Analysis of the Current Status of Sensors and HBIM Integration: A Review Based on Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compilation of Bibliometric Data
2.2. Analysis of the Obtained Data
2.3. Data Evaluation
- Publications, author names, keywords, or other terms are considered “items”.
- The links or connections between these elements are referred to as “links”.
- Each link has a “strength”, represented by a positive numerical value. The higher the value, the stronger the link.
- The elements and links together form a “network”.
- Elements within a network can be grouped into “clusters”, indicating their relationships.
- Elements can have various attributes, such as “weight” and “score” attributes. These attributes are represented by numerical values. An element with a higher weight is considered more important. In the visualization map (tag cloud graphic), elements with higher weights are more prominent than those with lower weights. Score attributes do not necessarily refer to the importance of the element; they can represent, for example, the publication date of an article. These attributes are displayed on the map with colors that can be interpreted on a scale.
- There are also two standard weighting attributes: “links” and “total link strength”. Links indicate the number of connections an element has with other elements, and the total link strength represents the sum of the strength of those connections.
3. Results
3.1. Identifying Authors with the Highest Citations
3.2. Authors with the Most Publications
3.3. Documents with the Highest Citations
3.4. The Most Prominent Research Groups
- The group led by M. Murphy and S. Pavia from Trinity College Dublin (Republic of Ireland).
- The group led by A. Spanò and G. Sammartano from the Politecnico di Torino (Italy).
- The group led by J. Moyano and J.E. Nieto-Julian from the Universidad de Sevilla (Spain).
- The group led by F. Ubertini, N. Cavalagli, and G. Comanducci from the Universitá degli Studi di Perugia (Italy).
- The group led by K. Themistocleous and M. Ioannides from the Cyprus University of Technology (Cyprus).
3.5. Keywords with the Highest Link Strength
- hbim, encompassing terms such as hbim, h-bim, hbim platform, heritage bim, heritage building information modeling (hbim), heritage building information modeling hbim, heritage building information modelling (h-bim), historic building information modeling hbim, historic building information modelling hbim, and historic building information modeling hbim (hbim).
- cultural heritage, encompassing terms such as cultural heritage and cultural herit.
- remote sensing, encompassing terms such as remote sensing and remote sensing (rs).
- 3d modeling, encompassing terms such as 3d modeling, 3d modelling, 3d model, 3d models, 3d-models, and 3-d modelling.
- bim, encompassing terms such as bim, building information modeling (bim), building information modelling, building information modeling (bim), building information model, building information model (bim), and bim).
- 3d laser scanner, encompassing terms such as 3d laser scanner, 3d laser scanning, 3d scanning, laser scanner, and laser scanning.
- photogrammetry, which does not encompass other terms.
- point clouds, encompassing terms such as point clouds, point cloud, and points clouds.
3.6. Relationships with Digital Technologies and Climate Change
3.7. Potential Future Research Directions
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rossi, M.; Bournas, D. Structural Health Monitoring and Management of Cultural Heritage Structures: A State-of-the-Art Review. Appl. Sci. 2023, 13, 6450. [Google Scholar] [CrossRef]
- Casillo, M.; Colace, F.; Gupta, B.B.; Lorusso, A.; Marongiu, F.; Santaniello, D. A Deep Learning Approach to Protecting Cultural Heritage Buildings Through IoT-Based Systems. In Proceedings of the 2022 IEEE International Conference on Smart Computing (SMARTCOMP), Helsinki, Finland, 20–24 June 2022; pp. 252–256. [Google Scholar] [CrossRef]
- Zhang, Z.; Zou, Y. Research hotspots and trends in heritage building information modeling: A review based on CiteSpace analysis. Humanit. Soc. Sci. Commun. 2022, 9, 1–22. [Google Scholar] [CrossRef]
- Machete, R.; Neves, M.; Ponte, M.; Falcão, A.P.; Bento, R. A BIM-Based Model for Structural Health Monitoring of the Central Body of the Monserrate Palace: A First Approach. Buildings 2023, 13, 1532. [Google Scholar] [CrossRef]
- Liu, T.; Yang, B.; Zhang, Q. Health Monitoring System Developed for Tianjin 117 High-Rise Building. J. Aerosp. Eng. 2017, 30, B4016004. [Google Scholar] [CrossRef]
- Castellano-Román, M.; Pinto-Puerto, F. Dimensions and Levels of Knowledge in Heritage Building Information Modelling, HBIM: The model of the Charterhouse of Jerez (Cádiz, Spain). Digit. Appl. Archaeol. Cult. Herit. 2019, 14, e00110. [Google Scholar] [CrossRef]
- Meoni, A.; Vittori, F.; Piselli, C.; D’Alessandro, A.; Pisello, A.; Ubertini, F. Integration of structural performance and human-centric comfort monitoring in historical building information modeling. Autom. Constr. 2022, 138, 104220. [Google Scholar] [CrossRef]
- Cursi, S.; Martinelli, L.; Paraciani, N.; Calcerano, F.; Gigliarelli, E. Linking external knowledge to heritage BIM. Autom. Constr. 2022, 141, 104444. [Google Scholar] [CrossRef]
- Banfi, F.; Barazzetti, L.; Previtali, M.; Roncoroni, F. Historic bim: A new repository for structural health monitoring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2017, 42, 269–274. [Google Scholar] [CrossRef]
- Chiabrando, F.; Sammartano, G.; Spanò, A.; Spreafico, A. Hybrid 3D Models: When Geomatics Innovations Meet Extensive Built Heritage Complexes. ISPRS Int. J. Geo-Inf. 2019, 8, 124. [Google Scholar] [CrossRef]
- Nieto-Julián, J.E.; Antón, D.; Moyano, J.J. Implementation and Management of Structural Deformations into Historic Building Information Models. Int. J. Arch. Herit. 2020, 14, 1384–1397. [Google Scholar] [CrossRef]
- Currà, E.; D’amico, A.; Angelosanti, M. Representation and knowledge of historic construction: HBIM for structural use in the case of Villa Palma-Guazzaroni in Terni. Riv. Tema 2021, 7, 8–20. [Google Scholar] [CrossRef]
- O’shea, M.; Murphy, J. Design of a BIM Integrated Structural Health Monitoring System for a Historic Offshore Lighthouse. Buildings 2020, 10, 131. [Google Scholar] [CrossRef]
- Nagy, G.; Ashraf, F. HBIM platform & smart sensing as a tool for monitoring and visualizing energy performance of heritage buildings. Dev. Built Environ. 2021, 8, 100056. [Google Scholar] [CrossRef]
- Moyano, J.; Fernández-Alconchel, M.; Nieto-Julián, J.E.; Marín-García, D.; Bruno, S. Integration of dynamic information on energy parameters in hbim models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2023, 48, 1089–1096. [Google Scholar] [CrossRef]
- Vilutiene, T.; Kalibatiene, D.; Hosseini, M.R.; Pellicer, E.; Zavadskas, E.K. Building Information Modeling (BIM) for Structural Engineering: A Bibliometric Analysis of the Literature. Adv. Civ. Eng. 2019, 2019, 5290690. [Google Scholar] [CrossRef]
- Li, J.; Weng, G.; Pan, Y.; Li, C.; Wang, N. A scientometric review of tourism carrying capacity research: Cooperation, hotspots, and prospect. J. Clean. Prod. 2021, 325, 129278. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, M.; Osmani, M. Building Information Modelling (BIM) Driven Sustainable Cultural Heritage Tourism. Buildings 2023, 13, 1925. [Google Scholar] [CrossRef]
- Hou, H.; Lai, J.H.; Wu, H.; Wang, T. Digital twin application in heritage facilities management: Systematic literature review and future development directions. Eng. Constr. Arch. Manag. 2023. ahead-of-print. [Google Scholar] [CrossRef]
- Bulgarelli-Bolaños, J.P.; Hernández-Salazar, I.; Pinto-Puerto, F. Evolución de la producción científica sobre los conceptos HBIM y modelado 3D en la gestión de obras patrimoniales. Rev. Tecnol. En Marcha 2020, 33, 89–101. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Manual for VOSviewer Version 1.6.19. In Univeristeit Leiden; Issue January; 2023. Available online: http://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.1.pdf (accessed on 23 September 2023).
- Murphy, M.; McGovern, E.; Pavia, S. Historic Building Information Modelling—Adding intelligence to laser and image based surveys of European classical architecture. ISPRS J. Photogramm. Remote. Sens. 2013, 76, 89–102. [Google Scholar] [CrossRef]
- Pflugmacher, D.; Cohen, W.B.; Kennedy, R.E.; Yang, Z. Using Landsat-derived disturbance and recovery history and lidar to map forest biomass dynamics. Remote. Sens. Environ. 2014, 151, 124–137. [Google Scholar] [CrossRef]
- Ubertini, F.; Comanducci, G.; Cavalagli, N.; Pisello, A.L.; Materazzi, A.L.; Cotana, F. Environmental effects on natural frequencies of the San Pietro bell tower in Perugia, Italy, and their removal for structural performance assessment. Mech. Syst. Signal Process. 2017, 82, 307–322. [Google Scholar] [CrossRef]
- Rocha, G.; Mateus, L.; Fernández, J.; Ferreira, V. A Scan-to-BIM Methodology Applied to Heritage Buildings. Heritage 2020, 3, 47–67. [Google Scholar] [CrossRef]
- Pepe, M.; Costantino, D.; Garofalo, A.R. An efficient pipeline to obtain 3D model for HBIM and structural analysis purposes from 3D point clouds. Appl. Sci. 2020, 10, 1235. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, L.; Shen, Y.; Li, F.; Wang, Q.; Wang, R. Tridimensional Reconstruction Applied to Cultural Heritage with the Use of Camera-Equipped UAV and Terrestrial Laser Scanner. Remote Sens. 2014, 6, 10413–10434. [Google Scholar] [CrossRef]
- Xiao, W.; Mills, J.; Guidi, G.; Rodriguez-Gonzalvez, P.; Barsanti, S.G.; Gonzalez-Aguilera, D. Geoinformatics for the conservation and promotion of cultural heritage in support of the UN Sustainable Development Goals. ISPRS J. Photogramm. Remote Sens. 2018, 142, 389–406. [Google Scholar] [CrossRef]
- Esposito, M.; Damiano, E.; Minutolo, A.; De Pietro, G.; Fujita, H. Hybrid query expansion using lexical resources and word embeddings for sentence retrieval in question answering. Inf. Sci. 2020, 514, 88–105. [Google Scholar] [CrossRef]
- Tapete, D.; Cigna, F.; Donoghue, D.N.M. ‘Looting marks’ in space-borne SAR imagery: Measuring rates of archaeological looting in Apamea (Syria) with TerraSAR-X Staring Spotlight. Remote Sens. Environ. 2016, 178, 42–58. [Google Scholar] [CrossRef]
- Shuai, Y.; Masek, J.G.; Gao, F.; Schaaf, C.B.; He, T. An approach for the long-term 30-m land surface snow-free albedo retrieval from historic Landsat surface reflectance and MODIS-based a priori anisotropy knowledge. Remote Sens. Environ. 2014, 152, 467–479. [Google Scholar] [CrossRef]
- Andriasyan, M.; Moyano, J.; Nieto-Julián, J.E.; Antón, D. From Point Cloud Data to Building Information Modelling: An Automatic Parametric Workflow for Heritage. Remote. Sens. 2020, 12, 1094. [Google Scholar] [CrossRef]
- Tommasi, C.; Achille, C.; Fassi, F. From point cloud to BIM: A modelling challenge in the cultural heritage field. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2016, 41, 429–436. [Google Scholar] [CrossRef]
- Chiabrando, F.; Sammartano, G.; Spanò, A. Historical buildings models and their handling via 3d survey: From points clouds to user-oriented hbim. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2016, 41, 633–640. [Google Scholar] [CrossRef]
- Jouan, P.; Hallot, P. Digital Twin: A HBIM-Based Methodology to Support Preventive Conservation of Historic Assets Through Heritage Significance Awareness. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W15, 609–615. [Google Scholar] [CrossRef]
- Underwood, J.; Isikdag, U. Emerging technologies for BIM 2.0. Constr. Innov. 2011, 11, 252–258. [Google Scholar] [CrossRef]
- Angelini, M.G.; Baiocchi, V.; Costantino, D.; Garzia, F. Scan to BIM for 3D reconstruction of the papal basilica of saint Francis in Assisi In Italy. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2017, 42, 47–54. [Google Scholar] [CrossRef]
- Gini, R.; Passoni, D.; Pinto, L.; Sona, G. Aerial Images From an UAV System: 3D Modeling And Tree Species Classification in a Park Area. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B1, 361–366. [Google Scholar] [CrossRef]
- Franco, P.A.C.; de la Plata, A.R.M.; Franco, J.C. From the Point Cloud to BIM Methodology for the Ideal Reconstruction of a Lost Bastion of the Cáceres Wall. Appl. Sci. 2020, 10, 6609. [Google Scholar] [CrossRef]
- Alshawabkeh, Y.; Baik, A.; Miky, Y. Integration of Laser Scanner and Photogrammetry for Heritage BIM Enhancement. ISPRS Int. J. Geo-Inf. 2021, 10, 316. [Google Scholar] [CrossRef]
- De la Plata, A.R.M.; Franco, P.A.C.; Franco, J.C.; Bravo, V.G. Protocol Development for Point Clouds, Triangulated Meshes and Parametric Model Acquisition and Integration in an HBIM Workflow for Change Control and Management in a UNESCO’s World Heritage Site. Sensors 2021, 21, 1083. [Google Scholar] [CrossRef]
- Lanzara, E.; Catello, D.; Casciello, M. Scan to HBIM for Complex Reflective Metal Artefacts. 3D Digitisation and Restoration. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLVIII-2/W1-2022, 121–128. [Google Scholar] [CrossRef]
- Moyano, J.; Carreño, E.; Nieto-Julián, J.E.; Gil-Arizón, I.; Bruno, S. Systematic approach to generate Historical Building Information Modelling (HBIM) in architectural restoration project. Autom. Constr. 2022, 143, 104551. [Google Scholar] [CrossRef]
- Chenaux, A.; Murphy, M.; Pavia, S.; Fai, S.; Molnar, T.; Cahill, J.; Lenihan, S.; Corns, A. A Review of 3D GIS for use in Creating Virtual Historic Dublin. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 249–254. [Google Scholar] [CrossRef]
- Templin, T.; Brzezinski, G.; Rawa, M. Visualization of Spatio-Temporal Building Changes Using 3D Web GIS. IOP Conf. Ser. Earth Environ. Sci. 2019, 221, 012084. [Google Scholar] [CrossRef]
- Sammartano, G.; Avena, M.; Fillia, E.; Spanò, A. Integrated HBIM-GIS Models for Multi-Scale Seismic Vulnerability Assessment of Historical Buildings. Remote. Sens. 2023, 15, 833. [Google Scholar] [CrossRef]
- Massafra, A.; Predari, G.; Gulli, R. Towards Digital Twin Driven Cultural Heritage Management: A HBIM-Based Workflow for Energy Improvement of Modern Buildings. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLVI-5/W1-2022, 149–157. [Google Scholar] [CrossRef]
- Chiabrando, F.; Sammartano, G.; Spano, A. A Comparison Among Different Optimization Levels in 3D Multi-Sensor Models. A Test Case in Emergency Context: 2016 Italian Earthquake. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLVII-2/W3, 155–162. [Google Scholar] [CrossRef]
- Murtiyoso, A.; Grussenmeyer, P. Comparison and Assessment of 3D Registration and Georeferencing Approaches of Point Clouds in the Case of Exterior and Interior Heritage Building Recording. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–2, 745–751. [Google Scholar] [CrossRef]
- Murtiyoso, A.; Grussenmeyer, P.; Suwardhi, D.; Fadilah, W.A.; Permana, H.A.; Wicaksono, D. Multi-Sensor 3D Recording Pipeline for the Documentation of Javanese Temples. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII–2/W5, 829–834. [Google Scholar] [CrossRef]
- Yang, X.; Grussenmeyer, P.; Koehl, M.; Macher, H.; Murtiyoso, A.; Landes, T. Review of built heritage modelling: Integration of HBIM and other information techniques. J. Cult. Herit. 2020, 46, 350–360. [Google Scholar] [CrossRef]
- Castilla, F.J.; Ramón, A.; Adán, A.; Trenado, A.; Fuentes, D. 3D Sensor-Fusion for the Documentation of Rural Heritage Buildings. Remote. Sens. 2021, 13, 1337. [Google Scholar] [CrossRef]
- Moyano, J.; Nieto-Julián, J.E.; Fernández-Alconchel, M.; Oreni, D.; Estévez-Pardal, R. Analysis and Precision of Light Detection and Ranging Sensors Integrated in Mobile Phones as a Framework for Registration of Ground Control Points for Unmanned Aerial Vehicles in the Scanning Technique for Building Information Modelling in Archaeological Sites. Drones 2023, 7, 477. [Google Scholar] [CrossRef]
- Mitro, N.; Krommyda, M.; Amditis, A. Smart Tags: IoT Sensors for Monitoring the Micro-Climate of Cultural Heritage Monuments. Appl. Sci. 2022, 12, 2315. [Google Scholar] [CrossRef]
- Albano, R. Investigation on Roof Segmentation for 3D Building Reconstruction from Aerial LIDAR Point Clouds. Appl. Sci. 2019, 9, 4674. [Google Scholar] [CrossRef]
- Darwish, A.; Hassanien, A.E. IoHCT: Internet of Cultural Heritage Things Digital Twins for Conservation and Health Monitoring of Cultural in the Age of Digital Transformation. In Digital Twins for Digital Transformation: Innovation in Industry. Studies in Systems, Decision and Control; Hassanien, A.E., Darwish, A., Snasel, V., Eds.; Springer: Cham, Switzerland, 2022; Volume 423. [Google Scholar] [CrossRef]
- Artopoulos, G.; Fokaides, P.; Lysandrou, V.; Deligiorgi, M.; Sabatakos, P.; Agapiou, A. Data-Driven Multi-Scale Study of Historic Urban Environments by Accessing Earth Observation and Non-Destructive Testing Information via an HBIM-Supported Platform. Int. J. Arch. Herit. 2023, 1–20. [Google Scholar] [CrossRef]
- Laurini, E.; Rotilio, M.; Lucarelli, M.; De Berardinis, P. Technology 4.0 for buildings management: From building site to the interactive building book. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 707–714. [Google Scholar] [CrossRef]
- Chiabrando, F.; Naretto, M.; Sammartano, G.; Sambuelli, L.; Spanò, A.; Losè, L.T. The 4DILAN Project (4th Dimension in Landscape and Artifacts Analyses). ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2017, XLII-5/W1, 227–234. [Google Scholar] [CrossRef]
- Abbate, E.; Sammartano, G.; Spanò, A. Prospective Upon Multi-Source Urban Scale Data for 3D Documentation and Monitoring of Urban Legacies. ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 11–19. [Google Scholar] [CrossRef]
- Bienvenido-huertas, D.; Nieto-julián, J.E.; Moyano, J.J.; Macías-bernal, J.M.; Castro, J.; Nieto-julián, J.E.; Moyano, J.J.; Macías, J.M. Implementing Artificial Intelligence in H-BIM Using the J48 Algorithm to Manage Historic Buildings Implementing Artificial Intelligence in H-BIM Using the J48 Algorithm to Manage. Int. J. Arch. Herit. 2019, 14, 1148–1160. [Google Scholar] [CrossRef]
- Wang, N.; Zhao, X.; Zou, Z.; Zhao, P.; Qi, F. Autonomous damage segmentation and measurement of glazed tiles in historic buildings via deep learning. Comput. Civ. Infrastruct. Eng. 2019, 35, 277–291. [Google Scholar] [CrossRef]
- Zou, Z.; Zhao, X.; Zhao, P.; Qi, F.; Wang, N. CNN-based statistics and location estimation of missing components in routine inspection of historic buildings. J. Cult. Herit. 2019, 38, 221–230. [Google Scholar] [CrossRef]
- Mesanza-Moraza, A.; García-Gómez, I.; Azkarate, A. Machine Learning for the Built Heritage Archaeological Study. J. Comput. Cult. Herit. 2020, 14, 1–21. [Google Scholar] [CrossRef]
- Hatir, M.E.; Barstuğan, M.; Ince, I. Deep learning-based weathering type recognition in historical stone monuments. J. Cult. Herit. 2020, 45, 193–203. [Google Scholar] [CrossRef]
- Ni, Z.; Liu, Y.; Karlsson, M.; Gong, S. A Sensing System Based on Public Cloud to Monitor Indoor Environment of Historic Buildings. Sensors 2021, 21, 5266. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M. Machine learning techniques for structural health monitoring of heritage buildings: A state-of-the-art review and case studies. J. Cult. Herit. 2021, 47, 227–245. [Google Scholar] [CrossRef]
- Mansuri, L.E.; Patel, D. Artificial intelligence-based automatic visual inspection system for built heritage. Smart Sustain. Built Environ. 2022, 11, 622–646. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolim, R.; López-González, C.; Viñals, M.J. Analysis of the Current Status of Sensors and HBIM Integration: A Review Based on Bibliometric Analysis. Heritage 2024, 7, 2071-2087. https://doi.org/10.3390/heritage7040098
Rolim R, López-González C, Viñals MJ. Analysis of the Current Status of Sensors and HBIM Integration: A Review Based on Bibliometric Analysis. Heritage. 2024; 7(4):2071-2087. https://doi.org/10.3390/heritage7040098
Chicago/Turabian StyleRolim, Renan, Concepción López-González, and María José Viñals. 2024. "Analysis of the Current Status of Sensors and HBIM Integration: A Review Based on Bibliometric Analysis" Heritage 7, no. 4: 2071-2087. https://doi.org/10.3390/heritage7040098
APA StyleRolim, R., López-González, C., & Viñals, M. J. (2024). Analysis of the Current Status of Sensors and HBIM Integration: A Review Based on Bibliometric Analysis. Heritage, 7(4), 2071-2087. https://doi.org/10.3390/heritage7040098