New Evidence of Traditional Japanese Dyeing Techniques: A Spectroscopic Investigation
Abstract
1. Introduction
1.1. Materiality and Manufacturing of Japanese Textiles
1.2. Aim of the Study
2. Materials and Methods
2.1. Reference Materials
2.2. The Montgomery Collection of Japanese Folk Art
2.3. Visible Reflectance Spectroscopy
2.4. External Reflection Fourier Transform Infrared Spectroscopy
2.5. Data Treatment and Elaboration
3. Results
3.1. Visible Reflectance Spectroscopy
3.2. ER-FTIR Spectroscopy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moriyama, A. Japanese Textile Culture The Example of Junichi Arai and Five Other Creators. In A Companion to Textile Culture; Harris, J., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 353–370. [Google Scholar]
- Nakamura, R.; Tanaka, Y.; Ogata, A.; Masakazu, N. Scientific evidence by fluorescence spectrometry for safflower red on ancient Japanese textiles stored in the Shosoin Treasure House repository. Stud. Conserv. 2014, 59, 367–376. [Google Scholar] [CrossRef]
- van Assche, A. Avvolti nel Mito, Tessuti e Costumi tra Settecento e Novecento. Dalla Collezione Montgomery; Ideart: Milan, Italy, 2005. [Google Scholar]
- Moira, L. Kimonos pour enfants. In Entrelacs Textiles Rituels; Smolderen, L., Ed.; Musée International du Carnaval et du Masque: Binche, Belgium, 2023; pp. 169–770. [Google Scholar]
- Dusembury, M.M. (Ed.) Color in Ancient and Medieval East Asia; The Spencer Museum of Art and The University of Kansas: Lawrence, KS, USA, 2015. [Google Scholar]
- Menegazzo, R. Iro. L’essenza del Colore nel Design Giapponese; L’ippocampo: Milan, Italy, 2023. [Google Scholar]
- Parry-Williams, T. Made-by-hand: [Re]valuing traditional (Japanese) textile practices for contemporary design. Craft Res. 2015, 6, 165–186. [Google Scholar] [CrossRef] [PubMed]
- Nomura, S. Ancient Chinese and Japanese Nishiki and Kinran Brocades; N. Sawyer & Son: Boston, MA, USA, 1914. [Google Scholar]
- Ricketts, R.I. Polygonum tinctorium: Contemporary indigo farming and processing in Japan. In Indirubin, the Red Shade of Indigo; Meijer, L., Guyard, N., Skaltsounis, L., Eisenbrand, G., Eds.; Life in Progress: Roscoff, France, 2006. [Google Scholar]
- Absolon, T. Armour lacing methods and materials. In Samurai Armour—The Japanese Cuirass; Osprey Publishing: Oxford, UK, 2017. [Google Scholar]
- Whitmore, P.M.; Cass, G.R. The Ozone Fading of Traditional Japanese Colorants Author. Stud. Conserv. 1988, 33, 29–40. [Google Scholar] [CrossRef]
- Rampazzi, L.; Brunello, V.; Campione, F.P.; Corti, C.; Geminiani, L.; Recchia, S.; Luraschi, M. Non-invasive identification of pigments in Japanese coloured photographs. Microchem. J. 2020, 157, 36–42. [Google Scholar] [CrossRef]
- Luraschi, M. (Ed.) Le Sete e Le Lacche Vanno in Battaglia: Le Armature Giapponesi. In Il Samurai. Da Guerriero a Icona; Silvana Editoriale: Milan, Italy, 2018; pp. 80–87. [Google Scholar]
- Cardon, D. Natural Dyes: Sources, Tradition, Technology and Science; Archetype Publications Ltd.: London, UK, 2007. [Google Scholar]
- Hofenk de Graaff, J.H.; Th Roelofs, W.G.; van Bommel, M.R. The Colourful Past: Origins, Chemistry and Identification of Natural Dyestuffs; Archetype Books: Oakville, ON, Canada, 2007. [Google Scholar]
- Morton, W.i.G. Yuzen. In Kodansha Encyclopedia of Japan; Kodansha: Tokyo, Japan, 1983; p. 359. [Google Scholar]
- Morton, W.i.G. Katazome. In Kodansha Encyclopedia of Japan; Kodansha: Tokyo, Japan, 1983; p. 167. [Google Scholar]
- Ergen, F. Tie-dyeing. In Kodansha Encyclopedia of Japan; Kodansha: Tokyo, Japan, 1983; pp. 29–30. [Google Scholar]
- Oba, T. Kakemono: The Japanese hanging scroll. Pap. Conserv. 1985, 9, 13–23. [Google Scholar] [CrossRef]
- Quattrini, M.V.; Ioele, M.; Sodo, A.; Priori, G.F.; Radeglia, D. A seventeenth century Japanese painting: Scientific identification of materials and techniques. Stud. Conserv. 2014, 59, 328–340. [Google Scholar] [CrossRef]
- Grantham, S. Japanese Painted Paper Screens: Manufacturing Materials And Painting Techniques. Stud. Conserv. 2002, 47, 83–87. [Google Scholar] [CrossRef]
- Gluckman, C.D. (Ed.) Kimono as Art: The Landscapes of Itchiku Kubota; Thames and Hudson: London, UK, 2008. [Google Scholar]
- Vermeulen, M.; Tamburini, D.; Müller, E.M.K.; Centeno, S.A.; Basso, E.; Leona, M. Integrating liquid chromatography mass spectrometry into an analytical protocol for the identification of organic colorants in Japanese woodblock prints. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Vermeulen, M.; Burgio, L.; Vandeperre, N.; Driscoll, E.; Viljoen, M.; Woo, J.; Leona, M. Beyond the connoisseurship approach: Creating a chronology in Hokusai prints using non-invasive techniques and multivariate data analysis. Herit. Sci. 2020, 8, 62. [Google Scholar] [CrossRef]
- Cesaratto, A.; Luo, Y.B.; Smith, H.D.; Leona, M. A timeline for the introduction of synthetic dyestuffs in Japan during the late Edo and Meiji periods. Herit. Sci. 2018, 6, 22. [Google Scholar] [CrossRef]
- Derrick, M.; Newman, R.; Wright, J. Characterization of Yellow and Red Natural Organic Colorants on Japanese Woodblock Prints by EEM Fluorescence Spectroscopy. J. Am. Inst. Conserv. 2017, 56, 171–193. [Google Scholar] [CrossRef]
- Mounier, A.; Le Bourdon, G.; Aupetit, C.; Lazare, S.; Biron, C.; Pérez-Arantegui, J.; Almazán, D.; Aramendia, J.; Prieto-Taboada, N.; de Vallejuelo, S.F.-O.; et al. Red and blue colours on 18th–19th century Japanese woodblock prints: In situ analyses by spectrofluorimetry and complementary non-invasive spectroscopic methods. Microchem. J. 2018, 140, 129–141. [Google Scholar] [CrossRef]
- Biron, C.; Mounier, A.; Le Bourdon, G.; Servant, L.; Chapoulie, R.; Daniel, F. A blue can conceal another! Noninvasive multispectroscopic analyses of mixtures of indigo and Prussian blue. Color. Res. Appl. 2020, 45, 262–274. [Google Scholar] [CrossRef]
- Miliani, C.; Rosi, F.; Burnstock, A.; Brunetti, B.G.; Sgamellotti, A. Non-invasive in-situ investigations versus micro-sampling: A comparative study on a Renoirs painting. Appl. Phys. A Mater. Sci. Process 2007, 89, 849–856. [Google Scholar] [CrossRef]
- Miliani, C.; Domenici, D.; Clementi, C.; Presciutti, F.; Rosi, F.; Buti, D.; Romani, A.; Minelli, L.L.; Sgamellotti, A. Colouring materials of pre-Columbian codices: Non-invasive in situ spectroscopic analysis of the Codex Cospi. J. Archaeol. Sci. 2012, 39, 672–679. [Google Scholar] [CrossRef]
- Tamburini, D.; Dyer, J. Fibre optic reflectance spectroscopy and multispectral imaging for the non-invasive investigation of Asian colourants in Chinese textiles from Dunhuang (7th–10th century AD). Dye. Pigment. 2019, 162, 494–511. [Google Scholar] [CrossRef]
- Tamburini, D.; Breitung, E.; Mori, C.; Kotajima, T.; Clarke, M.L.; McCarthy, B. Exploring the transition from natural to synthetic dyes in the production of 19th-century Central Asian ikat textiles. Herit. Sci. 2020, 8, 114. [Google Scholar] [CrossRef]
- Richardson, E.; Martin, G.; Wyeth, P.; Zhang, X. State of the art: Non-invasive interrogation of textiles in museum collections. Microchim. Acta 2008, 162, 303–312. [Google Scholar] [CrossRef]
- Geminiani, L.; Campione, F.P.; Corti, C.; Luraschi, M.; Mo, S.; Recchia, S.; Rampazzi, L. Differentiating natural and modified cellulosic fibres by ATR-FTIR spectroscopy. Heritage 2022, 5, 4114–4139. [Google Scholar] [CrossRef]
- Nodari, L.; Ricciardi, P. Non-invasive identification of paint binders in illuminated manuscripts by ER-FTIR spectroscopy: A systematic study of the influence of different pigments on the binders’ characteristic spectral features. Herit. Sci. 2019, 7, 7. [Google Scholar] [CrossRef]
- Rampazzi, L.; Brunello, V.; Corti, C.; Lissoni, E. Non-invasive techniques for revealing the palette of the Romantic painter Francesco Hayez. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 176, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Miliani, C.; Rosi, F.; Daveri, A.; Brunetti, B.G. Reflection infrared spectroscopy for the non-invasive in situ study of artists’ pigments. Appl. Phys. A Mater. Sci. Process 2012, 106, 295–307. [Google Scholar] [CrossRef]
- Geminiani, L.; Campione, F.P.; Canevali, C.; Corti, C.; Giussani, B.; Gorla, G.; Luraschi, M.; Recchia, S.; Rampazzi, L. Historical Silk: A Novel Method to Evaluate Degumming with Non-Invasive Infrared Spectroscopy and Spectral Deconvolution. Materials 2023, 16, 1819. [Google Scholar] [CrossRef] [PubMed]
- Peets, P.; Kaupmees, K.; Vahur, S.; Leito, I. Reflectance FT-IR spectroscopy as a viable option for textile fiber identification. Herit. Sci. 2019, 7, 93. [Google Scholar] [CrossRef]
- Tamburini, D. Investigating Asian colourants in Chinese textiles from Dunhuang (7th–10th century AD) by high performance liquid chromatography tandem mass spectrometry—Towards the creation of a mass spectra database. Dye. Pigment. 2019, 163, 454–474. [Google Scholar] [CrossRef]
- Montagner, C.; Bacci, M.; Bracci, S.; Freeman, R.; Picollo, M. Library of UV-Vis-NIR reflectance spectra of modern organic dyes from historic pattern-card coloured papers. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 1669–1680. [Google Scholar] [CrossRef] [PubMed]
- Gulmini, M.; Idone, A.; Diana, E.; Gastaldi, D.; Vaudan, D.; Aceto, M. Identification of dyestuffs in historical textiles: Strong and weak points of a non-invasive approach. Dye. Pigment. 2013, 98, 136–145. [Google Scholar] [CrossRef]
- de Ferri, L.; Tripodi, R.; Martignon, A.; Ferrari, E.S.; Lagrutta-Diaz, A.C.; Vallotto, D.; Pojana, G. Non-invasive study of natural dyes on historical textiles from the collection of Michelangelo Guggenheim. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 204, 548–567. [Google Scholar] [CrossRef] [PubMed]
- Angelini, L.G.; Tozzi, S.; Bracci, S.; Quercioli, F.; Radicati, B.; Picollo, M. Characterization of Traditional Dyes of the Mediterranean Area by Non-Invasive Uv-Vis-Nir Reflectance Spectroscopy. Stud. Conserv. 2010, 55, 184–189. [Google Scholar] [CrossRef]
- Maynez-Rojas, M.A.; Casanova-González, E.; Ruvalcaba-Sil, J.L. Identification of natural red and purple dyes on textiles by Fiber-optics Reflectance Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 178, 239–250. [Google Scholar] [CrossRef]
- Aceto, M.; Agostino, A.; Fenoglio, G.; Idone, A.; Gulmini, M.; Picollo, M.; Ricciardi, P.; Delaney, J.K. Characterisation of colourants on illuminated manuscripts by portable fibre optic UV-visible-NIR reflectance spectrophotometry. Anal. Methods 2014, 6, 1488–1500. [Google Scholar] [CrossRef]
- Campione, P.F.; Moira, L. (Eds.) Japan Arts and Life. The Montgomery Collection; Skira: Milan, Italy, 2022. [Google Scholar]
- Menges, F. Spectragryph—Optical Spectroscopy Software, Version 1.2.15. 2021. Available online: https://www.effemm2.de/spectragryph/ (accessed on 24 May 2024).
- Deborah, H.; George, S.; Hardeberg, J.Y. Pigment Mapping of the Scream (1893) Based on Hyperspectral Imaging. In Proceedings of the International Conference on Image and Signal Processing, Cherbourg, France, 20 June–2 July 2014; pp. 247–256. [Google Scholar]
- Hashida, K.; Tabata, M.; Kuroda, K.; Otsuka, Y.; Kubo, S.; Makino, R.; Kubojima, Y.; Tonosaki, M.; Ohara, S. Phenolic extractives in the trunk of Toxicodendron vernicifluum: Chemical characteristics, contents and radial distribution. J. Wood Sci. 2014, 60, 160–168. [Google Scholar] [CrossRef]
- Lomax, S.Q.; Lomax, J.F.; Graham, T.K.; Moore, T.J.T.; Knapp, C.G. Historical azo pigments: Synthesis and characterization. J. Cult. Herit. 2019, 35, 218–224. [Google Scholar] [CrossRef]
- Belbachir, K.; Noreen, R.; Gouspillou, G.; Petibois, C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal. Bioanal. Chem. 2009, 395, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Tatsch, E.; Schrader, B. Near-Infrared Fourier Transform Raman Spectroscopy of Indigoids. J. Raman Spectrosc. 1995, 26, 467–473. [Google Scholar] [CrossRef]
- Russel, J.D.; Fraser, A.R. Infrared methods. In Clay Mineralogy: Spectroscopic and Chemical Determinative Methods; Wilson, M.J., Ed.; Chapman and Hall: London, UK, 1994. [Google Scholar]
- Bikiaris, D.; Daniilia, S.; Sotiropoulou, S.; Katsimbiri, O.; Pavlidou, E.; Moutsatsou, A.; Chryssoulakis, Y. Ochre-differentiation through micro-Raman and micro-FTIR spectroscopies: Application on wall paintings at Meteora and Mount Athos, Greece. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2000, 56, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Iriarte, E.; Foyo, A.; Sánchez, M.A.; Tomillo, C.; Setién, J. The origin and geochemical characterization of red ochres from the Tito Bustillo and Monte Castillo Caves (Northern Spain). Archaeometry 2009, 51, 231–251. [Google Scholar] [CrossRef]
- Hunter, J.; Macnaughtan, H. Textile Workers in Japan, 1650–2000. In National Histories of Textile Workers; Ashgate Publishing Ltd.: Farnham, UK, 2010; pp. 305–332. [Google Scholar]
- Cavaleri, T.; Giovagnoli, A.; Nervo, M. Pigments and Mixtures Identification by Visible Reflectance Spectroscopy. Procedia Chem. 2013, 8, 45–54. [Google Scholar] [CrossRef]
- Li, S.; Cunningham, A.B.; Shi, Y.; Qiu, Z.; Hartl, A.; Ding, X.; Wu, S.; Wang, Y. Blue to black: Hypotheses on plant use complexity in traditional dyeing processes in Southeast Asia and China. Ind. Crops Prod. 2022, 188, 115706. [Google Scholar] [CrossRef]
- Loscalzo, A.B. Prussian Blue: Its Development as a Colorant and Use in Textiles. Uncoverings 2010, 31, 65–104. [Google Scholar]
- Crookes, W. Dyeing and Tissue-Printing Handbook; Trueman Wood, H., Ed.; George Bell and Sons: London, UK, 1882; Available online: https://books.google.co.uk/books?hl=it&lr&id=HHo3AAAAMAAJ&oi=fnd&pg=PA1&dq=albumen+mordanting+cotton&ots=hsevwpHMB2&sig=bUpMCp-74uXj5_uWSsZL889sNEA&redir_esc=y&pli=1#v=onepage&q=albumenmordantingcotton&f=false (accessed on 4 May 2024).
- Travis, A.S. Perkin’s Mauve: Ancestor of the Organic Chemical Industry. Source: Technology and Culture. Technol. Cult. 1990, 31, 51–82. [Google Scholar]
- Fukatsu-Fukuoka, Y. The Evolution of Yuzen-dyeing Techniques and Designs after the Meiji Restoration Meiji Restoration. In Proceedings of the Textile Society of America Symposium, Oakland, CA, USA, 7–9 October 2004; p. 475. [Google Scholar]
- Giacomini, F.; de Souza, A.A.U.; de Barros, M.A.S.D. Cationization of cotton with ovalbumin to improve dyeing of modified cotton with cochineal natural dye. Text. Res. J. 2020, 90, 1805–1822. [Google Scholar] [CrossRef]
- Paton, J. Calico Printing, 9th ed.; Encyclopedia Britannica: Edinburgh, UK, 1902. [Google Scholar]
- Sasaki, S. Materials and Techniques. In The Hotei Encyclopedia of Japanese Woodblock Prints; Hotei Publishing: Leiden, The Netherlands, 2005; pp. 325–347. [Google Scholar]
- Schellmann, N.C. Animal glues: A review of their key properties relevant to conservation. Stud. Conserv. 2007, 52, 55–66. [Google Scholar] [CrossRef]
- Haldane, E.-A.; Hillyer, L.; Kalsi, D. The Conservation and Display of Indian Textiles at the Victoria and Albert Museum. In Handbook of MUSEUM Textiles, Volume 1: Conservation and Cultural Research; Jose, S., Thomas, S., Pandit, P., Pandey, R., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2022; pp. 291–314. [Google Scholar]
- Poyatos, F.; Morales, F.; Nicholson, A.W.; Giordano, A. Physiology of biodeterioration on canvas paintings. J. Cell. Physiol. 2017, 233, 2741–2751. [Google Scholar] [CrossRef]
Textile | Colours | Binder Identified by ER-FTIR Spectroscopy | Dyes and Pigments Identified by ER-FTIR Spectroscopy | Dyes and Pigments Identified by Reflectance Spectroscopy |
---|---|---|---|---|
kimono—59 | maroon | animal glue | red ochre | red ochre |
red | animal glue | Ponceau red 2R * | ||
black | animal glue | Prussian blue, indigo | ||
orange | yamahaji, Ponceau red 2R * | |||
yellow | NA | NA | yamahaji | |
kimono—62 | black | |||
futonji—63 | light black | |||
light blue | indigo | |||
blue (ground) | indigo | |||
futonji—65 | blue (ground) | indigo | ||
pale blue | indigo | |||
light blue | animal glue | Prussian blue | ||
red | animal glue | NA | ||
green | animal glue | Prussian blue | NA | |
futonji—69 | orange | animal glue | ||
red | animal glue | Ponceau red 2R * | ||
purple | animal glue | rhodamine B * | ||
blue (ground) | indigo | |||
yellow | animal glue | hansa yellow * | ||
green | ||||
grey | animal glue | NA | ||
futonji—72 | blue (ground) | indigo | ||
red | animal glue | akane * | ||
green | ||||
byobu—74 | green | indigo | ||
yellow | animal glue | yellow ochre | yellow ochre | |
red | NA | NA | yamahaji, Ponceau red 2R * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geminiani, L.; Campione, F.P.; Corti, C.; Luraschi, M.; Recchia, S.; Rampazzi, L. New Evidence of Traditional Japanese Dyeing Techniques: A Spectroscopic Investigation. Heritage 2024, 7, 3610-3629. https://doi.org/10.3390/heritage7070171
Geminiani L, Campione FP, Corti C, Luraschi M, Recchia S, Rampazzi L. New Evidence of Traditional Japanese Dyeing Techniques: A Spectroscopic Investigation. Heritage. 2024; 7(7):3610-3629. https://doi.org/10.3390/heritage7070171
Chicago/Turabian StyleGeminiani, Ludovico, Francesco Paolo Campione, Cristina Corti, Moira Luraschi, Sandro Recchia, and Laura Rampazzi. 2024. "New Evidence of Traditional Japanese Dyeing Techniques: A Spectroscopic Investigation" Heritage 7, no. 7: 3610-3629. https://doi.org/10.3390/heritage7070171
APA StyleGeminiani, L., Campione, F. P., Corti, C., Luraschi, M., Recchia, S., & Rampazzi, L. (2024). New Evidence of Traditional Japanese Dyeing Techniques: A Spectroscopic Investigation. Heritage, 7(7), 3610-3629. https://doi.org/10.3390/heritage7070171