Statistical Learning Improves Classification of Limestone Provenance
Abstract
1. Introduction
2. Materials and Methods
2.1. Geological Samples
2.2. Archaeological Samples
2.3. Expert Identification Procedure and Input Data for Statistical Classification
2.4. Data Processing and Statistical Methods
2.4.1. Data Processing
2.4.2. Statistical Learning Methods
2.5. Evaluating Model Performance
3. Results
3.1. Univariate Analysis
3.2. Statistical Classification Was More Accurate with a Reduced Number of Variables
3.2.1. Linear Discriminant Analysis
3.2.2. Decision Trees
3.2.3. Random Forest
3.2.4. Support Vector Machines
3.3. Comparison of Statistical Classifiers
3.4. Aggregating and Summarising Classifications Across Methods
3.5. Accuracies of Statistical Methods After Class Revisions
4. Discussion
4.1. Statistical Learning Methods Outperformed Traditional Methods in Provenance Classification
4.2. Aggregating the Classifications by Many Diverse Models Shown Very Useful for Provenance Analysis
4.3. Tackling the Curse of High Dimensionality
4.4. Strontium Isotope Ratio Is Important for Provenance Classification
4.5. The Impact of Sedimentary Environment on the Classifications of Provenance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flügel, E. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application; Springer: Berlin, Germany, 2004. [Google Scholar]
- Brilli, M.; Antonelli, F.; Giustini, F.; Lazzarini, L.; Pensabene, P. Black limestones used in antiquity: The petrographic, isotopic and EPR database for provenance determination. J. Archaeol. Sci. 2010, 37, 994–1005. [Google Scholar] [CrossRef]
- Dilaria, S.; Bonetto, J.; Germinario, L.; Previato, C.; Girotto, C.; Mazzoli, C. The Stone Artifacts of the National Archaeological Museum of Adria (Rovigo, Italy): A Noteworthy Example of Heterogeneity. Archaeol. Anthropol. Sci. 2024, 16, 14. [Google Scholar] [CrossRef]
- Boulvain, F.; Poulain, G.; Tourneur, F.; Yans, J. Potential discrimination of Belgian black marbles using petrography, magnetic susceptibility and geochemistry. Archaeometry 2020, 62, 469–492. [Google Scholar] [CrossRef]
- Higgins, J.A.; Blättler, C.L.; Lundstrom, E.A.; Santiago-Ramos, D.P.; Akhtar, A.A.; Crüger Ahm, A.-S.; Bialik, O.; Holmden, C.; Bradbury, H.; Murray, S.T.; et al. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments. Geochim. Cosmochim. Acta 2018, 220, 512–534. [Google Scholar] [CrossRef]
- Flügel, E.; Flügel, C. Applied microfacies analysis: Provenance studies of Roman mosaic stones. Facies 1997, 37, 1–48. [Google Scholar] [CrossRef]
- Flügel, E. Microfacies-based provenance analysis of Roman imperial mosaic and sculpture materials from Bavaria (Southern Germany). Facies 1999, 41, 197–208. [Google Scholar] [CrossRef]
- Miletić, S.; Šmuc, A.; Dolenec, M.; Miler, M.; Mladenovič, A.; Gutman Levstik, M.; Dolenec, S. Identification and provenance determination of stone tesserae used in mosaics from Roman Celeia, Slovenia. Archaeometry 2022, 64, 561–577. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2017; Available online: https://hastie.su.domains/ElemStatLearn (accessed on 14 August 2025).
- Dornan, T.; O’Sullivan, G.; O’Riain, N.; Stueeken, E.; Goodhue, R. The application of machine learning methods to aggregate geochemistry predicts quarry source location: An example from Ireland. Comput. Geosci. 2020, 140, 104495. [Google Scholar] [CrossRef]
- Hänsel, P.; Oehrl, S.; Ideström, L.; Widerström, P.; Reddin, C.J.; Munnecke, A. Stable carbon and oxygen isotope geochemistry as provenance indicator for the picture stones on Gotland (Sweden). GFF 2023, 144, 220–239. [Google Scholar] [CrossRef]
- Brajkovič, R.; Žvab Rožič, P.; Gale, L. Database for provenance determination of Roman-time stone products from Ig area. Geologija 2025, 68. [Google Scholar] [CrossRef]
- Šašel, J. Prispevki za zgodovino rimskega Iga. Kronika 1959, 7, 117–123. [Google Scholar]
- Grahek, L.; Ragolič, A. Ig. In Manjša Rimska Naselja na Slovenskem Prostoru; Horvat, J., Lazar, I., Gaspari, A., Eds.; Založba ZRC: Ljubljana, Slovenia, 2020; pp. 173–186. Available online: https://omp.zrc-sazu.si/zalozba/catalog/view/1890/7848/1025-2 (accessed on 14 August 2025).
- Lozić, E. Rimski Lapidarij v Iški Vasi v Kontekstu Krajinskega Parka Barje. Ph.D. Thesis, Univerza v Ljubljani, Filozofska Fakulteta, Oddelek za Arheologijo, Ljubljana, Slovenia, 2008. [Google Scholar]
- Lozić, E. Roman stonemasonry workshops in the Ig area. Arheol. Vestn. 2009, 60, 207–221. Available online: http://www.dlib.si/details/URN:NBN:SI:DOC-DYJSFIKD (accessed on 14 August 2025).
- Žvab Rožič, P.; Gale, L.; Rožič, B. Analiza kamnin rimskih nagrobnih stel iz Podkraja in z Iga = Rock analysis of Roman tombstones from Podkraj and Ig near Ljubljana. Arheol. Vestn. 2016, 67, 359–369. Available online: http://www.dlib.si/details/URN:NBN:SI:doc-FQSHAUMU (accessed on 14 August 2025).
- Žvab Rožič, P.; Rožič, B.; Gale, L.; Brajkovič, R. Provenance analysis of Roman limestone artefacts from Colonia Iulia Emona (Marof archaeological site, Slovenia). Archaeometry 2022, 64, 1057–1078. [Google Scholar] [CrossRef]
- Djurić, B.; Gale, L.; Brajkovič, R. Kamnolom apnenca v Podpeči pri Ljubljani in njegovi izdelki = Limestone quarry at Podpeč near Ljubljana (Slovenia) and its products. Arheol. Vestn. 2022, 73, 155–198. [Google Scholar] [CrossRef]
- Dozet, S.; Strohmenger, C. Podbukovška formacija, osrednja Slovenija = Podbukovje Formation, Central Slovenia. Geologija 2000, 43, 197–212. Available online: http://www.dlib.si/details/URN:NBN:SI:DOC-P4PUQFDH (accessed on 14 August 2025). [CrossRef]
- Novak, M. Upper Triassic and Lower Jurassic beds in the Podutik area near Ljubljana (Slovenia). Geologija 2003, 46, 65–74. [Google Scholar] [CrossRef]
- Ramovš, A. Gliničan od Emone do Danes; Odsek za Geologijo, Fakulteta za Naravoslovje in Tehnologijo, Inštitut za Geologijo, VTOZD Montanistika: Ljubljana, Slovenia, 1990. [Google Scholar]
- Gale, L.; Kelemen, M. Early Jurassic foraminiferal assemblages in platform carbonates of Mt. Krim, central Slovenia. Geologija 2017, 60, 99–115. [Google Scholar] [CrossRef]
- Buser, S.; Debeljak, I. Lithiotid Bivalves in Slovenia and Their Mode of Life. Geologija 1997, 40, 11–64. [Google Scholar] [CrossRef]
- Gale, L.; Brajkovič, R.; Košir, A. Foraminiferal assemblages from the Toarcian (Lower Jurassic) ‘Spotted limestone’ of the northern Adriatic Carbonate Platform. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2025, 667, 112841. [Google Scholar] [CrossRef]
- Brajkovič, R.; Žvab Rožič, P.; Djurić, B.; Luka Gale, L. Stratigraphic Database for Determination of the Provenance of Limestone Used in Colonia Iulia Emona (Regio X, Italia). In Proceedings of the ASMOSIA XIII: 13th International Conference of the Association for the Study of Marble and Other Stones in Antiquity, Vienna, Austria, 19–24 September 2022; Ladstätter, S., Prochaska, W., Anevlavi, V., Eds.; Holzhausen Verlag: Vienna, Austria, 2025; pp. 27–41. [Google Scholar]
- Russell, B. Gazetteer of Stone Quarries in the Roman World. Available online: http://oxrep.classics.ox.ac.uk/docs/Stone_Quarries_Database.pdf (accessed on 14 August 2025).
- Tarolli, P. High-resolution topography for understanding Earth surface processes: Opportunities and challenges. Geomorphology 2014, 216, 295–312. [Google Scholar] [CrossRef]
- Compton, R.R. Geology in the Field; Wiley: New York, NY, USA, 1985. [Google Scholar]
- Munsell Color. Geological Rock-Color Charts with Genuine Munsell Color Chips; Munsell Color: Baltimore, MD, USA, 2011. [Google Scholar]
- Lokier, S.W.; Al Junaibi, M. The petrographic description of carbonate facies: Are we all speaking the same language? Sedimentology 2016, 63, 1843–1885. [Google Scholar] [CrossRef]
- Sibley, D.F.; Gregg, J.M. Classification of dolomite rock textures. J. Sediment. Petrol. 1987, 57, 967–975. [Google Scholar] [CrossRef]
- Fugagnoli, A.; Loriga Broglio, C. Revised biostratigraphy of Lower Jurassic shallow water carbonates from the Venetian Prealps (Calcari Grigi, Trento Platform, Northern Italy). Stud. Trent. Sci. Nat. Acta Geol. 1998, 73, 35–73. [Google Scholar]
- Fugagnoli, A. Trophic regimes of benthic foraminiferal assemblages in Lower Jurassic shallow water carbonates from northeastern Italy (Calcari Grigi, Trento Platform, Venetian Prealps). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 205, 111–130. [Google Scholar] [CrossRef]
- Gale, L.; Barattolo, F.; Rettori, R. Morphometric approach to determination of lower Jurassic siphovalvulinid foraminifera. Riv. Ital. Paleontol. Stratigr. 2018, 124, 265–282. [Google Scholar] [CrossRef]
- Romaniello, S.J.; Field, M.P.; Smith, H.B.; Gordon, G.W.; Kim, M.H.; Anbar, A.D. Fully automated chromatographic purification of Sr and Ca for isotopic analysis. J. Anal. At. Spectrom. 2015, 30, 1906–1912. [Google Scholar] [CrossRef]
- Weis, D.; Kieffer, B.; Maerschalk, C.; Barling, J.; de Jong, J.; Williams, G.A.; Hanano, D.; Pretorius, W.; Mattielli, N.; Scoates, J.S.; et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophys. Geosyst. 2006, 7, 1–30. [Google Scholar] [CrossRef]
- McArthur, J.M.; Howarth, R.J.; Shields, G.A. Strontium isotope stratigraphy. In A Geologic Time Scale; Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 127–144. [Google Scholar] [CrossRef]
- McArthur, J.M.; Steuber, T.; Page, K.N.; Landman, N.H. Sr-Isotope Stratigraphy: Assigning Time in the Campanian, Pliensbachian, Toarcian, and Valanginian. J. Geol. 2016, 124, 569–586. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 14 August 2025).
- van den Boogaart, K.G.; Tolosana-Delgado, R. Analyzing Compositional Data with R, 1st ed.; Springer: Berlin, Germany, 2013. [Google Scholar] [CrossRef]
- Bacon-Shone, J. A short history of compositional data analysis. In Compositional Data Analysis: Theory and Applications; Pawlowsky-Glahn, V., Buccianti, A., Eds.; John Wiley & Sons: Chichester, UK, 2011; pp. 3–11. [Google Scholar] [CrossRef]
- van den Boogaart, K.G.; Tolosana-Delgado, R.; Bren, M. Compositions: Compositional Data Analysis (Version 2.0-8) [R package]; CRAN: Chicago, IL, USA, 2025; Available online: https://CRAN.R-project.org/package=compositions (accessed on 14 August 2025).
- Tolosana-Delgado, R.; Talebi, H.; Khodadadzadeh, M.; van den Boogaart, K.G. On machine learning algorithms and compositional data. In Proceedings of the 8th International Workshop on Compositional Data Analysis (CoDaWork2019), Terrassa, Spain, 3–8 June 2019; Egozcue, J.J., Graffelman, J., Ortego Martínez, M.I., Eds.; Universitat Politècnica de Catalunya: Barcelona, Spain, 2019; pp. 172–175. Available online: https://hdl.handle.net/2117/167357 (accessed on 14 August 2025).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Therneau, T.; Atkinson, B. Rpart: Recursive Partitioning and Regression Trees (Version 4.1-23) [R Package]. Available online: https://CRAN.R-project.org/package=rpart (accessed on 14 August 2025).
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F.; Chang, C.-C.; Lin, C.-C. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien (Version 1.7-16) [R Package]. Available online: https://CRAN.R-project.org/package=e1071 (accessed on 14 August 2025).
- Legendre, P.; Legendre, L. Numerical Ecology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R, 2nd ed.; Springer: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Guilhaumon, C.; Hascoët, N.; Chinesta, F.; Lavarde, M.; Daim, F. Data augmentation for regression machine learning problems in high dimensions. Computation 2024, 12, 24. [Google Scholar] [CrossRef]
- Galán, E.; Carretero, M.I.; Mayoral, E. A methodology for locating the original quarries used for constructing historical buildings: Application to Málaga Cathedral, Spain. Eng. Geol. 1999, 54, 287–298. [Google Scholar] [CrossRef]
- Maritan, L.; Mazzoli, C.; Melis, E. A multidisciplinary approach to the characterization of Roman gravestones from Aquileia (Udine, Italy). Archaeometry 2003, 45, 363–374. [Google Scholar] [CrossRef]
- Gilli, A.; Hodell, D.A.; Kamenov, G.D.; Brenner, M. Geological and archaeological implications of strontium isotope analysis of exposed bedrock in the Chicxulub crater basin, northwestern Yucatán, Mexico. Geology 2009, 37, 723–726. [Google Scholar] [CrossRef]
- Marshall, J.D. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol. Mag. 1992, 129, 143–160. [Google Scholar] [CrossRef]
- Črne, A.E.; Goričan, Š. The Dinaric Carbonate Platform margin in the Early Jurassic: A comparison between successions in Slovenia and Montenegro. Boll. Soc. Geol. Ital. 2008, 127, 389–405. [Google Scholar]
- Dragičević, I.; Velić, I. The northeastern margin of the Adriatic carbonate platform. Geol. Croat. 2002, 55, 185–232. [Google Scholar] [CrossRef]
- Ettinger, N.P.; Larson, T.E.; Kerans, C.; Thibodeau, A.M.; Hattori, K.E.; Kacur, S.M.; Martindale, R.C. Oceanic acidification and photic-zone anoxia at the Toarcian Oceanic Anoxic Event: Insights from the Adriatic Carbonate Platform. Sedimentology 2021, 68, 63–107. [Google Scholar] [CrossRef]
- Martinuš, M.; Bucković, D. Lithofacies, biostratigraphy and discontinuity surfaces recorded in deposits across the Pliensbachian–Toarcian transition (Lower Jurassic) in southern Lika and Velebit Mt. (Croatia). In Abstract Book, Proceedings of the 5th Croatian Geological Congress, Osijek, Croatia, 23–25 September 2015; Horvat, M., Wacha, L., Eds.; Croatian Geological Survey: Zagreb, Croatia, 2015; pp. 162–163. [Google Scholar]
- Rožič, B.; Gerčar, D.; Oprčkal, P.; Švara, A.; Turnšek, D.; Kolar-Jurkovšek, T.; Udovč, J.; Kunst, L.; Fabjan, T.; Popit, T.; et al. Middle Jurassic limestone megabreccia from the southern margin of the Slovenian Basin. Swiss J. Geosci. 2019, 112, 163–180. [Google Scholar] [CrossRef]
- Vlahović, I.; Tišljar, T.; Velić, I.; Matičec, D. Evolution of the Adriatic Carbonate Platform: Palaeogeography, main events and depositional dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 220, 333–360. [Google Scholar] [CrossRef]
- Theiling, B.P.; Railsback, L.B.; Holland, S.M.; Crowe, D.E. Heterogeneity in geochemical expression of subaerial exposure in limestones, and its implications for sampling to detect exposure surfaces. J. Sediment. Res. 2007, 77, 159–169. [Google Scholar] [CrossRef]
- Scholle, P.A.; Bebout, D.G.; Moore, C.H. (Eds.) Carbonate Depositional Environments; American Association of Petroleum Geologists: Tulsa, OK, USA, 1983; Volume 33. [Google Scholar] [CrossRef]
- Allan, J.R.; Matthews, R.K. Isotope signatures associated with early meteoric diagenesis. In Carbonate Diagenesis; Tucker, M.E., Bathurst, R.G.C., Eds.; Wiley: Chichester, UK, 1990; Chapter 16. [Google Scholar] [CrossRef]
- Gale, L.; Rožič, B. Signs of crustal extension in Lower Jurassic carbonates from central Slovenia. Geologija 2024, 67, 25–40. [Google Scholar] [CrossRef]
- Sabatino, N.; Vlahović, I.; Jenkyns, H.C.; Scopelliti, G.; Neri, R.; Prtoljan, B.; Velić, I. Carbon-isotope record and palaeoenvironmental changes during the early Toarcian oceanic anoxic event in shallow-marine carbonates of the Adriatic Carbonate Platform in Croatia. Geol. Mag. 2013, 150, 1085–1102. [Google Scholar] [CrossRef]
- Hallam, A. A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 167, 23–37. [Google Scholar] [CrossRef]
- Martinuš, M.; Bucković, D.; Kukoč, D. Discontinuity surfaces recorded in shallow-marine platform carbonates: An example from the Early Jurassic of the Velebit Mt. (Croatia). Facies 2012, 58, 649–669. [Google Scholar] [CrossRef]
- Pattan, J.N.; Pearce, N.J.G.; Mislankar, P.G. Constraints in using Cerium-anomaly of bulk sediments as an indicator of paleo bottom water redox environment: A case study from the Central Indian Ocean Basin. Chem. Geol. 2005, 221, 260–278. [Google Scholar] [CrossRef]
- Woodfine, R.G.; Jenkyns, H.C.; Sarti, M.; Baroncini, F.; Violante, C. The response of two Tethyan carbonate platforms to the early Toarcian (Jurassic) oceanic anoxic event: Environmental change and differential subsidence. Sedimentology 2008, 55, 1011–1028. [Google Scholar] [CrossRef]
- Jenkyns, H.C. The early Toarcian (Jurassic) anoxic event; stratigraphic, sedimentary and geochemical evidence. Am. J. Sci. 1988, 288, 101–151. [Google Scholar] [CrossRef]
- Jenkyns, H.C.; Jones, C.E.; Gröcke, D.R.; Hesselbo, S.P.; Parkinson, D.N. Chemostratigraphy of the Jurassic system; applications, limitations and implications for palaeoceanography. J. Geol. Soc. 2002, 159, 351–378. [Google Scholar] [CrossRef]
- Suan, G.; Mattioli, E.; Pittet, B.; Lécuyer, C.; Suchéras-Marx, B.; Duarte, L.V.; Philippe, M.; Reggiani, L.; Martineau, F. Secular environmental precursors to Early Toarcian (Jurassic) extreme climate changes. Earth Planet. Sci. Lett. 2010, 290, 448–458. [Google Scholar] [CrossRef]
- Hamon, Y.; Merzeraud, G. C and O isotope stratigraphy in shallow-marine carbonate: A tool for sequence stratigraphy (example from the Lodève region, peritethian domain). Swiss J. Geosci. 2007, 100, 71–84. [Google Scholar] [CrossRef]
- Brčić, V.; Baranyi, V.; Glumac, B.; Špelić, M.; Fuček, L.; Kukoč, D.; Petrinjak, K.; Mišur, I.; Budić, M.; Palenik, D.; et al. Impact of the Jenkyns Event on Shallow-Marine Carbonates and Coeval Emerged Paleoenvironments: The Plitvice Lakes Region, Croatia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2024, 655, 112519. [Google Scholar] [CrossRef]
- Veizer, J.; Ala, D.; Azmy, K.; Bruckschen, P.; Buhl, D.; Bruhn, F.; Carden, G.A.F.; Diener, A.; Ebneth, S.; Godderis, Y.; et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 1999, 161, 59–88. [Google Scholar] [CrossRef]
- Gambacorta, G.; Brumsack, H.-J.; Jenkyns, H.C.; Erba, E. The early Toarcian Oceanic Anoxic Event (Jenkyns Event) in the Alpine-Mediterranean Tethys, North African margin, and North European epicontinental seaway. Earth-Sci. Rev. 2024, 248, 104636. [Google Scholar] [CrossRef]
- Wignall, P.B.; Newton, R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. Am. J. Sci. 1998, 298, 537–552. [Google Scholar] [CrossRef]
- Tostevin, R.; Shields, G.A.; Tarbuck, G.M.; He, T.; Clarkson, M.O.; Wood, R.A. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chem. Geol. 2016, 438, 146–162. [Google Scholar] [CrossRef]





| Lithostratigraphic Unit (Age) | Possible or Known Roman-Period Quarry | Inventory Numbers |
|---|---|---|
| 1.1—Micrite and ooid limestone (J1 1,2) | Podutik | / |
| 1.2—Peloid limestone (J1 2) | Staje | IV 39; IV 8 |
| 2.1—Bioclastic limestone (J1 2,3) | Podpeč | IV 27; IV 28; IV 12; IV 35; IV 18; IK-2; IV 3 |
| 2.2—Lithiotide limestone (J1 3) | Podpeč | IV 13; IV 15; IV 1 |
| 3.3—Crinoid limestone (J1 4) | Podpeč | IV 31; IV 38; IV 4 |
| Expert provenance identification as 1.2 | |||||
| Statistical classification | as 1.1 | as 1.2 | as 2.1 | as 2.2 | as 3.3 |
| 0.229 | 0.667 | 0.042 | 0.063 | 0.000 | |
| Expert provenance identification 2.1 | |||||
| Statistical classification | as 1.1 | as 1.2 | as 2.1 | as 2.2 | as 3.3 |
| 0.077 | 0.065 | 0.315 | 0.280 | 0.262 | |
| Expert provenance identification 2.2 | |||||
| Statistical classification | as 1.1 | as 1.2 | as 2.1 | as 2.2 | as 3.3 |
| 0.069 | 0.042 | 0.125 | 0.444 | 0.319 | |
| Expert provenance identification 3.3 | |||||
| Statistical classification | as 1.1 | as 1.2 | as 2.1 | as 2.2 | as 3.3 |
| 0.014 | 0.000 | 0.000 | 0.069 | 0.917 | |
| Stone Product ID | As Member 1.1 | As Member 1.2 | As Member 2.1 | As Member 2.2 | As Member 3.3 | Expert Identification | Statistical Majority | Agreement Expert vs. Statistics |
|---|---|---|---|---|---|---|---|---|
| IV38 | 0 | 0 | 0 | 0 | 1 | 3.3 | 3.3 | TRUE |
| IV31 | 0 | 0 | 0 | 0 | 1 | 3.3 | 3.3 | TRUE |
| IV12 | 0.04 | 0.04 | 0.88 | 0.04 | 0 | 2.1 | 2.1 | TRUE |
| IV15 | 0.04 | 0 | 0.04 | 0.83 | 0.08 | 2.2 | 2.2 | TRUE |
| IV28 | 0.04 | 0 | 0.79 | 0.08 | 0.08 | 2.1 | 2.1 | TRUE |
| IV4 | 0.04 | 0 | 0 | 0.21 | 0.75 | 3.3 | 3.3 | TRUE |
| IK2 | 0.04 | 0 | 0.25 | 0.71 | 0 | 2.1 | 2.2 | FALSE |
| IV39 | 0.29 | 0.67 | 0 | 0.04 | 0 | 1.2 | 1.2 | TRUE |
| IV8 | 0.17 | 0.67 | 0.08 | 0.08 | 0 | 1.2 | 1.2 | TRUE |
| IV27 | 0.13 | 0 | 0.08 | 0.17 | 0.63 | 2.1 | 3.3 | FALSE |
| IV3 | 0.04 | 0 | 0.08 | 0.54 | 0.33 | 2.1 | 2.2 | FALSE |
| IV13 | 0.13 | 0 | 0.21 | 0.21 | 0.46 | 2.2 | 3.3 | FALSE |
| IV18 | 0.13 | 0.04 | 0.04 | 0.33 | 0.46 | 2.1 | 3.3 | FALSE |
| IV1 | 0.04 | 0.13 | 0.13 | 0.29 | 0.42 | 2.2 | 3.3 | FALSE |
| IV35 | 0.13 | 0.38 | 0.08 | 0.08 | 0.33 | 2.1 | 1.2 | FALSE |
| Stone Product | Expert Provenance Identification | Classification by Majority of Statistical Methods | Key Evidence Supporting | ||
|---|---|---|---|---|---|
| Classification by Majority of Statistical Methods | or | Expert Provenance Identification | |||
| IK2 | 2.1 | 2.2 (73%) | Zr and Fe2O3 align with Member 2.2. | ||
| IV27 | 2.1 | 3.3 (64%) | Indicative sedimentary grains found upon further examination (e.g., lithoclasts), additionally, δ13C is in the Member 3.3 field (−2.43‰) | ||
| IV3 | 2.1 | 2.2 (59%) | δ13C is in Member 2.2 field (–2.13‰); | ||
| IV1 | 2.2 | 3.3 (41%) | Foraminiferal assemblage (Meandrovoluta asiagoensis, Amijiella amiji, Lituosepta recoarensis). | ||
| IV35 | 2.1 | 1.2 (36%) | 87Sr/86Sr ratio (0.707450) is indicative of member 2.1. | ||
| IV13 | 2.2 | 3.3 (50%) | Lithiotide bivalves. | ||
| IV18 | 2.1 | 3.3 (45%) | Foraminifera Siphovalvulina variabilis (Septfontaine). | ||
| Lithostratigraphic Unit (Age) | Possible or Known Roman-Period Quarry | Inventory Numbers |
|---|---|---|
| 1.1—Micrite and ooid limestone (J1 1,2) | Podutik | / |
| 1.2—Peloid limestone (J1 2) | Staje | IV 39; IV 8 |
| 2.1—Bioclastic limestone (J1 2,3) | Podpeč | IV 28; IV 12; IV 35; IV 18 |
| 2.2—Lithiotide limestone (J1 3) | Podpeč | IV 13; IV 15; IV 1; IV 3; IK-2 |
| 3.3—Crinoid limestone (J1 4) | Podpeč | IV 31; IV 38; IV 4; IV 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brajkovič, R.; Koselj, K. Statistical Learning Improves Classification of Limestone Provenance. Heritage 2025, 8, 464. https://doi.org/10.3390/heritage8110464
Brajkovič R, Koselj K. Statistical Learning Improves Classification of Limestone Provenance. Heritage. 2025; 8(11):464. https://doi.org/10.3390/heritage8110464
Chicago/Turabian StyleBrajkovič, Rok, and Klemen Koselj. 2025. "Statistical Learning Improves Classification of Limestone Provenance" Heritage 8, no. 11: 464. https://doi.org/10.3390/heritage8110464
APA StyleBrajkovič, R., & Koselj, K. (2025). Statistical Learning Improves Classification of Limestone Provenance. Heritage, 8(11), 464. https://doi.org/10.3390/heritage8110464

