Advanced Isotopic Techniques to Investigate Cultural Heritage: The Research Activities at the iCONa Laboratory
Abstract
1. Introduction
2. Materials and Methods
2.1. Facilities
2.2. Measurement Methods
2.3. Overview of Samples Processed
2.4. Sampling and Pretreating Archaeological Remains for Isotopic Analyses: Challenges and Advantages of Micro-Destructive Techniques
3. Stable Isotope Analysis to Reconstruct Past Subsistence Strategies with a High Level of Resolution: Recent Methodological Advances
3.1. Stable Carbon and Nitrogen Isotope Analysis: Basic Principles and Limitations
3.2. Incremental Dentine Analysis: Investigating Early Life Dietary Habits with a High Temporal Resolution
3.3. Compound-Specific Stable Isotope Analysis of Amino Acids: Overcoming the Limitations of Bulk Stable Isotope Analysis
3.4. Bayesian Dietary Mixing Models: Estimating Quantitative Dietary Reconstructions
4. Research Lines and Collaborations of iCONa Lab in the Archaeological Field
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cotrufo, F.; Pressler, Y. A Primer on Stable Isotopes in Ecology; Oxford University Press: Oxford, UK, 2023; ISBN 0-19-885449-8. [Google Scholar]
- Somerville, A.D.; Beasley, M.M. Exploring Human Behavior Through Isotopic Analyses: Tools, Scales, and Questions. In Exploring Human Behavior Through Isotope Analysis; Interdisciplinary Contributions to Archaeology; Beasley, M.M., Somerville, A.D., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 9–32. ISBN 978-3-031-32266-2. [Google Scholar]
- Kelly, S.D. Using Stable Isotope Ratio Mass Spectrometry (IRMS). In Food Authentication and Traceability; Woodhead Publishing: Cambridge, UK, 2003. [Google Scholar] [CrossRef]
- Giannioti, Z.; Ogrinc, N.; Suman, M.; Camin, F.; Bontempo, L. Isotope Ratio Mass Spectrometry (IRMS) Methods for Distinguishing Organic from Conventional Food Products: A Review. TrAC Trends Anal. Chem. 2024, 170, 117476. [Google Scholar] [CrossRef]
- Tea, I.; De Luca, A.; Schiphorst, A.-M.; Grand, M.; Barillé-Nion, S.; Mirallié, E.; Drui, D.; Krempf, M.; Hankard, R.; Tcherkez, G. Stable Isotope Abundance and Fractionation in Human Diseases. Metabolites 2021, 11, 370. [Google Scholar] [CrossRef] [PubMed]
- Roncone, A.; Kelly, S.D.; Giannioti, Z.; Hauk, C.; Caillet, C.; Newton, P.N.; Perez-Mon, C.; Bontempo, L. Stable Isotope Ratio Analysis: An Emerging Tool to Trace the Origin of Falsified Medicines. TrAC Trends Anal. Chem. 2024, 174, 117666. [Google Scholar] [CrossRef]
- Meier-Augenstein, W. Stable Isotope Forensics: Methods and Forensic Applications of Stable Isotope Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 978-1-119-08020-6. [Google Scholar]
- Criss, R.E. Principles of Stable Isotope Distribution; Oxford University Press: Oxford, UK, 1999; ISBN 978-0-19-511775-2. [Google Scholar]
- Katzenberg, M.A.; Waters-Rist, A.L. Stable Isotope Analysis: A Tool for Studying Past Diet, Demography, and Life History. In Biological Anthropology of the Human Skeleton; Katzenberg, M.A., Grauer, A.L., Eds.; Wiley: Hoboken, NJ, USA, 2018; pp. 467–504. ISBN 978-1-119-15161-6. [Google Scholar]
- Mook, W.G. Introduction to Isotope Hydrology. In Stable and Radioactive Isotopes of Hydrogen, Oxygen and Carbon; Taylor & Francis Group: London, UK, 2005; ISBN 978-0-415-39805-3. [Google Scholar]
- Mays, S.; Elders, J.; Humphrey, L.T.; White, W.; Marshall, P. Science and the Dead: A Guideline for the Destructive Sampling of Archaeological Human Remains for Scientific Analysis; English Heritage with the Advisory Panel on the Archaeology of Burials in England: England, UK, 2013. [Google Scholar]
- Pálsdóttir, A.H.; Bläuer, A.; Rannamäe, E.; Boessenkool, S.; Hallsson, J.H. Not a Limitless Resource: Ethics and Guidelines for Destructive Sampling of Archaeofaunal Remains. R. Soc. Open Sci. 2019, 6, 191059. [Google Scholar] [CrossRef] [PubMed]
- Stantis, C.; Schaefer, B.J.; Correia, M.A.; Alaica, A.K.; Huffer, D.; Plomp, E.; Di Giusto, M.; Chidimuro, B.; Rose, A.K.; Nayak, A.; et al. Ethics and Applications of Isotope Analysis in Archaeology. Am. J. Biol. Anthropol. 2024, 186, e24992. [Google Scholar] [CrossRef]
- Lee-Thorp, J.A. On isotopes and old bones. Archaeometry 2008, 50, 925–950. [Google Scholar] [CrossRef]
- Mitchell, P.D.; Brickley, M. Updated Guidelines to the Standards for Recording Human Remains; Chartered Institute for Archaeologists: Earley, UK, 2017; ISBN 978-0-948393-27-3. [Google Scholar]
- Vaiglova, P. Sampling Archaeological Remains for Isotopic Analyses. In Field Sampling for Laboratory Analyses in Archaeology; The Cyprus Institute: Nicosia, Cyprus, 2023; pp. 53–64. ISBN 978-9925-7759-4-1. [Google Scholar]
- Roberts, P.; Fernandes, R.; Craig, O.E.; Larsen, T.; Lucquin, A.; Swift, J.; Zech, J. Calling All Archaeologists: Guidelines for Terminology, Methodology, Data Handling, and Reporting When Undertaking and Reviewing Stable Isotope Applications in Archaeology. Rapid Comm. Mass Spectrom. 2018, 32, 361–372. [Google Scholar] [CrossRef]
- Ricci, P.; Sirignano, C.; Altieri, S.; Pistillo, M.; Santoriello, A.; Lubritto, C. Paestum Dietary Habits during the Imperial Period: Archaeological Records and Stable Isotope Measurement. Acta IMEKO 2016, 5, 26–32. [Google Scholar] [CrossRef]
- Corr, L.T.; Berstan, R.; Evershed, R.P. Optimisation of Derivatisation Procedures for the Determination of δ13 C Values of Amino Acids by Gas Chromatography/Combustion/Isotope Ratio Mass Spectrometry. Rapid Comm. Mass Spectrom. 2007, 21, 3759–3771. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer Texts in Statistics; Springer: New York, NY, USA, 2013; Volume 103, ISBN 978-1-4614-7137-0. [Google Scholar]
- Altieri, S.; Niccoli, F.; Kabala, J.P.; Liyaqat, I.; Battipaglia, G. Influence of Drought and Minimum Temperature on Tree Growth and Water Use Efficiency of Mediterranean Species. Dendrochronologia 2024, 83, 126162. [Google Scholar] [CrossRef]
- Niccoli, F.; Altieri, S.; Kabala, J.P.; Battipaglia, G. Fire Affects Tree Growth, Water Use Efficiency and Carbon Sequestration Ecosystem Service of Pinus Nigra Arnold: A Combined Satellite and Ground-Based Study in Central Italy. Forests 2023, 14, 2033. [Google Scholar] [CrossRef]
- di Cicco, M.R.; Altieri, S.; Spagnuolo, A.; Ciniglia, C.; Germinario, C.; Bove, S.; Masiello, A.; Vetromile, C.; Galante, I.; Lubritto, C. Sustainable Cultivation of Galdieria Phlegrea in an IoT-Integrated Twin-Layer Photobioreactor: System Design, Growth Dynamics, and Isotopic Perspective. Appl. Sci. 2025, 15, 5220. [Google Scholar] [CrossRef]
- Marfella, R.; Prattichizzo, F.; Sardu, C.; Fulgenzi, G.; Graciotti, L.; Spadoni, T.; D’Onofrio, N.; Scisciola, L.; La Grotta, R.; Frigé, C.; et al. Microplastics and Nanoplastics in Atheromas and Cardiovascular Events. N. Engl. J. Med. 2024, 390, 900–910. [Google Scholar] [CrossRef] [PubMed]
- McKinley, B.M.; Brickley, M. Guidelines to the Standards for Recording Human Remains (IFA Paper No. 7). In Institute of Field Archaeologists and British Association for Biological Anthropology and Osteoarchaeology; University of Southampton: Southampton, UK, 2004; ISBN 0948 393 88 2. [Google Scholar]
- Kendall, C.; Eriksen, A.M.H.; Kontopoulos, I.; Collins, M.J.; Turner-Walker, G. Diagenesis of Archaeological Bone and Tooth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 491, 21–37. [Google Scholar] [CrossRef]
- Vaiglova, P.; Snoeck, C.; Nitsch, E.; Bogaard, A.; Lee-Thorp, J. Impact of Contamination and Pre-treatment on Stable Carbon and Nitrogen Isotopic Composition of Charred Plant Remains. Rapid Comm. Mass Spectrom. 2014, 28, 2497–2510. [Google Scholar] [CrossRef]
- Brinkkemper, O.; Braadbaart, F.; Van Os, B.; Van Hoesel, A.; Van Brussel, A.A.N.; Fernandes, R. Effectiveness of Different Pre-treatments in Recovering Pre-burial Isotopic Ratios of Charred Plants. Rapid Comm. Mass Spectrom. 2018, 32, 251–261. [Google Scholar] [CrossRef]
- Talamo, S.; Fewlass, H.; Maria, R.; Jaouen, K. “Here We Go Again”: The Inspection of Collagen Extraction Protocols for14 C Dating and Palaeodietary Analysis. STAR Sci. Technol. Archaeol. Res. 2021, 7, 62–77. [Google Scholar] [CrossRef]
- Richards, M.P.; Mays, S.; Fuller, B.T. Stable Carbon and Nitrogen Isotope Values of Bone and Teeth Reflect Weaning Age at the Medieval Wharram Percy Site, Yorkshire, UK. Am. J. Phys. Anthr. 2002, 119, 205–210. [Google Scholar] [CrossRef]
- Beaumont, J.; Gledhill, A.; Lee-Thorp, J.; Montgomery, J. Childhood diet: A closer examination of the evidence from dental tissues using stable isotope analysis of incremental human dentine*. Archaeometry 2013, 55, 277–295. [Google Scholar] [CrossRef]
- Czermak, A.; Fernández-Crespo, T.; Ditchfield, P.W.; Lee-Thorp, J.A. A Guide for an Anatomically Sensitive Dentine Microsampling and Age-alignment Approach for Human Teeth Isotopic Sequences. Am. J. Phys. Anthr. 2020, 173, 776–783. [Google Scholar] [CrossRef]
- Lugli, F.; Cipriani, A.; Arnaud, J.; Arzarello, M.; Peretto, C.; Benazzi, S. Suspected Limited Mobility of a Middle Pleistocene Woman from Southern Italy: Strontium Isotopes of a Human Deciduous Tooth. Sci. Rep. 2017, 7, 8615. [Google Scholar] [CrossRef]
- Fraser, R.A.; Bogaard, A.; Schäfer, M.; Arbogast, R.; Heaton, T.H.E. Integrating Botanical, Faunal and Human Stable Carbon and Nitrogen Isotope Values to Reconstruct Land Use and Palaeodiet at LBK Vaihingen an Der Enz, Baden-Württemberg. World Archaeol. 2013, 45, 492–517. [Google Scholar] [CrossRef]
- Schoeninger, M.J.; DeNiro, M.J. Nitrogen and Carbon Isotopic Composition of Bone Collagen from Marine and Terrestrial Animals. Geochim. Cosmochim. Acta 1984, 48, 625–639. [Google Scholar] [CrossRef]
- Fuller, B.T.; De Cupere, B.; Marinova, E.; Van Neer, W.; Waelkens, M.; Richards, M.P. Isotopic Reconstruction of Human Diet and Animal Husbandry Practices during the Classical-Hellenistic, Imperial, and Byzantine Periods at Sagalassos, Turkey. Am. J. Phys. Anthr. 2012, 149, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Bownes, J.; Clarke, L.; Buckberry, J. The Importance of Animal Baselines: Using Isotope Analysis to Compare Diet in a British Medieval Hospital and Lay Population. J. Archaeol. Sci. Rep. 2018, 17, 103–110. [Google Scholar] [CrossRef]
- Garcia Collado, M.I. Social Archaeology of Food in Early Medieval Rural Iberia (5th–9th c. AD). PhD Thesis, Universidad del País Vasco-Euskal Herriko Unibertsitatea, Santsoena, Spain, 2020. [Google Scholar]
- Cheung, C.; Szpak, P. Interpreting Past Human Diets Using Stable Isotope Mixing Models—Best Practices for Data Acquisition. J. Archaeol. Method Theory 2022, 29, 138–161. [Google Scholar] [CrossRef]
- Bownes, J.M.; Ascough, P.L.; Cook, G.T.; Murray, I.; Bonsall, C. Using Stable Isotopes and a Bayesian Mixing Model (FRUITS) to Investigate Diet at the Early Neolithic Site of Carding Mill Bay, Scotland. Radiocarbon 2017, 59, 1275–1294. [Google Scholar] [CrossRef]
- Cheung, C.; Szpak, P. Interpreting Past Human Diets Using Stable Isotope Mixing Models. J. Archaeol. Method Theory 2021, 28, 1106–1142. [Google Scholar] [CrossRef]
- Fuller, B.T.; Richards, M.P.; Mays, S.A. Stable Carbon and Nitrogen Isotope Variations in Tooth Dentine Serial Sections from Wharram Percy. J. Archaeol. Sci. 2003, 30, 1673–1684. [Google Scholar] [CrossRef]
- Beaumont, J.; Gledhill, A.; Montgomery, J. Isotope Analysis of Incremental Human Dentine: Towards Higher Temporal Resolution. Bull. Int. Assoc. Paleodont. 2014, 8, 212–223. [Google Scholar]
- Ma, Y.; Grimes, V.; Van Biesen, G.; Shi, L.; Chen, K.; Mannino, M.A.; Fuller, B.T. Aminoisoscapes and Palaeodiet Reconstruction: New Perspectives on Millet-Based Diets in China Using Amino Acid δ13C Values. J. Archaeol. Sci. 2021, 125, 105289. [Google Scholar] [CrossRef]
- Soncin, S.; Talbot, H.M.; Fernandes, R.; Harris, A.; Von Tersch, M.; Robson, H.K.; Bakker, J.K.; Richter, K.K.; Alexander, M.; Ellis, S.; et al. High-Resolution Dietary Reconstruction of Victims of the 79 CE Vesuvius Eruption at Herculaneum by Compound-Specific Isotope Analysis. Sci. Adv. 2021, 7, eabg5791. [Google Scholar] [CrossRef]
- Fernandes, R.; Millard, A.R.; Brabec, M.; Nadeau, M.-J.; Grootes, P. Food Reconstruction Using Isotopic Transferred Signals (FRUITS): A Bayesian Model for Diet Reconstruction. PLoS ONE 2014, 9, e87436. [Google Scholar] [CrossRef]
- Fernandes, R.; Grootes, P.; Nadeau, M.; Nehlich, O. Quantitative Diet Reconstruction of a Neolithic Population Using a Bayesian Mixing Model (FRUITS): The Case Study of Ostorf (Germany). Am. J. Phys. Anthr. 2015, 158, 325–340. [Google Scholar] [CrossRef]
- Hedges, R.E.M.; Clement, J.G.; Thomas, C.D.L.; O’Connell, T.C. Collagen Turnover in the Adult Femoral Mid-shaft: Modeled from Anthropogenic Radiocarbon Tracer Measurements. Am. J. Phys. Anthr. 2007, 133, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Fahy, G.E.; Deter, C.; Pitfield, R.; Miszkiewicz, J.J.; Mahoney, P. Bone Deep: Variation in Stable Isotope Ratios and Histomorphometric Measurements of Bone Remodelling within Adult Humans. J. Archaeol. Sci. 2017, 87, 10–16. [Google Scholar] [CrossRef]
- Turner-Walker, G. The Chemical and Microbial Degradation of Bones and Teeth. Adv. Hum. Palaeopathol. 2008, 592, 3–29. [Google Scholar] [CrossRef]
- AlQahtani, S.J.; Hector, M.P.; Liversidge, H.M. Brief Communication: The London Atlas of Human Tooth Development and Eruption. Am. J. Phys. Anthr. 2010, 142, 481–490. [Google Scholar] [CrossRef]
- Cocozza, C.; Fernandes, R. Amalthea: A Database of Isotopic Measurements on Archaeological and Forensic Tooth Dentine Increments. J. Open Archaeol. Data 2021, 9, 1–7. [Google Scholar] [CrossRef]
- Eerkens, J.W.; Berget, A.G.; Bartelink, E.J. Estimating Weaning and Early Childhood Diet from Serial Micro-Samples of Dentin Collagen. J. Archaeol. Sci. 2011, 38, 3101–3111. [Google Scholar] [CrossRef]
- Beaumont, J.; Montgomery, J. Oral Histories: A Simple Method of Assigning Chronological Age to Isotopic Values from Human Dentine Collagen. Ann. Hum. Biol. 2015, 42, 407–414. [Google Scholar] [CrossRef]
- Czermak, A. Diet Reconstruction Based on C/N Stable Isotope Analysis: What Can It Contribute to Address Questions on Cultural Change. In Archaeology, History and Biosciences; Brather-Walter, S., Ed.; De Gruyter: Berlin, Germany, 2019; pp. 181–198. ISBN 978-3-11-061665-1. [Google Scholar]
- Reynard, L.M.; Tuross, N. The Known, the Unknown and the Unknowable: Weaning Times from Archaeological Bones Using Nitrogen Isotope Ratios. J. Archaeol. Sci. 2015, 53, 618–625. [Google Scholar] [CrossRef]
- Cocozza, C.; Harris, A.J.; Formichella, G.; Pedrucci, G.; Rossi, P.F.; D’Alessio, A.; Amoretti, V.; Zuchtriegel, G.; O’Reilly, M.; Mantile, N. High-Resolution Isotopic Data Link Settlement Complexification to Infant Diets within the Roman Empire. PNAS Nexus 2025, 4, pgae566. [Google Scholar] [CrossRef]
- Schurr, M.R. Using Stable Nitrogen-isotopes to Study Weaning Behavior in Past Populations. World Archaeol. 1998, 30, 327–342. [Google Scholar] [CrossRef]
- Cocozza, C.; Fernandes, R.; Ughi, A.; Groß, M.; Alexander, M.M. Investigating Infant Feeding Strategies at Roman Bainesse through Bayesian Modelling of Incremental Dentine Isotopic Data. Intl. J. Osteoarchaeol. 2021, 31, 429–439. [Google Scholar] [CrossRef]
- McMahon, K.W.; Polito, M.J.; Abel, S.; McCarthy, M.D.; Thorrold, S.R. Carbon and Nitrogen Isotope Fractionation of Amino Acids in an Avian Marine Predator, the Gentoo Penguin (Pygoscelis papua). Ecol. Evol. 2015, 5, 1278–1290. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, T.C. ‘Trophic’ and ‘Source’ Amino Acids in Trophic Estimation: A Likely Metabolic Explanation. Oecologia 2017, 184, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Fogel, M.L.; Tuross, N. Transformation of Plant Biochemicals to Geological Macromolecules during Early Diagenesis. Oecologia 1999, 120, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Evershed, R.P. ORGANIC RESIDUE ANALYSIS IN ARCHAEOLOGY: THE ARCHAEOLOGICAL BIOMARKER REVOLUTION*. Archaeometry 2008, 50, 895–924. [Google Scholar] [CrossRef]
- Vokhshoori, N.L.; Rick, T.C.; Braje, T.J.; McCarthy, M.D. Preservation of Stable Isotope Signatures of Amino Acids in Diagenetically Altered Middle to Late Holocene Archaeological Mollusc Shells. Geochim. Cosmochim. Acta 2023, 352, 36–50. [Google Scholar] [CrossRef]
- Hart, J.P. Human and Dog Bayesian Dietary Mixing Models Using Bone Collagen Stable Isotope Ratios from Ancestral Iroquoian Sites in Southern Ontario. Sci. Rep. 2023, 13, 7177. [Google Scholar] [CrossRef] [PubMed]
- Szpak, P.; Metcalfe, J.Z.; Macdonald, R.A. Best Practices for Calibrating and Reporting Stable Isotope Measurements in Archaeology. J. Archaeol. Sci. Rep. 2017, 13, 609–616. [Google Scholar] [CrossRef]
- Remien, C.H. Modeling the Dynamics of Stable Isotope Tissue-Diet Enrichment. J. Theor. Biol. 2015, 367, 14–20. [Google Scholar] [CrossRef]
- Kadye, W.T.; Redelinghuys, S.; Parnell, A.C.; Booth, A.J. Exploring Source Differences on Diet-Tissue Discrimination Factors in the Analysis of Stable Isotope Mixing Models. Sci. Rep. 2020, 10, 15816. [Google Scholar] [CrossRef]
- Fernandes, R. A Simple(R) Model to Predict the Source of Dietary Carbon in Individual Consumers: A Simple(r) Model to Predict the Source of Dietary Carbon. Archaeometry 2016, 58, 500–512. [Google Scholar] [CrossRef]
- Lewis, M.C.; Sealy, J.C. Coastal Complexity: Ancient Human Diets Inferred from Bayesian Stable Isotope Mixing Models and a Primate Analogue. PLoS ONE 2018, 13, e0209411. [Google Scholar] [CrossRef]
- Froehle, A.W.; Kellner, C.M.; Schoeninger, M.J. FOCUS: Effect of Diet and Protein Source on Carbon Stable Isotope Ratios in Collagen: Follow up to Warinner and Tuross (2009). J. Archaeol. Sci. 2010, 37, 2662–2670. [Google Scholar] [CrossRef]
- Fernandes, R.; Nadeau, M.-J.; Grootes, P.M. Macronutrient-Based Model for Dietary Carbon Routing in Bone Collagen and Bioapatite. Archaeol. Anthr. Sci. 2012, 4, 291–301. [Google Scholar] [CrossRef]
- Cocozza, C.; Teegen, W.-R.; Vigliarolo, I.; Favia, P.; Giuliani, R.; Muntoni, I.M.; Oione, D.; Clemens, L.; Groß, M.; Roberts, P. A Bayesian Multi-Proxy Contribution to the Socioeconomic, Political, and Cultural History of Late Medieval Capitanata (Southern Italy). Sci. Rep. 2023, 13, 4078. [Google Scholar] [CrossRef]
- Cocozza, C.; Cirelli, E.; Groß, M.; Teegen, W.-R.; Fernandes, R. Presenting the Compendium Isotoporum Medii Aevi, a Multi-Isotope Database for Medieval Europe. Sci. Data 2022, 9, 354. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.W.; Semmens, B.X. Incorporating Uncertainty and Prior Information into Stable Isotope Mixing Models. Ecol. Lett. 2008, 11, 470–480. [Google Scholar] [CrossRef]
- Phillips, D.L.; Inger, R.; Bearhop, S.; Jackson, A.L.; Moore, J.W.; Parnell, A.C.; Semmens, B.X.; Ward, E.J. Best Practices for Use of Stable Isotope Mixing Models in Food-Web Studies. Can. J. Zool. 2014, 92, 823–835. [Google Scholar] [CrossRef]
- García-Collado, M.I.; Ricci, P.; Catalán Ramos, R.; Altieri, S.; Lubritto, C.; Quirós Castillo, J.A. Palaeodietary Reconstruction as an Alternative Approach to Poorly Preserved Early Medieval Human Bone Assemblages: The Case of Boadilla (Toledo, Spain). Archaeol. Anthr. Sci. 2019, 11, 3765–3782. [Google Scholar] [CrossRef]
- García-Collado, M.I.; Quirós Castillo, J.A.; Tereso, J.P.; Seabra, L.; Lubritto, C.; Altieri, S.; Ricci, P. First Direct Evidence of Agrarian Practices in the Alava Plateau (Northern Iberia) During the Middle Ages Through Carbon and Nitrogen Stable Isotope Analyses of Charred Seeds. Environ. Archaeol. 2022, 1–11. [Google Scholar] [CrossRef]
- De Angelis, F.; Vaccaro, S.; Romboni, M.; Di Cicco, M.R.; Mantile, N.; Altieri, S.; Mezzogiorno, A.; Blundo, M.L.; Rickards, O.; Lubritto, C. Echoes from the Past: Bioarchaeological Insights into the Burial Grounds of Portus Romae. J. Archaeol. Sci. Rep. 2025, 61, 104931. [Google Scholar] [CrossRef]
- Cocozza, C.; Cirelli, E.; Groß, M.; Teegen, W.R.; Fernandes, R. Compendium Isotoporum Medii Aevi (CIMA); Pandora: Copenhagen, Denmark, 2021. [Google Scholar] [CrossRef]
- Mantile, N.; Fernandes, R.; Lubritto, C.; Cocozza, C. IsoMedIta: A Stable Isotope Database for Medieval Italy. Res. Data J. Humanit. Soc. Sci. 2023, 8, 1–13. [Google Scholar] [CrossRef]
- Formichella, G.; Soncin, S.; Lubritto, C.; Tafuri, M.A.; Fernandes, R.; Cocozza, C. Introducing Isotòpia: A Stable Isotope Database for Classical Antiquity. PLoS ONE 2024, 19, e0293717. [Google Scholar] [CrossRef]
- Farese, M.; Soncin, S.; Robb, J.; Fernandes, R.; Tafuri, M.A. The Mediterranean Archive of Isotopic Data, a Dataset to Explore Lifeways from the Neolithic to the Iron Age. Sci. Data 2023, 10, 917. [Google Scholar] [CrossRef]
- di Cicco, M.R.; Altieri, S.; Mantile, N.; Petitti, P.; Persiani, C.; Conti, A.M.; Allegrezza, L.; Cavazzuti, C.; Lubritto, C. Exploring Burial and Dietary Patterns at the Copper Age Necropolis of Selvicciola (Viterbo, Italy): New Perspectives from 14C and Stable Isotope Data. Heritage 2024, 7, 3291–3309. [Google Scholar] [CrossRef]
Sample Type | Sample Weight | Pretreatment Protocol | Information |
---|---|---|---|
Bone | 300–500 mg | Bone collagen extraction described in [29], omitting the ultrafiltration step | Paleodiet and animal management practices reconstruction (δ13C, δ15N) Radiocarbon dating (14C) |
Tooth | Variable | Dentine collagen extraction [30] | Paleodiet and animal management practices reconstruction (δ13C, δ15N) Radiocarbon dating (14C) |
Variable | Incremental dentine sampling [31,32] | Infant feeding practices and early life dietary habits (δ13C, δ15N) | |
5–10 mg | Enamel sampling and strontium extraction [33] | Spatial mobility (87Sr/86Sr) | |
Charcoal/Seeds | Min. 5–10 mg | Standard ABA protocol [34] or its modified versions [27], depending on the material type and preservation state | Agricultural practices, paleoenvironmental and paleoclimate reconstruction (δ13C, δ15N) Radiocarbon dating (14C) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantile, N.; Altieri, S.; di Cicco, M.R.; Giacometti, V.; Lubritto, C. Advanced Isotopic Techniques to Investigate Cultural Heritage: The Research Activities at the iCONa Laboratory. Heritage 2025, 8, 296. https://doi.org/10.3390/heritage8080296
Mantile N, Altieri S, di Cicco MR, Giacometti V, Lubritto C. Advanced Isotopic Techniques to Investigate Cultural Heritage: The Research Activities at the iCONa Laboratory. Heritage. 2025; 8(8):296. https://doi.org/10.3390/heritage8080296
Chicago/Turabian StyleMantile, Noemi, Simona Altieri, Maria Rosa di Cicco, Valentina Giacometti, and Carmine Lubritto. 2025. "Advanced Isotopic Techniques to Investigate Cultural Heritage: The Research Activities at the iCONa Laboratory" Heritage 8, no. 8: 296. https://doi.org/10.3390/heritage8080296
APA StyleMantile, N., Altieri, S., di Cicco, M. R., Giacometti, V., & Lubritto, C. (2025). Advanced Isotopic Techniques to Investigate Cultural Heritage: The Research Activities at the iCONa Laboratory. Heritage, 8(8), 296. https://doi.org/10.3390/heritage8080296