Terminological Study for Scientific Hypothetical 3D Reconstruction
Abstract
:1. Introduction
2. Commonly Used Terms: Reconstruction
- Prefer the form with parenthesis or hyphen (re-construction or (re)construction) when specifically referring to never-built architecture;
- Always specify which type of reconstruction it is with one or more adjectives (e.g., digital, 3D, hypothetical, virtual, source-based, reality-based, etc.). This would help distinguish the term from the one defined by ICOMOS which refers only to physical reconstructions.
3. Commonly Used Terms: Uncertainty
- Uncertainty: “Is something that is not known or certain.”
- Reliability: “Is the quality of being trusted because it works or behaves well.”
- Probability: “The level of possibility of something happening or being true.”
- Plausibility: “The quality of seeming likely to be true, or possible to believe.”
4. Novel Terms: Raw Model and Informative Model
5. Refocused Terms: Digital Representation Methods and 3D Modelling Techniques
- Double orthogonal projection;
- Axonometric projection;
- Perspective projection;
- Topographic terrain projection.
6. Discussion and Future Work
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | For instance, when a cube is projected onto a plane parallel to one of its faces, the result is a square, regardless of whether an axonometric or perspective projection is employed. The same principle applies to perspective sections, where the sectioned area maintains its true shape. A notable example where an axonometric projection closely resembles a perspective projection occurs when the centre of projection is placed at a significant distance from the object. In this scenario, the projection rays become nearly parallel, rendering the projection visually indistinguishable from an axonometric view. |
References
- CoVHer Erasmus+ Project Official Website. Available online: www.CoVHer.eu (accessed on 5 July 2024).
- Denard, H. The London Charter. For the Computer-Based Visualisation of Cultural Heritage, Version 2.1; King’s College: London, UK, 2009. Available online: https://www.londoncharter.org (accessed on 20 August 2024).
- Principles of Seville. ‘International Principles of Virtual Archaeology’. Ratified by the 19th ICOMOS General Assembly in New Delhi. 2017. Available online: https://link.springer.com/article/10.1007/s00004-023-00707-2 (accessed on 20 August 2024).
- Münster, S.; Apollonio, F.I.; Blümel, I.; Fallavollita, F.; Foschi, R.; Grellert, M.; Ioannides, M.; Jahn, H.P.; Kurdiovsky, R.; Kuroczyński, P.; et al. Handbook of 3D Digital Reconstruction of Historical Architecture; Springer Nature: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- DFG Website. Available online: https://www.gw.uni-jena.de/en/faculty/juniorprofessur-fuer-digital-humanities/research/dfg-netzwerk-3d-rekonstruktion (accessed on 5 July 2024).
- Cazzaro, I. Digital 3D Reconstruction as a Research Environment in Art and Architecture History: Uncertainty Classification and Visualisation. Ph.D. Thesis, Alma Mater Studiorum Università di Bologna, Bologna, Italy, 2023. Available online: https://amsdottorato.unibo.it/10817/ (accessed on 20 August 2024).
- Clark, J.T. The Fallacy of Reconstruction. In Cyber-Archaeology (BAR International Series 2177); Forte, M., Ed.; Archeopress: Oxford, UK, 2010; pp. 63–73. Available online: https://www.researchgate.net/publication/282613149_The_Fallacy_of_Reconstruction (accessed on 20 August 2024).
- Ataman, O. Historical Analysis of Building-(Re)Construction in Olivette Park, USA [Análisis histórico del edificio-(Re) Construcción del parque de Olivette, E.E.U.U.]. In Proceedings of the SIGraDi 2002, the 6th Iberoamerican Congress of Digital Graphics, Caracas, Venezuela, 27–29 November 2002; pp. 63–66. Available online: https://itc.scix.net/paper/8068 (accessed on 5 July 2024).
- Vitali, M.; González, L.; Bertola, G.; Natta, F. Banded vaults in Turin: TLS survey, geometric interpretation, digital re-construction, between design and construction. Palazzo Capris di Cigliè. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 46, 793–800. [Google Scholar] [CrossRef]
- Rossi, A.; Palmieri, U. Experimentation of an information model. Vitruvio 2020, 5, 37–46. [Google Scholar] [CrossRef]
- Gonizzi Barsanti, S.; Guagliano, M.; Rossi, A. Digital (re)construction for structural analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 685–692. [Google Scholar] [CrossRef]
- Apollonio, F.I.; Fallavollita, F.; Foschi, R. The Critical Digital Model for the Study of Unbuilt Architecture. In Research and Education in Urban History in the Age of Digital Libraries: Second International Workshop, UHDL 2019, Dresden, Germany, 10–11 October 2019; Springer International Publishing: Cham, Switzerland, 2021; Revised Selected Papers; pp. 3–24. [Google Scholar] [CrossRef]
- ICOMOS Website. Available online: https://www.icomos.org/en (accessed on 5 July 2024).
- Elia, R.J. Charter for the protection and management of the archaeological heritage (1990). In Encyclopedia of Global Archaeology; Smith, C., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 2184–2186. [Google Scholar] [CrossRef]
- Apollonio, F.I. Classification Schemes for Visualization of Uncertainty in Digital Hypothetical Reconstruction. In 3D Research Challenges II; LNCS; Springer International Publishing: Cham, Switzerland, 2016; Volume 10025, pp. 119–135. [Google Scholar] [CrossRef]
- Cambridge Dictionary. Entries ‘Uncertainty’, ‘Reliability’, ‘Probability’, ‘Plausibility’. Available online: https://dictionary.cambridge.org/ (accessed on 5 July 2024).
- Pang, A.T.; Wittenbrink, C.M.; Lodha, S.K. Approaches to uncertainty visualization. Vis. Comput. 1997, 13, 370–390. [Google Scholar] [CrossRef]
- Gershon, N. Visualization of an imperfect world. IEEE Comput. Graph. Appl. 1998, 18, 43–45. [Google Scholar] [CrossRef]
- Strothotte, T.; Masuch, M.; Isenberg, T. Visualizing knowledge about virtual reconstructions of ancient architecture. In Proceedings of the Computer Graphics International, CGI 1999, Canmore, AB, Canada, 7–11 June 1999; pp. 36–43. [Google Scholar] [CrossRef]
- Kensek, K.M.; Dodd, L.S.; Cipolla, N. Fantastic reconstructions or reconstructions of the fantastic? Tracking and presenting ambiguity, alternatives, and documentation in virtual worlds. Autom. Constr. 2004, 13, 175–186. [Google Scholar] [CrossRef]
- Blaise, J.-Y.; Dudek, I. Beyond graphics: Information. An overview of InfoVis practices in the field of the architectural heritage. In Proceedings of the GRAPP 2008, Third International Conference of Computer Graphics Theory and Application, Madeira, Portugal, 22–25 January 2008; pp. 147–150. Available online: https://shs.hal.science/halshs-00266942 (accessed on 20 August 2024).
- Rocheleau, M. La modélisation 3D comme méthode de recherche en sciences historiques. In Actes du 10ème Colloque International Étudiant du Département d’Histoire; Érudit: Montreal, QC, Canada, 2011; pp. 245–265. Available online: https://www.academia.edu/22044856/La_mod%C3%A9lisation_3D_comme_m%C3%A9thode_de_recherche_en_sciences_historiques (accessed on 20 August 2024).
- Favre-Brun, A. Architecture Virtuelle et Représentation de l’Incertitude: Analyse des Solutions de Visualisation de la Représentation 3D. Application à L’église de la Chartreuse de Villeneuve-lez-Avignon (Gard) et à L’abbaye Saint-Michel de Cuxa (Pyrénées-Orientales). Ph.D. Thesis, Université d’Aix-Marseille, Marseille, France, 2013. [Google Scholar]
- Perlinska, M. Palette of Possibilities. Master’s Thesis, Lund University, Lund, Sweden, 2014. Available online: https://lup.lub.lu.se/student-papers/search/publication/4467561 (accessed on 20 August 2024).
- Nicolucci, F.; Hermon, S. A Fuzzy Logic Approach to Reliability in Archaeological Virtual Reconstruction. In Beyond the Artifact. Digital Interpretation of the Past; Nicolucci, F., Hermon, S., Eds.; Archaeolingua: Budapest, Hungary, 2010; pp. 28–35. Available online: https://proceedings.caaconference.org/paper/03_niccolucci_hermon_caa_2004/ (accessed on 4 July 2024).
- Landes, T.; Heissler, M.; Koehl, M.; Benazzi, T.; Nivola, T. Uncertainty visualization approaches for 3D models of castles restituted from archaeological knowledge. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 409–416. [Google Scholar] [CrossRef]
- Potter, K.; Rosen, P.; Johnson, C.R. From quantification to visualization: A taxonomy of uncertainty visualization approaches. IFIP Adv. Inf. Commun. Technol. 2012, 377, 226–249. [Google Scholar] [CrossRef] [PubMed]
- Lengyel, D.; Toulouse, C. The consecution of uncertain knowledge, hypotheses and the design of abstraction. In Proceedings of the 20th International Conference on Cultural Heritage and New Technologies, Vienna, Austria, 2–4 November 2015; pp. 1–16. [Google Scholar]
- Chandler, T.; Polkinghorne, M. A Review of Sources for Visualising the Royal Palace of Angkor, Cambodia, in the 13th Century. In Virtual Palaces, Part II: Lost Palaces and their Afterlife: Virtual Reconstruction between Science and Media; Palatium: Munich, Germany, 2016; pp. 149–170. [Google Scholar] [CrossRef]
- Wikipedia. Entry ‘Raw Data’. Available online: https://en.wikipedia.org/wiki/Raw_data (accessed on 5 July 2024).
- Extended Matrix Glossary Website. Available online: https://www.extendedmatrix.org/discover/glossary (accessed on 5 July 2024).
- Demetrescu, E.; Ferdani, D. From Field Archaeology to Virtual Reconstruction: A Five Steps Method Using the Extended Matrix. Appl. Sci. 2021, 11, 5206. [Google Scholar] [CrossRef]
- Kuroczyński, P.; Apollonio, F.I.; Bajena, I.P.; Cazzaro, I. Scientific Reference Model—Defining standards, methodology and implementation of serious 3D models in Archaeology, Art and Architectural History. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 895–902. [Google Scholar] [CrossRef]
- Migliari, R. Geometria Descrittiva, Vol. 1, Metodi e Costruzione; CittàStudi: Torino, Italy, 2009. [Google Scholar]
- Pottmann, H.; Asperl, A.; Hoofer, M.; Kililan, A. Architectural Geometry; Bentley Institute Press: Exton, PA, USA, 2007. [Google Scholar]
- Fuchs, D.; Bartz, R.; Kuschmitz, S.; Vietor, T. Necessary advances in computer-aided design to leverage on additive manufacturing design freedom. Int. J. Interact. Des. Manuf. 2022, 16, 1633–1651. [Google Scholar] [CrossRef]
- Münster, S. Digital 3D Technologies for Humanities Research and Education: An Overview. Appl. Sci. 2022, 12, 2426. [Google Scholar] [CrossRef]
- Cazzaro, I. A shared terminology for hypothetical 3D digital reconstructions in the field of Cultural Heritage. AMPS Proc. Ser. 2023, 29, 204–216. Available online: https://www.academia.edu/97104599/ (accessed on 20 August 2024).
- Hermon, S.; Nikodem, J.; Perlingieri, C. Deconstructing the VR—Data Transparency, Quantified Uncertainty and Reliability of 3D Models. In Proceedings of the 7th International Conference on Virtual Reality, Archaeology and Intelligent Cultural Heritage (VAST), Nicosia, Cyprus, 30 October–4 November 2006; pp. 123–129. Available online: https://dl.acm.org/doi/abs/10.5555/2384301.2384321 (accessed on 28 August 2024).
- Koller, D.; Frischer, B.; Humphreys, G. Research challenges for digital archives of 3D cultural heritage models. J. Comput. Cult. Herit. 2009, 2, 1–17. [Google Scholar] [CrossRef]
- Schäfer, U.U. Uncertainty Visualization and Digital 3D Modeling in Archaeology. A Brief Introduction. Int. J. Digit. Art Hist. 2018, 3, 87–106. [Google Scholar] [CrossRef]
- Dudek, I.; Blaise, J.-Y. From Artefact Representation to Information Visualisation: Genesis of Informative Modelling. In Smart Graphics; Butz, A., Fisher, B., Krüger, A., Olivier, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3638, pp. 230–236. Available online: http://link.springer.com/10.1007/11536482_21 (accessed on 20 August 2024).
- Cazzaro, I. Dialogues between different disciplines (and languages): A shared terminology for hypothetical 3D digital reconstructions and for the classification of their level of uncertainty. In Dialogues. Visions and visuality. Witnessing Communicating Experimenting, Proceedings of the 43rd International Conference of Representation Disciplines Teachers, Genoa, Italy, 15–17 September 2022; Battini, C., Bistagnino, E., Eds.; FrancoAngeli: Milano, Italy, 2022; pp. 351–372. [Google Scholar] [CrossRef]
- Barceló, J.A. Virtual Reality and Scientific Visualization: Working with Models and Hypotheses. Int. J. Mod. Phys. 2001, 12, 569–580. [Google Scholar] [CrossRef]
- Guidi, G.; Russo, M. Reality-Based and Reconstructive models: Digital Media for Cultural Heritage Valorization. SCIRES-IT-SCIentific RESearch Inf. Technol. 2011, 1, 71–86. [Google Scholar] [CrossRef]
- Münster, S.; Hegel, W.; Kröber, C. A Model Classification for Digital 3D Reconstruction in the Context of Humanities Research. In 3D Research Challenges in Cultural Heritage II; Münster, S., Pfarr-Harfst, M., Kuroczyński, P., Ioannides, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 3–31. [Google Scholar] [CrossRef]
- Münster, S.; Kröber, C.; Weller, H.; Prechtel, N. Virtual Reconstruction of Historical Architecture as Media for Knowledge Representation. In Mixed Reality and Gamification for Cultural Heritage; Ioannides, M., Magnenat-Thalmann, N., Papagiannakis, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 313–330. Available online: http://link.springer.com/10.1007/978-3-319-49607-8_12 (accessed on 20 August 2024).
- Johnson, C.R.; Sanderson, A.R. A Next Step: Visualizing Errors and Uncertainty. IEEE Comput. Graph. 2003, 23, 6–10. [Google Scholar] [CrossRef]
- Kozan, J.M.; Kozan, I.B. Virtual Heritage Reconstruction: The Old Main Church of Curitiba, Brazil. In Proceedings of the 33rd CAA Conference on Computer Applications and Quantitative Methods in Archaeology, Tomar, Portugal, March 2005; pp. 27–33. [Google Scholar]
- Grellert, M.; Haas, F. Sharpness versus uncertainty in “complete models”: Virtual reconstruction of the Dresden Castle in 1678. In Virtual Palaces, Part II. Lost Palaces and their Afterlife; Hoppe, S., Breitling, S., Eds.; PALATIUM e-Publications; arthistoricum.net-ART-Books: Heidelberg, Germany; pp. 119–148. [CrossRef]
- Lengyel, D.; Toulouse, C. Visualisation of Uncertainty in Archaeological Reconstructions. In Virtual Palaces, Part II. Lost Palaces and their Afterlife; Hoppe, S., Breitling, S., Eds.; PALATIUM e-Publications; arthistoricum.net-ART-Books: Heidelberg, Germany; pp. 103–117. [CrossRef]
- Rykl, M. Virtual Reconstructions and Building Archaeology in Bohemia: A Digital Model of the 14th-Century House U zvonu (‘Zur Glocke’/‘At the Sign of the Bell’) in Prague. In Virtual Palaces, Part II. Lost Palaces and their Afterlife; Hoppe, S., Breitling, S., Eds.; PALATIUM e-Publications; arthistoricum.net-ART-Books: Heidelberg, Germany; pp. 55–85. [CrossRef]
- Grellert, M.; Apollonio, F.I.; Martens, B.; Nußbaum, N. Working Experiences with the Reconstruction Argumentation Method (RAM)—Scientific Documentation for Virtual Reconstruction’. In Proceedings of the 23rd International Conference on Cultural Heritage and New Technologies (CHNT), Vienna, Austria, November 2018; pp. 1–14. Available online: https://archiv.chnt.at/proceedings-chnt-23/ (accessed on 28 August 2024).
- Heeb, N.; Christen, J. Strategien Zur Vermittlung von Fakt, Hypothese Und Fiktion in Der Digitalen Architektur-Rekonstruktion. In Der Modelle Tugend 2.0; Kuroczyński, P., Pfarr-Harfst, M., Münster, S., Eds.; arthistoricum.net: Heidelberg, Germany, 2019; pp. 226–254. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fallavollita, F.; Foschi, R.; Apollonio, F.I.; Cazzaro, I. Terminological Study for Scientific Hypothetical 3D Reconstruction. Heritage 2024, 7, 4755-4767. https://doi.org/10.3390/heritage7090225
Fallavollita F, Foschi R, Apollonio FI, Cazzaro I. Terminological Study for Scientific Hypothetical 3D Reconstruction. Heritage. 2024; 7(9):4755-4767. https://doi.org/10.3390/heritage7090225
Chicago/Turabian StyleFallavollita, Federico, Riccardo Foschi, Fabrizio Ivan Apollonio, and Irene Cazzaro. 2024. "Terminological Study for Scientific Hypothetical 3D Reconstruction" Heritage 7, no. 9: 4755-4767. https://doi.org/10.3390/heritage7090225
APA StyleFallavollita, F., Foschi, R., Apollonio, F. I., & Cazzaro, I. (2024). Terminological Study for Scientific Hypothetical 3D Reconstruction. Heritage, 7(9), 4755-4767. https://doi.org/10.3390/heritage7090225