGAL (e.g., lack of guidance, insufficient funding)
- TECHNICAL (e.g., roots damage the wall, difficult to install and maintain)
- No negative impacts
2.2. Survey Data Collection
2.3. Respondent Profile
2.4. Analysis of the Survey Data
2.4.1. Open-Ended Questions—Part A
2.4.2. Closed-Ended Questions—Part B
2.4.3. Consistency Rate Analysis of Part A and Part B
- Number of Consistent Responses is the count of cases where the binary-coded responses (1 = yes, 0 = no) from Part A and Part B matched.
- Total Number of Responses is the total number of respondents (corresponding to 83 respondents).
3. Results and Discussion
3.1. Part A—Responses to Open-Ended Questions of the Survey
3.1.1. Environmental Aspects
3.1.2. Social Aspects
3.1.3. Economic Aspects
3.1.4. Cultural Aspects
3.1.5. Legal Aspects
3.1.6. Technical Aspects
3.2. Part B—Responses to Closed-Ended Questions of the Survey
3.3. Comparison Between Responses of Part A and Part B
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Open-Ended Questionnaire Results
Name | References |
---|---|
- CULTURAL | 0 |
damage architectural elements | 5 |
cause irreversible damage | 1 |
pieces fall off | 1 |
threaten facade integrity | 3 |
harm cultural value | 7 |
cause the loss of historic identity | 1 |
hinder the facade details | 19 |
lack compatibility with building materials | 1 |
lack relationship with local context | 2 |
make an abandoned look | 1 |
- ECONOMIC | 0 |
adds maintenance cost | 2 |
cost high | 3 |
- ENVIRONMENTAL | 0 |
attract pests and mosquitos | 8 |
cause bio colonization | 8 |
lack of climate feasibility | 1 |
protecting plant health | 1 |
- LEGAL | 0 |
difficult to find regulatory compliance | 1 |
difficult to implement on listed buildings | 6 |
- SOCIAL | 0 |
cause green gentrification | 4 |
harm humans | 1 |
reduce quality of life in the building | 1 |
- TECHNICAL | 0 |
accumulate impurities | 2 |
cause stains and cracks | 4 |
damage caused by irrigation | 2 |
cause fire hazard | 1 |
disturb rainwater drainage | 1 |
increase in humidity | 15 |
make conservation and maintenance difficult | 19 |
reduce facade longevity | 3 |
cause facade degradation | 11 |
cause material alteration | 6 |
plant roots cause damages | 27 |
threaten structural integrity | 7 |
+ CULTURAL | 0 |
bring nature and heritage conservation together | 4 |
create recreational space | 1 |
enhance the aesthetics | 24 |
add color | 2 |
attract visually | 14 |
complement the architecture | 9 |
enhance the street silhouette | 2 |
hide imperfections on the wall | 2 |
provide seasonal variations | 1 |
enhance the ambiance | 3 |
make buildings look alive | 1 |
make cities more pleasant | 1 |
enhance the green culture | 2 |
+ ECONOMIC | 0 |
provide socioeconomic benefits | 1 |
reduce heating and cooling costs | 3 |
safeguard heritage in an economical way | 1 |
+ ENVIRONMENTAL | 0 |
enhance biodiversity | 13 |
continuity of green corridors | 1 |
increase air quality | 12 |
improve humidity | 4 |
mitigate urban heat island effects | 11 |
produce oxygen and reduce CO2 emission | 5 |
promote energy efficiency | 5 |
promotes sustainability | 3 |
provide more green | 10 |
require small ground surface | 2 |
provide thermal comfort | 10 |
provide climate resilience | 3 |
provide cooling | 19 |
provide insulation | 19 |
reduce noise pollution | 4 |
+ SOCIAL | 0 |
educate people | 1 |
engage community | 2 |
enhance well-being | 3 |
make people feel happier and more alive | 1 |
promote public health | 4 |
benefits on mental health | 1 |
protect vulnerable groups | 1 |
+ TECHNICAL | 0 |
protect facade from impurities | 2 |
protect from ambiental effects | 14 |
protect from biocolonization | 1 |
protect from corrosion | 1 |
provide historic preservation | 1 |
provide shade | 7 |
CONDITIAL CASES | 0 |
depends on building facade condition | 13 |
depends on climatic conditions | 1 |
depends on cultural and architectural value | 4 |
depends on green wall type | 9 |
depends on the local context | 3 |
GREEN WALL EXAMPLES | 0 |
I seen them but they were not intentional | 3 |
No specific examples come to mind, but I have seen them | 4 |
not aware of any historic facade with green walls | 9 |
Specific examples | 2 |
a farm for 1666 in Puurs-Sint Amands with ivy on the outside walls | 1 |
around the streets of Paris | 1 |
Carolus Borromeus Chruch | 1 |
examples of vines being placed on balconies in old Greek houses in Ayvalık. | 1 |
Fort Napoleon, Oostende | 1 |
Hof van Liere | 2 |
In the ASKEV structure, vertical greening was used on the interior walls, although not on the exterior. | 1 |
Villers la ville | 1 |
References
- Gevorgian, S.; Pezzutto, S.; Zambotti, S.; Croce, S.; Oberegger, U.F.; Lollini, R.; Kranzl, L.; Muller, A. European Building Stock Analysis: A Country by Country Descriptive and Comparative Analysis of the Energy Performance of Buildings; Eurac Research: Bolzano, Italy, 2021. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- UNESCO. Culture|2030 Indicators; UNESCO: Paris, France, 2019. [Google Scholar]
- ICOMOS. The Burra Charter (The Australia ICOMOS Charter for Places of Cultural Significance); ICOMOS: Burra, Australia, 2013. [Google Scholar]
- ICOMOS. International Charter for the Conservation and Restoration of Monuments and Sites (The Venice Charter); ICOMOS: Venice, Italy, 1964. [Google Scholar]
- ICOMOS. The NARA Document on Authenticity; ICOMOS: Tokyo, Japan, 1994. [Google Scholar]
- Coombes, M.A.; Viles, H.A. Integrating nature-based solutions and the conservation of urban built heritage: Challenges, opportunities, and prospects. Urban For. Urban Green. 2021, 63, 127192. [Google Scholar] [CrossRef]
- Carrari, E.; Aglietti, C.; Bellandi, A.; Dibari, C.; Ferrini, F.; Fineschi, S.; Galeotti, P.; Giuntoli, A.; Del Fa, R.M.; Moriondo, M.; et al. The management of plants and their impact on monuments in historic gardens: Current threats and solutions. Urban For. Urban Green. 2022, 76, 127727. [Google Scholar] [CrossRef]
- Cozzolino, A.; Adamo, P.; Bonanomi, G.; Motti, R. The Role of Lichens, Mosses, and Vascular Plants in the Biodeterioration of Historic Buildings: A Review. Plants 2022, 11, 3429. [Google Scholar] [CrossRef]
- Trochonowicz, M.; Klimek, B.; Lisiecki, D. Biological corrosion and vegetation in the aspect of permanent ruin. Bud. Archit. 2019, 17, 17–26. [Google Scholar] [CrossRef]
- Ling, T.-Y.; Hung, W.-K.; Lin, C.-T.; Lu, M. Dealing with Green Gentrification and Vertical Green-Related Urban Well-Being: A Contextual-Based Design Framework. Sustainability 2020, 12, 10020. [Google Scholar] [CrossRef]
- Fernández-Cañero, R.; Urrestarazu, L.P.; Perini, K.; Systems, V.G. Nature Based Strategies for Urban and Building Sustainability; Elsevier: Amsterdam, The Netherlands, 2018; pp. 45–54. [Google Scholar] [CrossRef]
- Kaplan, S. An informal model for the prediction of preference. In Landscape Assessment: Values, Perception and Resources; Zube, E.H., Brush, R.O., Fabos, J.G., Eds.; Dowden, Hutchinson and Ross: Stroudsburg, PA, USA, 1975; pp. 92–101. [Google Scholar]
- Bell, P.A.; Greene, T.C.; Fisher, J.D.; Baum, A.S. Environmental Psychology; Harcourt College Publishers: New York, NY, USA, 2001. [Google Scholar]
- Abdul-Rahman; Wang, C.; Rahim, A.M.; Loo, S.C.; Miswan, N. Vertical Greenery Systems (VGS) in Urban Tropics. Open House Int. 2014, 39, 42–52. [Google Scholar] [CrossRef]
- Chew, M.Y.L.; Conejos, S. Developing a green maintainability framework for green walls in Singapore. Struct. Surv. 2016, 34, 379–406. [Google Scholar] [CrossRef]
- Gantar, D.; Kozamernik, J.; Erjavec, I.Š.; Koblar, S. From Intention to Implementation of Vertical Green: The Case of Ljubljana. Sustainability 2022, 14, 3198. [Google Scholar] [CrossRef]
- Olusoga, O.; Adegun, O. Professionals’ perception studies of vertical greening systems in Lagos, Nigeria. Int. J. Build. Pathol. Adapt. 2022, 42, 821–834. [Google Scholar] [CrossRef]
- Jim, C.Y.; Hui, L.C.; Rupprecht, C.D.D. Public Perceptions of Green Roofs and Green Walls in Tokyo, Japan: A Call to Heighten Awareness. Environ. Manag. 2022, 70, 35–53. [Google Scholar] [CrossRef]
- White, E.V.; Gatersleben, B. Greenery on residential buildings: Does it affect preferences and perceptions of beauty? J. Environ. Psychol. 2011, 31, 89–98. [Google Scholar] [CrossRef]
- Tabatabaee, S.; Ashour, M.; Mohandes, S.R.; Sadeghi, H.; Mahdiyar, A.; Hosseini, M.R.; Ismail, S. Deterrents to the adoption of green walls: A hybrid fuzzy-based approach. Eng. Constr. Archit. Manag. 2022, 29, 3460–3479. [Google Scholar] [CrossRef]
- Gunawardena, K.; Steemers, K. Assessing the influence of neighbourhood-scale vertical greening application. Build. Cities 2023, 4, 103–123. [Google Scholar] [CrossRef]
- Fensterseifer, P.; Gabriel, E.; Tassi, R.; Piccilli, D.G.A.; Minetto, B. A year-assessment of the suitability of a green façade to improve thermal performance of an affordable housing. Ecol. Eng. 2022, 185, 106810. [Google Scholar] [CrossRef]
- Pérez, G.; Rincón, L.; Vila, A.; González, J.M.; Cabeza, L.F. Behaviour of green facades in Mediterranean Continental climate. Energy Convers. Manag. 2011, 52, 1861–1867. [Google Scholar] [CrossRef]
- Vox, G.; Blanco, I.; Schettini, E. Green façades to control wall surface temperature in buildings. Build. Environ. 2018, 129, 154–166. [Google Scholar] [CrossRef]
- Hoelscher, M.-T.; Nehls, T.; Jänicke, B.; Wessolek, G. Quantifying cooling effects of facade greening: Shading, transpiration and insulation. Energy Build. 2016, 114, 283–290. [Google Scholar] [CrossRef]
- Gabriel, E.; Piccilli, D.G.A.; Tassi, R.; Köhler, M.; Krebs, L.F. Improving indoor environmental quality in an affordable house by using a vegetated wall: A case study in subtropical Brazil. Build. Environ. 2024, 250, 111146. [Google Scholar] [CrossRef]
- Heydari, T.; Yeganeh, M.; Pourmahabadian, E. Evaluation of the role of green walls in enhancing outdoor thermal comfort in different morphologies of building blocks. Front. Sustain. Cities 2025, 7, 1519375. [Google Scholar] [CrossRef]
- De Groeve, M.; Kale, E.; Godts, S.; Orr, S.A.; De Kock, T. Impact of vertical greening on urban microclimate and historic building materials: A meta-analysis. Build. Environ. 2024, 253, 111365. [Google Scholar] [CrossRef]
- Coombes, M.A.; Viles, H.A.; Zhang, H. Thermal blanketing by ivy (Hedera helix L.) can protect building stone from damaging frosts. Sci. Rep. 2018, 8, 9834. [Google Scholar] [CrossRef]
- Pérez, G.; Coma, J.; Barreneche, C.; de Gracia, A.; Urrestarazu, M.; Burés, S.; Cabeza, L.F. Acoustic insulation capacity of Vertical Greenery Systems for buildings. Appl. Acoust. 2016, 110, 218–226. [Google Scholar] [CrossRef]
- Iligan, R.; Irga, P. Are green wall technologies suitable for major transport infrastructure construction projects? Urban For. Urban Green. 2021, 65, 127313. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, A.Y.K.; Tan, P.Y.; Sia, A.; Wong, N.C. Perception Studies of Vertical Greenery Systems in Singapore. J. Urban Plan. Dev. 2010, 136, 330–338. [Google Scholar] [CrossRef]
- Essuman-Quainoo, B.; Jim, C.Y. Understanding the drivers of green roofs and green walls adoption in Global South cities: Analysis of Accra, Ghana. Urban For. Urban Green. 2023, 89, 128106. [Google Scholar] [CrossRef]
- Attal, E.; Dauchez, N. Acoustic performance of foliage based on green systems at normal incidence. Appl. Acoust. 2025, 234, 110591. [Google Scholar] [CrossRef]
- Kateshastabadan, M.A.; Azmoodeh, M.; Mohammadhosseini, B. Experimental evaluation of a vertical green system for indoor noise reduction. Build. Acoust. 2025, 1–19. [Google Scholar] [CrossRef]
- Leong, B.T.; Yeap, P.S.; Ang, F.L. The initial study on implementation of vertical greenery in Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2021, 685, 012017. [Google Scholar] [CrossRef]
- Chiquet, C.; Dover, J.W.; Mitchell, P. Birds and the urban environment: The value of green walls. Urban Ecosyst. 2013, 16, 453–462. [Google Scholar] [CrossRef]
- Madre, F.; Clergeau, P.; Machon, N.; Vergnes, A. Building biodiversity: Vegetated façades as habitats for spider and beetle assemblages. Glob. Ecol. Conserv. 2015, 3, 222–233. [Google Scholar] [CrossRef]
- Moya, S. Behavior of Endemic and Non-Endemic Species in Urban Green Infrastructures: Sustainable Strategies in Quito. Sustainability 2025, 17, 2333. [Google Scholar] [CrossRef]
- Tiwary, A.; Godsmark, K.; Smethurst, J. Field evaluation of precipitation interception potential of green façades. Ecol. Eng. 2018, 122, 69–75. [Google Scholar] [CrossRef]
- Chung, P.-W.; Livesley, S.J.; Rayner, J.P.; Farrell, C. Greywater irrigation can support climbing plant growth on building green façades. Urban For. Urban Green. 2021, 62, 127119. [Google Scholar] [CrossRef]
- Obeidat, N.; Awwad, A.A.; Al-Salaymeh, A.; Bresciani, R.; Masi, F.; Rizzo, A.; AlBtoosh, J.; Zoubi, M.M. Ground-Based Green Façade for Enhanced Greywater Treatment and Sustainable Water Management. Water 2025, 17, 346. [Google Scholar] [CrossRef]
- Blanco, I.; Convertino, F.; Schettini, E.; Vox, G. Wintertime Thermal Performance of Green Façades in a Mediterranean Climate. Urban Agric. City Sustain. II 2020, 243, 47–56. [Google Scholar] [CrossRef]
- Kitagawa, H.; Tanimoto, A.; Kubota, T.; Koyama, K.; Alfata, M. A field experiment on green walls taking into consideration wind flow in the hot-humid climate of Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 294, 012088. [Google Scholar] [CrossRef]
- Tang, Y.-F.; Chen, H.; Yang, M.; Tan, Z.-C.; Zhao, F.-Y.; Guo, J.-H.; Fang, Y. Weak geostrophic wind driven ventilation in street canyons with trees and green walls: Cooperating or opposing dispersions of airborne pollutants? Build. Environ. 2024, 259, 111654. [Google Scholar] [CrossRef]
- Qian, X.; Zhang, X.; Weerasuriya, A.U.; Zhai, J. Designing green walls to mitigate fine particulate pollution in an idealized urban environment. Sustain. Cities Soc. 2024, 113, 105640. [Google Scholar] [CrossRef]
- Li, Z.; Chow, D.H.C.; Yao, J.; Zheng, X.; Zhao, W. The effectiveness of adding horizontal greening and vertical greening to courtyard areas of existing buildings in the hot summer cold winter region of China: A case study for Ningbo. Energy Build. 2019, 196, 227–239. [Google Scholar] [CrossRef]
- Hoffmann, K.A.; Šuklje, T.; Kozamernik, J.; Nehls, T. Modelling the cooling energy saving potential of facade greening in summer for a set of building typologies in mid-latitudes. Energy Build. 2021, 238, 110816. [Google Scholar] [CrossRef]
- Convertino, F. Heat Transfer Modelling in Green Façades. Urban Agric. City Sustain. II 2020, 243, 57–68. [Google Scholar] [CrossRef]
- Pichlhöfer, A.; Korjenic, A.; Sulejmanovski, A.; Streit, E. Influence of Facade Greening with Ivy on Thermal Performance of Masonry Walls. Sustainability 2023, 15, 9546. [Google Scholar] [CrossRef]
- Arminda, W.; Ulum, M.S.; Pratama, D.S.; Hisyam. Analysis of Vertical Greenery Systems (VGS) on Cooling Loads on Campus Buildings in Tropical Climates. IOP Conf. Ser. Earth Environ. Sci. 2024, 1361, 012012. [Google Scholar] [CrossRef]
- Báez-García, W.G.; Simá, E.; Chagolla-Aranda, M.A.; Herazo, L.C.S.; Carreto-Hernandez, L.G. Numerical-experimental study of the thermal behavior of a green facade in a warm climate in Mexico. Energy Build. 2024, 311, 114156. [Google Scholar] [CrossRef]
- Jiang, Z.-D.; Luo, S.-L.; Shi, X.; Tang, S.-N.; Qian, F.; Yang, F. Thermal environmental and energy effects of vertical greening system under the influence of localized urban climates. Urban For. Urban Green. 2024, 100, 128485. [Google Scholar] [CrossRef]
- Ouldboukhitine, S.-E.; Bakkour, A.; Khiati, S.; Belarbi, R. Modular green walls: A sustainable architectural solution for energy efficiency in oceanic climates. Energy Build. 2025, 342, 115850. [Google Scholar] [CrossRef]
- Turhan, C.; Carpino, C.; Austin, M.C.; Özbey, M.F.; Akkurt, G.G. Impact of Green Wall and Roof Applications on Energy Consumption and Thermal Comfort for Climate Resilient Buildings. Urban Sci. 2025, 9, 105. [Google Scholar] [CrossRef]
- Mansor, M.; Zakariya, K.; Harun, N.Z.; Bakar, N.I.A. Appreciation of Vertical Greenery in a City as Public. Plan. Malays. J. 2017, 15, 117–128. [Google Scholar] [CrossRef]
- Collins, R.; Schaafsma, M.; Hudson, M.D. The value of green walls to urban biodiversity. Land. Use Policy 2017, 64, 114–123. [Google Scholar] [CrossRef]
- Manouchehri, M.; López, J.S.; López, M.V. Sustainable Design of Vertical Greenery Systems: A Comprehensive Framework. Sustainability 2024, 16, 3249. [Google Scholar] [CrossRef]
- Gocer, O.; Ramezannia, A.; Allison, C. The practical challenges of living wall implementations in Australia. Intell. Build. Int. 2025, 17, 1–14. [Google Scholar] [CrossRef]
- Hefnawy, N.H. The Effect of Using Green Walls in Enhancing the Imageability of Urban Spaces. IOP Conf. Ser. Earth Environ. Sci. 2022, 1113, 012007. [Google Scholar] [CrossRef]
- Bakar, N.I.A.; Mansor, M.; Harun, N.Z. Vertical Greenery System as Public Art? Possibilities and Challenges in Malaysian Urban Context. Procedia Soc. Behav. Sci. 2014, 153, 230–241. [Google Scholar] [CrossRef]
- Thornbush, M.J. Tracking the Use of Climbing Plants in the Urban Landscape through the Photoarchives of Two Oxford Colleges, 1861–1964. Landsc. Res. 2013, 38, 312–328. [Google Scholar] [CrossRef]
- Wesołowska, M.; Laska, M. The use of green walls and the impact on air quality and life standard. E3S Web Conf. 2019, 116, 00096. [Google Scholar] [CrossRef]
- Elsadek, M.; Liu, B.; Lian, Z. Green façades: Their contribution to stress recovery and well-being in high-density cities. Urban For. Urban Green. 2019, 46, 126446. [Google Scholar] [CrossRef]
- Chan, S.H.M.; Qiu, L.; Esposito, G.; Mai, K.P. Vertical greenery buffers against stress: Evidence from psychophysiological responses in virtual reality. Landsc. Urban Plan. 2021, 213, 104127. [Google Scholar] [CrossRef]
- Bressane, A.; de Castro, M.V. Workplace Well-Being Through Nature-Based Solutions: A Fuzzy Framework for Decision-Making. Buildings 2024, 15, 117. [Google Scholar] [CrossRef]
- Madushika, U.G.D.; Ramachandra, T. A comparative assessment of indirect green façade and conventional walls: Perspective of life cycle cost. Built Environ. Proj. Asset Manag. 2024, 14, 697–712. [Google Scholar] [CrossRef]
- Perini, K.; Rosasco, P. Cost–benefit analysis for green façades and living wall systems. Build. Environ. 2013, 70, 110–121. [Google Scholar] [CrossRef]
- Peng, K.-H. The Application of Vertical Greening to Urban Rehabilitation and Maintenance. Int. Rev. Spat. Plan. Sustain. Dev. 2013, 1, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Oke, O.S.; Aliu, J.O.; Duduyegbe, O.M.; Oke, A.E. Assessing Awareness and Adoption of Green Policies and Programs for Sustainable Development: Perspectives from Construction Practitioners in Nigeria. Sustainability 2025, 17, 2202. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.; Zhong, J. Analysis on the Incentive Policy of Vertical Greening in China: A Case Study of Shenzhen City. IOP Conf. Ser. Earth Environ. Sci. 2019, 283, 012068. [Google Scholar] [CrossRef]
- Dominici, L.; Comino, E.; Torpy, F.; Irga, P. Vertical Greening Systems: A Critical Comparison of Do-It-Yourself Designs. Plants 2022, 11, 3230. [Google Scholar] [CrossRef]
- Molari, M.; Dominici, L.; Manso, M.; Silva, C.M.; Comino, E. A socio-ecological approach to investigate the perception of green walls in cities: A comparative analysis of case studies in Turin and Lisbon. Nat.-Based Solut. 2024, 6, 100175. [Google Scholar] [CrossRef]
- Ferro, N.D.; Celadon, N.; Borin, M. Evaluating a vertical greening system mesocosm for kitchen greywater treatment: Comparison among vegetation species in water consumption, biomass growth and pollutants uptake and removal. Sci. Total Environ. 2024, 954, 176384. [Google Scholar] [CrossRef]
- Rhodes, C.G.; Scavo, N.A.; Finney, M.; Fimbres-Macias, J.P.; Lively, M.T.; Strauss, B.H.; Hamer, G.L. Meta-Analysis of the Relative Abundance of Nuisance and Vector Mosquitoes in Urban and Blue-Green Spaces. Insects 2022, 13, 271. [Google Scholar] [CrossRef]
- Roberts, J.M.; Bruce, T.J.A.; Monaghan, J.M.; Pope, T.W.; Leather, S.R.; Beacham, A.M. Vertical farming systems bring new considerations for pest and disease management. Ann. Appl. Biol. 2020, 176, 226–232. [Google Scholar] [CrossRef]
- Zhao, J.; Tang, T.; Wang, X. Effects of landscape composition on mosquito population in urban green spaces. Urban For. Urban Green. 2020, 49, 126626. [Google Scholar] [CrossRef]
- Celesti-Grapow, L.; Ricotta, C. Plant invasion as an emerging challenge for the conservation of heritage sites: The spread of ornamental trees on ancient monuments in Rome, Italy. Biol. Invasions 2021, 23, 1191–1206. [Google Scholar] [CrossRef]
- Afvari, S. Botanical Briefs: Contact Dermatitis Induced by Western Poison Ivy (Toxicodendron rydbergii). Cutis 2024, 113, E11. [Google Scholar] [CrossRef] [PubMed]
- Meral, A.; Başaran, N.; Yalçınalp, E.; Doğan, E.; Ak, M.; Eroğlu, E. A Comparative Approach to Artificial and Natural Green Walls According to Ecological Sustainability. Sustainability 2018, 10, 1995. [Google Scholar] [CrossRef]
- Kaltsidi, M.P.; Bayer, I.; Mitsi, C.; Aros, D. Potential Use of Chilean Native Species in Vertical Greening Systems. Sustainability 2023, 15, 4944. [Google Scholar] [CrossRef]
- Huang, Z.; Tan, C.L.; Lu, Y.; Wong, N.H. Holistic analysis and prediction of life cycle cost for vertical greenery systems in Singapore. Build. Environ. 2021, 196, 107735. [Google Scholar] [CrossRef]
- Goossens, C.; Oosterlynck, S.; Bradt, L. Livable streets? Green gentrification and the displacement of longtime residents in Ghent, Belgium. Urban Geogr. 2020, 41, 550–572. [Google Scholar] [CrossRef]
- Quinton, J.; Nesbitt, L.; Sax, D.; Harris, L. Greening the gentrification process: Insights and engagements from practitioners. Environ. Plan. E Nat. Space 2024, 7, 1893–1917. [Google Scholar] [CrossRef]
- Sprondel, N.; Donner, J.; Mahlkow, N.; Köppel, J. Urban climate and heat stress: How likely is the implementation of adaptation measures in mid-latitude cities? The case of façade greening analyzed with Bayesian networks. One Ecosyst. 2016, 1, e9280. [Google Scholar] [CrossRef]
- Knifka, W.; Karutz, R.; Zozmann, H. Barriers and Solutions to Green Facade Implementation—A Review of Literature and a Case Study of Leipzig, Germany. Buildings 2023, 13, 1621. [Google Scholar] [CrossRef]
- Manso, M.; Teotónio, I.; Silva, C.M.; Cruz, C.O. Green roof and green wall benefits and costs: A review of the quantitative evidence. Renew. Sustain. Energy Rev. 2021, 135, 110111. [Google Scholar] [CrossRef]
- Lisci, M.; Monte, M.; Pacini, E. Lichens and higher plants on stone: A review. Int. Biodeterior. Biodegrad. 2003, 51, 1–17. [Google Scholar] [CrossRef]
- Caneva, G.; Bartoli, F.; Ceschin, S.; Salvadori, O.; Futagami, Y.; Salvati, L. Exploring ecological relationships in the biodeterioration patterns of Angkor temples (Cambodia) along a forest canopy gradient. J. Cult. Herit. 2015, 16, 728–735. [Google Scholar] [CrossRef]
- Avrami, E.; Mason, R.; de la Torre, M. Values and Heritage Conservation; The Getty Conservation Institute: Los Angeles, CA, USA, 2000. [Google Scholar]
- Brandi, C. Teoria del restauro, 1st ed.; Edizioni di Storia e Letterature: Rome, Italy, 1963. [Google Scholar]
- Feilden, B.M.; Jokilehto, J. Management Guidelines for World Cultural Heritage Sites, 2nd ed.; ICCROM: Rome, Italy, 1998. [Google Scholar]
- Kineber, A.F.; Oke, A.E.; Hamed, M.M.; Rached, E.F.; Elmansoury, A. Modeling the Impact of Overcoming the Green Walls Implementation Barriers on Sustainable Building Projects: A Novel Mathematical Partial Least Squares—SEM Method. Mathematics 2023, 11, 504. [Google Scholar] [CrossRef]
- Kale, E.; De Groeve, M.; Pinnel, L.; Erkan, Y.; Hacigüzeller, P.; Orr, S.A.; De Kock, T. Mapping Vertical Greening on Urban Built Heritage Exposed to Environmental Stressors–A Case Study in Antwerp, Belgium. Sustainability 2023, 15, 12987. [Google Scholar] [CrossRef]
- Viles, H.; Sternberg, T.; Cathersides, A. Is Ivy Good or Bad for Historic Walls? J. Archit. Conserv. 2011, 17, 25–41. [Google Scholar] [CrossRef]
- De Groeve, M.; Kale, E.; Orr, S.A.; De Kock, T. Preliminary Experimental Laboratory Methods to Analyse the Insulation Capacity of Vertical Greening on Temperature and Relative Humidity. Sustainability 2023, 15, 11758. [Google Scholar] [CrossRef]
- Heritage, E.; Walls, V.O. Landscape Advice Note 51897; English Heritage: London, UK, 2014. [Google Scholar]
- Antwerpen, S. Code van Politiereglementen Stad Antwerpen (Politiecodex)|Gecoördineerde Versie|Laatste Wijziging: Gemeenteraad 26 Juni 2023; Stad Antwerpen: Antwerpen, Belgium, 2023. [Google Scholar]
- UNESCO; ICCROM; ICOMOS; IUCN. Guidance and Toolkit for Impact Assessments; UNESCO: Paris, France, 2022. [Google Scholar]
Aspects | Consistency Rate Between Part A and Part B |
---|---|
Environmental | 84 |
Social | 36 |
Economic | 52 |
Cultural | 66 |
Legal | 77 |
Technical | 80 |
No Benefits | 94 |
Aspects | Consistency Rate Between Part A and Part B |
---|---|
Environmental | 67 |
Social | 84 |
Economic | 72 |
Cultural | 55 |
Legal | 78 |
Technical | 69 |
No Concerns | 83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kale, E.; De Groeve, M.; Erkan, Y.; De Kock, T. Perception of Vertical Greening Applications on Historic Buildings. Heritage 2025, 8, 316. https://doi.org/10.3390/heritage8080316
Kale E, De Groeve M, Erkan Y, De Kock T. Perception of Vertical Greening Applications on Historic Buildings. Heritage. 2025; 8(8):316. https://doi.org/10.3390/heritage8080316
Chicago/Turabian StyleKale, Eda, Marie De Groeve, Yonca Erkan, and Tim De Kock. 2025. "Perception of Vertical Greening Applications on Historic Buildings" Heritage 8, no. 8: 316. https://doi.org/10.3390/heritage8080316
APA StyleKale, E., De Groeve, M., Erkan, Y., & De Kock, T. (2025). Perception of Vertical Greening Applications on Historic Buildings. Heritage, 8(8), 316. https://doi.org/10.3390/heritage8080316