Ultramarine Blue in Edvard Munch’s Collection: A Multi-Analytical Study of Early 20th Century Commercial Oil Paints
Abstract
:1. Introduction
1.1. Industrial Manufacturing of Modern Paints
1.2. An Overview on Ultramarine Blue Pigment
2. Experimental Section
2.1. Sampling
2.2. Hirox 3D Microscope Acquisition
2.3. ATR-FTIR Spectroscopy
2.4. μ-Raman Spectroscopy
2.5. SEM-EDS
2.6. GC-MS
3. Results
3.1. Paint Surface Observations in Two Paintings
3.2. Micro-Invasive Analyses
3.3. SEM-EDS
3.4. GC-MS
4. Discussion
4.1. Characterization of Pigments, Binding Media, and Additives Present in Industrial Paint Tubes
4.2. Considerations on the Darkening Observed in Paintings in Relation to the Composition of Paint Tubes from Munch’s Collection
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrer, J.S. Altered Blue and Red Paints: Investigations of Old Man in Warnemünde and The Drowned Boy by Edvard Munch (1863–1944). Master’s Thesis, University of Oslo, Oslo, Norway, 2019. [Google Scholar]
- Ferrer, J.S.; Sandu, I.C.A.; Cardoso, A.M.; Candeias, A.; Borca, C.N. Chapter 15: Investigating Colour Changes in Red and Blue Paints—A Preliminary Study of Art Materials and Techniques in Edvard Munch’s Old Man in Warnemünde (1907). In Conservation of Modern Oil Paintings; van den Berg, K.J., Bonaduce, I., Burnstock, A., Ormsby, B., Scharff, M., Carlyle, L., Heydenreich, G., Keune, K., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Sandu, I.C.A.; Ferrer, J.S.; Rosi, F.; Buti, D.; Monico, L.; Magrini, D.; Costantino, C.; Cartechini, L.; Romani, A.; Miliani, C.; et al. Colours of modernism in Edvard Munch’s paintings from Warnemünde period. In Proceedings of the COLOURS 2022 Conference, Evora, Portugal, 14–16 September 2022; p. 34. [Google Scholar]
- Sandu, I.C.A.; Sandbakken, E.G.; Ferrer, J.S.; Syversen, T.; Hull, A. The Art Historical Materials Collection at Munch: Colours, Brands, Labels. Int. J. Conserv. Sci. 2022, 13, 1653–1664. [Google Scholar]
- Ward, G.W.R. The Grove Encyclopedia of Materials and Techniques in Art; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Izzo, F.C. 20th Century Artists’ Oil Paints: A Chemical-Physical Survey. Ph.D. Thesis, Ca’ Foscari University of Venice, Venice, Italy, 2010. [Google Scholar]
- van Eikema Hommes, M. Changing Pictures Discoloration in 15th—17th Century Oil Paintings; Archetype Publications Ltd.: London, UK, 2004. [Google Scholar]
- Carlyle, L. The Artist’s Assistant: Oil Painting Instruction Manuals and Handbooks in Britain, 1800–1900, with Reference to Selected 18th-Century Sources; Archetype Publications Ltd.: London, UK, 2001; p. 608. [Google Scholar]
- Roy, A. Ultramarine Blue, Natural and Artificial. In Artists’ Pigments: A Handbook of Their History and Characteristics; National Gallery of Art, Washington; Archetype Publications: London, UK, 1993; Volume 2, pp. 37–67. [Google Scholar]
- Pamer, T. ‘Modern Blue Pigments’ in AIC Preprints, American Institute for Conservation of Historic and Artistic Works. In Proceedings of the 6th Annual Meeting, Fort Worth, TX, USA; 1978; pp. 107–118. [Google Scholar]
- Gettens, R.J.; Stout, G.L. Painting Materials—A Short Encyclopaedia; Dover Publications: New York, NY, USA, 1966. [Google Scholar]
- de la Rie, E.R.; Michelin, A.; Ngako, M.; Del Federico, E.; Del Grosso, C. Photo-catalytic degradation of binding media of ultramarine blue containing paint layers: A new perspective on the phenomenon of “ultramarine disease” in paintings. Polym. Degrad. Stab. 2017, 144, 43–52. [Google Scholar] [CrossRef]
- Del Federico, E.; Newman, J.; Tyne, L.; O’Hern, C.; Isolani, L.; Jerschow, A. Solid state NMR studies of ultramarine pigments discoloration. Mat. Res. Soc. Symp. Proc. 2006, 984, 0984-MM07-13. [Google Scholar] [CrossRef]
- Del Federico, E.; Shöfberger, W.; Schelvis, J.; Kapetanaki, S.; Tyne, L.; Jerschow, A. Insight into framework destruction in ultramarine pigments. Inorg. Chem. 2006, 45, 1270–1276. [Google Scholar] [CrossRef]
- Bayliss, S.; van den Berg, K.J.; Burnstock, A.; de Groot, S.; van Keulen, H.; Sawicka, A. An investigation into the separation and migration of oil in paintings by Erik Oldenhof. Microchem. J. 2016, 124, 974–982. [Google Scholar] [CrossRef]
- Bronken, I.A.T.; Boon, J.J.; Corkery, R.; Steindal, C.C. Changing surface features, weeping and metal soap formation in paintings by Karel Appel and Asger Jorn from 1946–1971. J. Cult. Herit. 2019, 35, 279–287. [Google Scholar] [CrossRef]
- Izzo, F.C.; Ferriani, B.; van den Berg, J.K.; van Keulen, H.; Zendri, E. 20th century artists’ oil paints: The case of the Olii by Lucio Fontana. J. Cult. Herit. 2014, 15, 557–563. [Google Scholar] [CrossRef]
- Caravá, S.; García, C.R.; de Agredos-Pascual, M.L.V.; Mascarós, S.M.; Izzo, F.C. Investigation of modern oil paints through a physico-chemical integrated approach. Emblematic cases from Valencia, Spain. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 240, 118633. [Google Scholar] [CrossRef]
- Fuster-López, L.; Izzo, F.C.; Andersen, C.K.; Murray, A.; Vila, A.; Picollo, M.; Stefani, L.; Jiménez, R.; Aguado-Guardiola, E. Picasso’s 1917 paint materials and their influence on the condition of four paintings. SN Appl. Sci. 2020, 2, 2159. [Google Scholar] [CrossRef]
- Izzo, F.C.; Källbom, A.; Nevin, A. Multi-analytical assessment of bodied drying oil varnishes and their use as binders in armour paints. Heritage 2021, 4, 3402–3420. [Google Scholar] [CrossRef]
- Izzo, F.C.; van den Berg, K.J.; van Keulen, H.; Ferriani, B.; Zendri, E. Modern Oil Paints, Formulations, Organic Additives and Degradation: Some Case Studies. In Issue in Contemporary Oil Paint; van den Berg, K.J., Burnstock, A., de Keijzer, M., Krueger, J., Learner, T., de Tagle, A., Heydenreich, G., Eds.; Springer International Publishing: Manhattan, NY, USA, 2014; pp. 75–104. [Google Scholar]
- Fuster-López, L.; Izzo, F.C.; Damato, V.; Yusà-Marco, D.J.; Zendri, E. An insight into the mechanical properties of selected commercial oil and alkyd paint films containing cobalt blue. J. Cult. Herit. 2019, 35, 225–234. [Google Scholar] [CrossRef]
- Izzo, F.C.; Zendri, E.; Biscontin, G.; Balliana, E. TG–DSC analysis applied to contemporary oil paints. J. Therm. Anal. Calorim. 2011, 104, 541–546. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Wehling, B.; Moens, L.; Edwards, H.; De Reu, M.; Van Hooydonk, G. Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art. Anal. Chim. Acta 2000, 407, 261–274. [Google Scholar] [CrossRef]
- Robinet, L.; Corbeil, M.C. The Characterization of Metal Soaps. Stud. Conserv. 2013, 48, 23–40. [Google Scholar] [CrossRef]
- Mazzeo, R.; Prati, S.; Quaranta, M.; Joseph, E.; Kendix, E.; Galeotti, M. Attenuated total reflection micro-FTIR characterization of pigment–binder interaction in reconstructed paint films. Anal. Bioanal. Chem. 2008, 392, 65–76. [Google Scholar] [CrossRef]
- Osticioli, I.; Mendes, N.F.C.; Nevin, A.; Francisco; Gil, P.S.C.; Becucci, M.; Castellucci, E. Analysis of Natural and Artificial Ultramarine Blue Pigments Using Laser Induced Breakdown and Pulsed Raman Spectroscopy, Statistical Analysis and Light Microscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 73, 525–531. [Google Scholar] [CrossRef]
- Caggiani, M.C.; Cosentino, A.; Mangone, A. Pigments Checker version 3.0, a handy set for conservation scientists: A free online Raman spectra database. Microchem. J. 2016, 129, 123–132. [Google Scholar] [CrossRef]
- Izzo, F.C.; Kratter, M.; Nevin, A.; Zendri, E. A Critical Review on the Analysis of Metal Soaps in Oil Paintings. Chem. Open Rev. 2021, 10, 904. [Google Scholar] [CrossRef]
- Vahur, S.; Teearu, A.; Leito, I. ATR-FT-IR spectroscopy in the region of 550–230 cm−1 for identification of inorganic pigments. Spectrochim. Acta Part A 2010, 75, 1061–1072. [Google Scholar] [CrossRef]
- Harrison, J.; Lee, J.; Ormsby, B.; Payne, D.J. The influence of light and relative humidity on the formation of epsomite in cadmium yellow and French ultramarine modern oil paints. Herit. Sci. 2021, 9, 107. [Google Scholar] [CrossRef]
- Simonsen, K.P.; Poulsen, J.N.; Vanmeert, F.; Ryhl-Svendsen, M.; Bendix, J.; Sanyova, J.; Janssens, K.; Mederos-Henry, F. Formation of zinc oxalate from zinc white in various oil binding media: The influence of atmospheric carbon dioxide by reaction with 13CO2. Herit. Sci. 2020, 8, 126. [Google Scholar] [CrossRef]
- van den Berg, J.D.J. Analytical Chemical Studies on Traditional Oil Paints. Ph.D. Thesis, University of Amsterdam, Amsterdam, The Netherlands, 2002. [Google Scholar]
- Mills, J.S.; White, R. The Organic Chemistry of Museum Objects, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1994. [Google Scholar]
- Dubois, V.; Breton, S.; Linder, M.; Fanni, J.; Parmentier, M. Fatty acid profiles of 80 vegetables oils with regard to their nutritional potential. Eur. J. Lipid Sci. Technol. 2007, 109, 710–732. [Google Scholar] [CrossRef]
- Carrin, M.E.; Carelli, A.A. Peanut oil: Compositional data. Eur. J. Lipid Sci. Technol. 2010, 112, 697–707. [Google Scholar] [CrossRef]
- Banti, D.; La Nasa, J.; Tenorio, A.L.; Modugno, F.; van den Berg, J.K.; Lee, J.; Ormsby, B.; Burnstock, A.; Bonaduce, I. A molecular study of modern oil paintings: Investigating the role of dicarboxylic acids in the water sensitivity of modern oil paints. RSC Adv. 2018, 8, 6001. [Google Scholar] [CrossRef]
- Wang, L.; Ishida, Y.; Ohtani, H.; Tsuge, S.; Nakayama, T. Characterization of Natural Resin Shellac by Reactive Pyrolysis−Gas Chromatography in the Presence of Organic Alkali. Anal. Chem. 1999, 71, 1316–1322. [Google Scholar] [CrossRef]
- Izzo, F.C.; Conservation and Heritage Science Group, Ca’ Foscari University of Venice, Venice, Italy. Personal communication, 2023.
- Wedvik, B. A Glimpse into the House and Decorative Paint Market in Norway During World War I (1914–1918). In Conservation of Modern Oil Paintings; van den Berg, K.J., Bonaduce, I., Burnstock, A., Ormsby, B., Schar, M., Carlyle, L., Heydenreich, G., Keune, K., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2019. [Google Scholar]
- Tumosa, C.S. A brief history of aluminum stearate as a component of paint. Waac Newsl. 2001, 23, 10–11. [Google Scholar]
- Beerse, M.; Keune, K.; Iedema, P.; Woutersen, S.; Hermans, J. Evolution of Zinc Carboxylate Species in Oil Paint Ionomers. ACS Appl. Polym. Mater. 2020, 2, 5674–5685. [Google Scholar] [CrossRef]
- Burnstock, A.; van den Berg, K.J.; de Groot, S.; Wijnberg, L. An Investigation of Water-Sensitive Oil Paints in Twentieth-Century Paintings. In Modern Paints Uncovered: Proceedings from the Modern Paints Uncovered Symposium May 16–19, 2006 Tate Modern, London; The Getty Conservation Institute, The National Gallery of Art, Thomas, L., Patricia, S., Jay, W.K., Michael, R.S., Eds.; Getty Publications: Los Angeles, CA, USA, 2006. [Google Scholar]
- van den Berg, K.J.; Mills, L.; Burnstock, A.; Duarte, F.; de Groot, S.; Megens, L.; Bisschoff, M.; van Keulen, H. Water sensitivity of modern artists’ oil paints. In Proceedings of the ICOM Committee for Conservation 15th Triennial Meeting, New Delhi, India, 22–26 September 2008. Allied Publishers. [Google Scholar]
- van den Berg, K.J.; Burnstock, A.; Schilling, M. Notes on Metal Soap Extenders in Modern Oil Paints: History, Use, Degradation, and Analysis. In Metal Soaps in Art, Conservation and Research; Casadio, F., Keune, K., Noble, P., Van Loon, A., Hendriks, E., Centeno, S.A., Osmond, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 329–342. [Google Scholar]
- Tempest, H.; Burnstock, A.; Saltmarsh, P.; van den Berg, K.J. Sensitivity of oil paint surfaces to aqueous and other solvents. In New Insights into the Cleaning of Paintings: Proceedings from the Cleaning 2010 International Conference Universidad Politécnica de Valencia and Museum Conservation Institute; Marion, F.M., Elena, C.A., Robert, J.K., Eds.; Smithsonian Institution Scholarly Press: Washington, DC, USA, 2013; pp. 107–117. [Google Scholar]
- Aviva, B.; van den Berg, K.J. Twentieth Century Oil Paint. The Interface Between Science and Conservation and the Challenges for Modern Oil Paint Research. In Issues in Contemporary Oil Paint (ICOP); van den Berg, K.J., Kreuger, J., Heydenreich, G., Burnstock, A., Learner, T., Eds.; Springer: Amersfoort, The Netherlands, 2014; pp. 1–19. [Google Scholar]
- Graczyk, A. La Créole by Alexis Mérodack-Jeaneau, an Unexpected Witness for Painting Materials Circa 1910; Book of Abstract; Futurahma: Pisa, Italy, 2016. [Google Scholar]
Tube ID | Color on Label | Binder on Original Label | Brand | Production Coutry | Analyses Performed |
---|---|---|---|---|---|
MM.I.01638 | Blau outremer extra | oil | Ambor | France | ATR-FTIR, µ-RAMAN, GC-MS |
MM.I.1632 | Blau outremer extra | oil | Ambor | France | ATR-FTIR, µ-RAMAN, GC-MS |
MM.I.02126 | Outremer N 2 clair | oil | Lefranc | France | ATR-FTIR, µ-RAMAN, GC-MS |
MM.I.01959 | Bleu d’outremer | oil | Blockx Fils | Belgium | ATR-FTIR, µ-RAMAN, GC-MS |
MM.I.02219 | Ultramarin dunkel | oil | Mussini Ölfarben Schmincke | Germany | ATR-FTIR, µ-RAMAN, GC-MS, SEM-EDS |
MM.I.02330 | Ultramarin, extra | oil | Vilhem Pacht | Denmark | ATR-FTIR, µ-RAMAN, GC-MS |
MM.I.02384 | Light ultramarin | oil | Winsor & Newton | England | ATR-FTIR, µ-RAMAN, GC-MS |
MM.I.02387 | Brilliant ultramarin | oil | Winsor & Newton | England | ATR-FTIR, µ-RAMAN, GC-MS |
MM.I.02354 | Brilliant ultramarin | oil | Winsor & Newton | England | ATR-FTIR, µ-RAMAN, GC-MS |
MM.I.02424 | Deep ultramarine | oil | Winsor & Newton | England | ATR-FTIR, µ-RAMAN, GC-MS |
ID Tube | Analytical Results | Pigments and Other Inorganic Compounds |
---|---|---|
MM.I.01638—Ambor | ATR-FTIR: 980 cm−1, 3699 cm−1, 3619 cm−1, 1098 cm−1, 629 cm−1, 1404 cm−1, 1086 cm−1, 871 cm−1 Raman: 1088 cm−1, 547 cm−1, 280 cm−1, 252 cm−1 | Ultramarine blue, Calcium carbonate, kaolinite |
MM.I.01632—Ambor | ATR-FTIR: 980 cm−1, 1404 cm−1, 1086 cm−1, 871 cm−1 Raman: 547 cm−1, 252 cm−1, 401 cm−1, 217 cm−1 | Ultramarine blue, sulphates, calcium carbonate, Fe oxides? |
MM.I.01959—Blockx Fils | ATR-FTIR: 980 cm−1, 1404 cm−1, 1086 cm−1, 871 cm−1 Raman: 547 cm−1, 252 cm−1 | Ultramarine blue, Calcium carbonate |
MM.I.02126—Lefranc | ATR-FTIR: 980 cm−1, 1480 cm−1, 1421 cm−1, 884 cm−1, 854 cm−1, 800 cm−1 Raman: 547 cm−1, 252 cm−1 | Ultramarine blue, Mg carbonate |
MM.I.02330—Vilhem Pacht | ATR-FTIR: 980 cm−1, 1620 cm−1, 1370 cm−1, 1315 cm−1, 370 cm−1 Raman: 547 cm−1, 252 cm−1 | Ultramarine blue, Zn white, Zn oxalates |
MM.I.02219—Mussini | ATR-FTIR: 980 cm−1 Raman: 547 cm−1, 252 cm−1 SEM-EDS: Pb, Si, Al, Na, C, O | Ultramarine blue, Lead white |
MM.I.02424—Winsor & Newton | ATR-FTIR: 2080 cm−1, 1611 cm−1, 1480 cm−1, 1421 cm−1, 884 cm−1, 854 cm−1, 800 cm−1 Raman: 2150 cm−1, 2120 cm−1 | Prussian blue, Carbon, Mg carbonate |
MM.I.02384—Winsor & Newton | ATR-FTIR: 980 cm−1, 1480 cm−1, 1421 cm−1, 884 cm−1, 854 cm−1, 800 cm−1 Raman: 547 cm−1, 252 cm−1 | Ultramarine blue, Mg carbonate |
MM.I.02354—Winsor & Newton | ATR-FTIR: 980 cm−1, 1480 cm−1, 1421 cm−1, 884 cm−1, 854 cm−1, 800 cm−1 Raman: 547 cm−1, 252 cm−1 | Ultramarine blue, Mg carbonate |
MM.I.02387—Winsor & Newton | ATR-FTIR: 980 cm−1, 1480 cm−1, 1421 cm−1, 884 cm−1, 854 cm−1, 800 cm−1 Raman: 547 cm−1, 252 cm−1 | Ultramarine blue, Mg carbonate |
ID Tube | Analytical Results | Binding Admixtures and Other Organic Compounds |
---|---|---|
MM.I.01638—Ambor | ATR-FTIR: 2925 cm−1, 2855–2850 cm−1, 1740 cm−1, 1710 cm−1, 1625 cm−1, 1460 cm−1, 1410–15 cm−1, 1242 cm−1, 1165–60 cm−1 Raman: 3100–3000 cm−1, 3000–2800 cm−1, 2885–2880 cm−1, 2855–2850 cm−1, 1720 cm−1, 1690 cm−1, 1660 cm−1, 1610–1600 cm−1, 1440–30 cm−1, 1380 cm−1, ~1300 cm−1, 1296 cm−1, 1136 cm−1, 1065–60 cm−1, 1549 cm−1, 1529 cm−1, 1457 cm−1, 1409 cm−1, 1397 cm−1 GC-MS: tetradehydroabietic, 7-methoxy- | Safflower/sunflower oil, Pinaceae resin, free fatty acids, Zn oleate |
MM.I.01632—Ambor | ATR-FTIR: oil as above Raman: oil as above, 1458 cm−1, 1439 cm−1 GC-MS: tetradehydroabietic, 7-methoxy-, margaric, pentadecanoiic acid | Sunflower oil + castor oil + fish liver oil? Pinaceae resin, Animal fats, levulinic acid, metal soaps |
MM.I.01959—Blockx Fils | ATR-FTIR: oil as above Raman: oil as above GC-MS: Aleuritic acid | Safflower oil?, Shellac resin, Free fatty acids |
MM.I.02126—Lefranc | ATR-FTIR: oil as above Raman: oil as above GC-MS: Lignoceric, behenic, levulinic acids | Peanut oil + Sunflower oil?, Levulinic acid |
MM.I.02330—Vilhem Pacht | ATR-FTIR: oil as above Raman: oil as above GC-MS: levulinic, margaric, aleuritic acids | Sunflower/peanut oil?, Shellac resin, levulinic acid, margaric acid |
MM.I.02219—Mussini | ATR-FTIR: oil as above Raman: oil as above, 1460 cm−1, 1441 cm−1, 1416 cm−1, 1297 cm−1, 1129 cm−1, 1101 cm−1, 1063 cm−1 SEM-EDS: Pb, Si, Al, Na, C, O GC-MS: tetradehydroabietic, 7-methoxy-, margaric, pentadecanoic, behenic, lignoceric, cerotic, melissic acids | Sunflower oil + Peanut oil, Animal fats, Pinaceae resin, Levulinic acid, Lead soaps, (Lead palmitate) |
MM.I.02424—Winsor & Newton | ATR-FTIR: oil as above Raman: oil as above GC-MS: tetradehydroabietic, 7-methoxy-, behenic, lignoceric, erucic, cerotic, melissic acids | Oil + Peanut oil, Animal fats, Pinaceae resin, beeswax |
MM.I.02384—Winsor & Newton | ATR-FTIR: oil as above, ~1500 cm−1 Raman: oil as above, 1430 cm−1, ~1290 cm−1, ~1130 cm−1, ~1060 cm−1 GC-MS: Aleuritic, margaric, pentadecanoic acids | Sunflower oil?, Shellac resin, Animal fats, metal soaps |
MM.I.02354—Winsor & Newton | ATR-FTIR: oil as above Raman: oil as above GC-MS: margaric, pentadecanoic. Aleuritic, levulinic acids | Sunflower oil, Animal fats, Shellac resin, Levulinic acid, metal soaps |
MM.I.02387—Winsor & Newton | ATR-FTIR: oil as above, ~1500 cm−1 Raman: oil as above, 1430 cm−1, ~1290 cm−1, ~1130 cm−1, ~1060 cm−1 GC-MS: behenic, lignoceric, margaric, pentadecanoic, levulinic acids | Oil + Peanut oil, Animal fats, Levulinic acid, metal soaps |
Detected Compound | AMBOR | BLOCKX FILS | LEFRANC | VILH. PACHT | MUSSINI | WINSOR & NEWTON | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
MM.I.01638 | MM.I.01632 | MM.I.01959 | MM.I.02126 | MM.I.02330 | MM.I.02219 | MM.I.02424 | MM.02384 | MM.I.02354 | MM.I.02387 | ||
Compounds detected | Pimelic acid, methyl ester | v | v | v | v | v | v | v | v | ||
Levulinic acid, methyl ester | v | v | v | v | v | ||||||
Octanoic acid, 8-hydroxy-, methyl ester | v | v | v | v | |||||||
Decanoic acid, 9-oxo-ME | v | v | v | v | |||||||
Caprylic acid, methyl ester | v | v | |||||||||
8-Methoxytetradecanoic acid | v | v | v | v | v | v | |||||
Undecanedioic acid, 4-oxo-, dimethyl ester | v | v | v | v | |||||||
Butanoic acid, methyl ester | v | v | v | v | v | v | v | v | v | ||
Pentadecanoic acid, methyl ester | v | v | v | v | v | v | v | ||||
Palmitoleic acid, methyl ester | v | v | v | v | v | v | v | v | |||
Aleuritic acid, methyl ester, trimethyl eter | v | v | v | v | v | v | |||||
3-Oxo-1,8-octanedicarboxylic acid, dimethyl ester | v | v | v | v | v | v | v | v | |||
Margaric acid, methyl ester | v | v | v | v | v | v | v | ||||
Octadecanoic acid, 9,10-epoxy-, methyl ester | v | v | v | v | v | v | v | ||||
Octadecanoic acid, 10-oxo-, methyl ester | v | v | v | v | v | v | v | v | |||
Octadecanoic acid, 9,10-dihydroxy-, methyl ester | v | v | v | v | v | v | v | v | v | v | |
Tetradehydroabietic, 7-methoxy-, methyl ester | v | v | v | v | |||||||
Eicosane, methyl ester | |||||||||||
Ethyl stearate, 9,12-diepoxy | v | ||||||||||
Erucic acid,methyl ester | v | ||||||||||
Behenic acid, methyl ester | v | v | v | v | v | v | v | ||||
Methyl Ricinoleate | v | ||||||||||
Heptacosane, methyl ester | |||||||||||
Lignoceric acid, methyl ester | v | v | v | v | v | ||||||
Hexacosanoic, methyl ester | v | ||||||||||
Docosane, methyl ester | |||||||||||
Cerotic acid, methyl ester | v | v | |||||||||
Hentriacontane, methyl ester | |||||||||||
Melissic acid, methyl ester | v |
Detected Compound | AMBOR | BLOCKX FILS | LEFRANC | VILH. PACHT | MUSSINI | WINSOR & NEWTON | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
MM.I.01638 | MM.I.01632 | MM.I.01959 | MM.I.02126 | MM.I.02330 | MM.I.02219 | MM.I.02424 | MM.02384 | MM.I.02354 | MM.I.02387 | ||
Fatty acids (W%) | Suberic acid, methyl ester | 11.22 | 17.80 | 13.44 | 5.77 | 5.88 | 15.31 | 6.01 | 10.54 | 5.14 | 7.94 |
Azelaic acid, methyl ester | 29.57 | 39.76 | 31.61 | 24.67 | 17.85 | 32.47 | 14.76 | 34.11 | 22.16 | 20.10 | |
Sebacic acid, methyl ester | 4.24 | 7.08 | 4.60 | 1.56 | 1.62 | 4.00 | 2.61 | 5.34 | 1.79 | 2.60 | |
Myristic acid, methyl ester | 1.11 | 1.37 | 1.47 | 1.62 | 1.59 | 1.85 | 1.13 | 1.66 | 1.42 | 1.49 | |
Palmitic acid, methyl ester | 15.52 | 13.53 | 19.97 | 26.13 | 27.40 | 25.78 | 18.61 | 16.84 | 22.76 | 34.87 | |
Oleic acid, methyl ester | 13.43 | 7.48 | 3.53 | 18.29 | 21.78 | 1.05 | 27.81 | 3.82 | 21.09 | 7.21 | |
Stearic acid,methyl ester | 6.16 | 6.09 | 8.44 | 11.52 | 12.82 | 11.73 | 17.91 | 14.78 | 11.38 | 19.09 | |
Linoleic acid, methyl ester | 1.43 | 0.82 | - | 0.93 | 0.03 | 0.13 | 1.98 | 0.09 | 0.30 | 0.97 | |
Linolenic acid, methyl ester | 1.02 | 0.90 | - | - | - | 0.33 | 0.18 | - | 0.24 | 0.12 | |
Glycerol | 16.29 | 5.16 | 16.93 | 9.51 | 11.02 | 7.35 | 9.00 | 12.82 | 13.71 | 5.60 | |
Molar ratios among fatty acids | A/P | 1.91 | 2.94 | 1.58 | 0.94 | 0.65 | 1.26 | 0.79 | 2.03 | 0.97 | 0.58 |
P/S | 2.52 | 2.22 | 2.37 | 2.27 | 2.14 | 2.20 | 1.04 | 1.14 | 2.00 | 1.83 | |
%D | 45.03 | 64.65 | 49.65 | 32.00 | 25.36 | 51.78 | 23.39 | 49.99 | 29.09 | 30.64 | |
O/S | 2.18 | 1.23 | 0.42 | 1.59 | 1.70 | 0.09 | 1.55 | 0.26 | 1.85 | 0.38 | |
A/Sub | 2.64 | 2.23 | 2.35 | 4.28 | 3.03 | 2.12 | 2.46 | 3.24 | 4.31 | 2.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boracchi, B.G.; Ferrer, E.-J.S.; Gnemmi, M.; Falchi, L.; Izzo, F.C.; Sandu, I.C.A. Ultramarine Blue in Edvard Munch’s Collection: A Multi-Analytical Study of Early 20th Century Commercial Oil Paints. Heritage 2024, 7, 4027-4044. https://doi.org/10.3390/heritage7080190
Boracchi BG, Ferrer E-JS, Gnemmi M, Falchi L, Izzo FC, Sandu ICA. Ultramarine Blue in Edvard Munch’s Collection: A Multi-Analytical Study of Early 20th Century Commercial Oil Paints. Heritage. 2024; 7(8):4027-4044. https://doi.org/10.3390/heritage7080190
Chicago/Turabian StyleBoracchi, Beatrice G., Eun-Jin Strand Ferrer, Margherita Gnemmi, Laura Falchi, Francesca Caterina Izzo, and Irina Crina Anca Sandu. 2024. "Ultramarine Blue in Edvard Munch’s Collection: A Multi-Analytical Study of Early 20th Century Commercial Oil Paints" Heritage 7, no. 8: 4027-4044. https://doi.org/10.3390/heritage7080190
APA StyleBoracchi, B. G., Ferrer, E. -J. S., Gnemmi, M., Falchi, L., Izzo, F. C., & Sandu, I. C. A. (2024). Ultramarine Blue in Edvard Munch’s Collection: A Multi-Analytical Study of Early 20th Century Commercial Oil Paints. Heritage, 7(8), 4027-4044. https://doi.org/10.3390/heritage7080190