Dual Approach to Large-Scale Seismic Vulnerability Assessment of Churches Through Representative Archetypes
Abstract
:1. Introduction
2. Structural Survey and Empirical Seismic Vulnerability of the Studied Stock of Churches
2.1. The Studied Churches in Central Italy
2.2. The Applied Empirical Method
- w is an importance factor. In Equation (2), it represents the potential impact of the fragility source in determining the vulnerability of the mechanism, whereas in Equation (3) it measures the effectiveness of the applied protection device in inhibiting the development of the mechanism. The maximum value of w is 2;
- z is a Boolean coefficient related to the presence or absence of each anti-seismic device and fragility indicator; it ranges from 0 (when the device is absent) to 1 (when the device is present);
- f, in Equation (2), is a factor that reflects the influence of the observed fragility indicator. It ranges from 0 (meaning that the indicator does not influence the activation of the mechanism) to 1.5 (if the indicator has full influence on the onset of the mechanism);
- η, in Equation (3), is the efficiency factor that measures the effectiveness of each anti-seismic device. It ranges from 0 (ineffective) to 1.5 (fully effective).
2.3. The MaCHRO Form
- SECTIONS 1–5: General informationThis section allows the definition of (a) architectural features of the church (denomination, layout and number of naves), (b) the intended use (destination, frequency of use and state of maintenance), (c) the relationship to the context (position), (d) the localization (i.e., province, municipality, address, diocese, DMS coordinates and ISTAT code), (e) historical information (construction and reconstruction periods, as well as the years of past earthquakes) and (f) photographic and technical drawings providing geometric details of the church (e.g., total length, width and height, in meters).
- SECTIONS 6–8: Anti-seismic devices, construction practices and fragility sourcesThese sections list the presence or absence of various anti-seismic devices (e.g., tie rods and retaining elements), good construction practices (e.g., strong connections and high-quality masonry) and fragility sources (e.g., large openings and thrusting roofs) that can be observed in the church.
- SECTIONS 9–19: Macro-elementsThese sections enable detailed description of all the macro-elements detectable in the church. The data provided by the compiler allow for an analysis of each single macro-element from a typological, structural and geometrical point of view. Each option in the form corresponds to a precise level of fragility or protection, providing indications about the structural behavior of the considered macro-element during a seismic event. For example, in the “Shape” box (section 9—Façade), the compiler can choose between four types of façades: a salient façade, a gabled façade, a flat façade or paired towers. This information, combined with the top shape of the façade (flat, constrained gable, unconstrained gable, tower, or flat with leaning tower) as well as the geometric information given in the previous sections, allows prediction of the possible out-of-plane behavior of the façade macro-element. The scores assigned to each seismic behavior are pre-set by the authors and are not editable. These scoring rules were defined based on the authors’ experiences and validated following the 2009 L’Aquila earthquake in Abruzzo, Italy. More details on the pre-assigned scores are available in [17].
- SECTION 20: Damage assessmentIn this section, for each potentially activable mechanism, damage assessment is possible according to the criteria outlined in the Cultural Heritage Guidelines.
2.4. Evaluation of the Iv Index Through the MaCHRO Form
3. Definition of Archetype Churches
4. Analytical Vulnerability Assessment Through Mechanical-Based Models
4.1. The Performed Analyses
- n and m are the numbers of rigid blocks involved or not involved in the kinematic chain, respectively;
- o is the number of external forces applied to the blocks;
- Pi is the self-weight of involved blocks;
- Pj represents the weight of the m elements not directly involved in the mechanism but generating horizontal forces;
- δx,i and δy,i are the corresponding horizontal and vertical virtual displacements according to the kinematic chain;
- Fh is the horizontal external force acting on the blocks and δh is the corresponding displacement;
- Lfi is the internal work, which is assumed to be null.
- dk is the ultimate lateral displacement of the center of mass of the analyzed macro-element, identified by imposing a null value for the load multiplier (α0);
- δx,k is the virtual horizontal displacement of the control point.
4.2. Damage Limit States
4.3. Seismic Demand
4.4. Mechanical-Based Fragility Curves
5. Comparison of Large-Scale Vulnerability Assessment Methodologies
6. Conclusions
- The MACHRO form is an automated tool that can be profitably used to reduce the subjectivity associated with engineering judgments in the definition of seismic vulnerability indices (Iv) for churches when implementing empirical methods for seismic assessments. This tool, supported by a connected spreadsheet, allows the seismic vulnerability of structures to be determined in a simple way. By evaluating both the sources of vulnerability and the presence of seismic devices, the form facilitates planning and allocation of economic resources.
- The results highlight the importance of appropriately categorizing churches into homogeneous groups for better accuracy when implementing the empirical methodology. In fact, empirical results satisfactorily match with those of the mechanical approach when similar structures are considered, while significant differences are observed in other cases.
- The analysis of kinematic mechanisms, applied to the macro-elements of archetype churches, is extremely valuable in assessing their seismic capacity and evaluating the effectiveness of preventive measures. In the analyzed examples, the overturning of façades was consistently the first failure mode under seismic loads as compared with other macro-elements. This denotes poor connections with the lateral walls but also structural deficiencies due to transformations and reconstructions performed over time without seismic criteria.
- Archetype-based analyses can be used to improve current large-scale seismic risk assessment approaches for churches. Additionally, the analytical procedure could be extended to include other macro-elements to better represent the global seismic behavior of churches.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- D’Antonio, M. Ita terraemotus damna impedire. In Note Sulle Tecniche Antisismiche Storiche in Abruzzo; Carsa Editore: Pescara, Italia, 2013; 223p. [Google Scholar]
- Lagomarsino, S.; Podestà, S. Damage and vulnerability assessment of churches after the 2002 Molise, Italy, earthquake. Earthq. Spectra 2004, 20, S271–S283. [Google Scholar] [CrossRef]
- Brandonisio, G.; Lucibello, G.; Mele, E.; de Luca, A. Damage and performance evaluation of masonry churches in the 2009 L’Aquila earthquake. Eng. Fail. Anal. 2013, 34, 693–714. [Google Scholar] [CrossRef]
- Valente, M.; Barbieri, G.; Biolzi, L. Damage assessment of three medieval churches after the 2012 Emilia earthquake. Bull. Earthq. Eng. 2017, 15, 2939–2980. [Google Scholar] [CrossRef]
- Sorrentino, L.; Liberatore, L.; Decanini, L.D.; Liberatore, D. The performance of churches in the 2012 Emilia earthquakes. Bull. Earthq. Eng. 2014, 12, 2299–2331. [Google Scholar] [CrossRef]
- Cescatti, E.; Salzano, P.; Casapulla, C.; Ceroni, F.; da Porto, F.; Prota, A. Damages to Masonry Churches After 2016–2017 Central Italy Seismic Sequence and Definition of Fragility Curves; Springer: Berlin/Heidelberg, Germany, 2020; Volume 18. [Google Scholar]
- Anzani, A.; Cardani, G.; Condoleo, P.; Garavaglia, E.; Saisi, A.; Tedeschi, C.; Tiraboschi, C.; Valluzzi, M.R. Understanding of historical masonry for conservation approaches: The contribution of Prof. Luigia Binda to research advancement. Mater. Struct. 2018, 51, 140. [Google Scholar] [CrossRef]
- Minister of Heritage and Cultural Activities. Linee Guida per la Valutazione e la Riduzione del Rischio Sismico del Patrimonio Culturale con Riferimento Alle Norme Tecniche per le Costruzioni (Circular No. 26, Prot. 10953 of 02/12/2010). Italian Code for Protection of Cultural Heritage. 2010. Available online: https://www.soprintendenzapdve.beniculturali.it/la-soprintendenza-informa/atti-di-indirizzo/linee-guida-per-la-valutazione-e-riduzione-del-rischio-sismico-del-patrimonio-culturale/ (accessed on 10 November 2024).
- De Matteis, G.; Brando, G.; Corlito, V. Predictive model for seismic vulnerability assessment of churches based on the 2009 L’Aquila earthquake. Bull. Earthq. Eng. 2019, 17, 4909–4936. [Google Scholar] [CrossRef]
- Tashkov, L.; Krstevska, L.; Naumovski, N.; De Matteis, G.; Brando, G. Ambient vibration tests on three religious buildings in Goriano Sicoli damaged during the 2009 L’aquila earthquake. In COST ACTION C26: Urban Habitat Constructions Under Catastrophic Events—Proceedings of the Final Conference; CRC Press: Boca Raton, FL, USA, 2010; pp. 433–438. [Google Scholar]
- Brando, G.; Criber, E.; De Matteis, G. The effects of L’aquila earthquake on the st. gemma church in goriano sicoli: Part II—Fem analysis. Bull. Earthq. Eng. 2015, 13, 3733–3748. [Google Scholar] [CrossRef]
- Borzi, B.; Crowley, H.; Pinho, R. Simplified pushover-based earthquake loss assessment (SP-BELA) method for masonry buildings. Int. J. Archit. Herit. 2008, 2, 353–376. [Google Scholar] [CrossRef]
- Basaglia, A.; Cianchino, G.; Cocco, G.; Rapone, D.; Terrenzi, M.; Spacone, E.; Brando, G. An Automatic Procedure for Deriving Building Portfolios Using the Italian ‘CARTIS’ Online Database. Structures 2021, 34, 2974–2986. [Google Scholar] [CrossRef]
- DPC. Survey Form of the Cultural Heritage—Damage of the Churches (in Italian). Department of Civil Protection. Available online: https://egeos.eucentre.it/danno_osservato/web/danno_osservato?lang=EN (accessed on 18 July 2022).
- Cianchino, G.; De Matteis, G.; Brando, G. Typological Classification and Observed Damage Patterns of Masonry Churches After the 2016 Central Italy Earthquake. Available online: https://www.scipedia.com/public/Cianchino_et_al_2021a (accessed on 30 November 2021).
- Lagomarsino, S.; Podestà, S. Seismic Vulnerability of Ancient Churches: II. Statistical Analysis of Surveyed Data and Methods for Risk Analysis. Earthq. Spectra 2004, 20, 395–412. [Google Scholar] [CrossRef]
- Brando, G.; Cianchino, G.; Corlito, V.; Criber, E.; De Matteis, G. La scheda MaChro: Un nuovo strumento automatizzato per la ricognizione delle chiese finalizzato alla valutazione speditiva della vulnerabilità sismica. In Proceedings of the XVII Convegno ANIDIS l’Ingegneria Sismica, Pistoia, Italy, 17–21 September 2017. [Google Scholar]
- Available online: https://www.eucentre.it/ (accessed on 1 February 2022).
- GNDT-SSN. Scheda di Esposizione e Vulnerabilità e di Rilevamento Danni di Primo e Secondo Livello; Murata e Cemento Armato: Rome, Italy, 1994. [Google Scholar]
- Margottini, C.; Molin, D.; Narcisi, B.; Serva, L. Intensity vs acceleration: Italian data. Proc. Work Hist. Seism. Cent. Mediterr. Reg. 1987, 213–226. [Google Scholar]
- Cianchino, G.; Masciotta, M.G.; Verazzo, C.; Brando, G. An Overview of the Historical Retrofitting Interventions on Churches in Central Italy. Appl. Sci. 2023, 13, 40. [Google Scholar] [CrossRef]
- Ministero delle Infrastrutture e dei Trasporti. CIRCOLARE 21 Gennaio 2019 n.7_Istruzioni per l’applicazione dell’«Aggiornamento delle “Norme Tecniche per le Costruzioni”» di cui al Decreto Ministeriale 17 Gennaio 2018; Italian Guideline, Supplemento Ordinario Alla “Gazzetta Ufficiale” n. 35 Del 11 Febbraio 2019—Serie Generale; Ministero delle Infrastrutture e dei Trasporti: Rome, Italy, 2019; Volume 337.
- Lagomarsino, S. Seismic assessment of rocking masonry structures. Bull. Earthq. Eng. 2015, 13, 97–128. [Google Scholar] [CrossRef]
- Grünthal, G. (Ed.) European Macroseismic Scale 1998 (EMS-98) European Seismological Commission, Sub Commission on Engineering Seismology, Working Group Macroseismic Scales; Conseil de l’Europe, Cahiers du Centre Européen de Géodynamique et de Séismologie: Luxembourg, 1998; Volume 15.
- Masi, A.; Lagomarsino, S.; Dolce, M.; Manfredi, V.; Ottonelli, D. Towards the Updated Italian Seismic Risk Assessment: Exposure and Vulnerability Modelling; Springer Netherlands: Dordrecht, The Netherlands, 2021; Volume 19. [Google Scholar]
- Manfredi, V.; Masi, A.; Özcebe, A.G.; Paolucci, R.; Smerzini, C. Selection and spectral matching of recorded ground motions for seismic fragility analyses. Bull. Earthq. Eng. 2022, 20, 4961–4987. [Google Scholar] [CrossRef]
- Baker, J.W. Efficient Analytical Fragility Function Fitting Using Dynamic Structural Analysis. Earthq. Spectra 2015, 31, 579–599. [Google Scholar] [CrossRef]
Church | Acronym | Church | Acronym |
---|---|---|---|
01 San Giovanni Battista, Campli (TE) | SGB | 45 Santissima Annunziata, Valle Castellana (TE) | SA4 |
02 Santissima Trinità, Campli (TE) | ST | 46 Santa Maria Assunta, Valle Castellana (TE) | SMA5 |
03 San Gennaro, Campli (TE) | SG | 47 San Rocco, Pietracamela (TE) | SR5 |
04 Chiesa del Carmine, Campli (TE) | DC | 48 San Leuco, Pietracamela (TE) | SLV |
05 Santa Maria dei Lumi, Civitella del Tronto (TE) | SML | 49 San Vincenzo Ferreri, Isola del Gran Sasso (TE) | SVF |
06 Sant’Anna, Campli (TE) | SA | 50 San Donato, Castelli (TE) | SD2 |
07 Santa Maria Assunta, Campli (TE) | SMA | 51 Madonna delle Grazie, Castelli (TE) | MG4 |
08 San Donato Martire, Campli (TE) | SDM | 52 Santa Maria Santissima delle Grazie, Castelli (TE) | SMSG |
09 San Giovanni Battista, Castelli (TE) | SGB2 | 53 San Giovanni Battista, Collepietro (AQ) | SGB3 |
10 San Rocco (Madonna della Cona), Castelli (TE) | SR | 54 Madonna del Buon Consiglio, Collepietro (AQ) | MBC |
11 Madonna delle Grazie, Castelli (TE) | MG | 55 San Nicola di Bari, Caramanico Terme (PE) | SNB |
12 Sant’Andrea Apostolo, Castelli (TE) | SAA | 56 San Bartolomeo, Sant’Eufemia a Maiella (PE) | SB |
13 Madonna delle Grazie, Castelli (TE) | MG2 | 57 San Salvatore, Civitella Messer Raimondo (CH) | SS2 |
14 San Rocco, Castelli (TE) | SR2 | 58 Santa Maria di Loreto, Greccio (RI) | SML2 |
15 Santa Maria della Neve, Castelli (TE) | SMN | 59 Santa Maria del Popolo, Cittaducale (RI) | SMP |
16 Santa Lucia, Castelli (TE) | SL | 60 San Michele Arcangelo, Rivodutri (RI) | SMA6 |
17 Madonna degli Angeli, Castelli (TE) | MA | 61 Santa Maria delle Grazie, Camerino (MC) | SMG |
18 Madonna delle Grazie, Isola del Gran Sasso (TE) | MG3 | 62 Sant’Agostino, Antrodoco (RI) | SA5 |
19 Dell’Immacolata Concezione, Isola del Gran Sasso (TE) | IC | 63 Santa Maria delle Grotte, Antrodoco (RI) | SMG2 |
20 San Giuseppe, Isola del Gran Sasso (TE) | SG2 | 64 San Pietro, Borbona (RI) | SP2 |
21 San Giovanni ad Insulam, Isola del Gran Sasso (TE) | SGI | 65 Santa Cecilia, Cittaducale (RI) | SC |
22 Santa Lucia, Isola del Gran Sasso (TE) | SL2 | 66 Santa Caterina, Cittaducale (RI) | SC2 |
23 Madonna della Pietà, Isola del Gran Sasso (TE) | MP | 67 San Pietro, Poggio Bustone (RI) | SP3 |
24 San Rocco, Isola del Gran Sasso (TE) | SR3 | 68 Santa Maria del Giglio, Greccio (RI) | SMG3 |
25 Sant’Anna, Isola del Gran Sasso (TE) | SA2 | 69 Sant’Andrea Apostolo, Contigliano (RI) | SA6 |
26 Santi Pietro e Paolo, Fano Adriano (TE) | SSPP | 70 San Filippo, Contigliano (RI) | SF |
27 Sant’Egidio Abate, Fano Adriano (TE) | SEA | 71 San Salvatore, Torricella in Sabina (RI) | SS3 |
28 San Salvatore, Cortino (TE) | SS | 72 San Pietro al Morrone, L’Aquila (AQ) | SPM |
29 Santa Maria Assunta, Cortino (TE) | SMA2 | 73 Chiesa di San Benedetto, Teramo (TE) | SB2 |
30 Santi Pietro e Paolo, Cortino (TE) | SPP | 74 Santa Maria degli Angeli, Campli (TE) | SMA7 |
31 Santissima Annunziata, Cortino (TE) | SA3 | 75 Monastero di San Giovanni, Teramo (TE) | MSG4 |
32 San Lorenzo, Cortino (TE) | SL3 | 76 Santa Maria della Mercede, Acquasanta Terme (AP) | SMM2 |
33 Sant’Andrea Apostolo, Cortino (TE) | SAA2 | 77 Santissima Annunziata, Acquasanta Terme (AP) | SA7 |
34 San Rocco, Cortino (TE) | SR4 | 78 Santissimo Crocifisso, Acquasanta Terme (AP) | SC3 |
35 San Martino, Cortino (TE) | SM | 79 Santa Maria delle Grazie, Ascoli Piceno (AP) | SMG4 |
36 Santa Maria Assunta, Cortino (TE) | SMA3 | 80 San Benedetto, Montemonaco (AP) | SB3 |
37 Santa Giusta, Cortino (TE) | SG3 | 81 Santa Maria Lauretana, Venarotta (AP) | SML3 |
38 San Donato, Cortino (TE) | SD | 82 San Paolo, Ascoli Piceno (AP) | SP4 |
39 San Paolo, Cortino (TE) | SP | 83 San Pietro, Acquasanta Terme (AP) | SP5 |
40 Madonna del Carmine, Cortino (TE) | MC | 84 San Tommaso, Ascoli Piceno (AP) | ST2 |
41 Santa Maria Assunta, Cortino (TE) | SMA4 | 85 Sant’Agostino, Ascoli Piceno (AP) | SA8 |
42 San Martino, Rocca Santa Maria (TE) | SM2 | 86 Santa Maria del Buon Consiglio, Ascoli Piceno (AP) | SMBC |
43 San Giorgio, Valle Castellana (TE) | SG4 | 87 Sacro Cuore, Ascoli Piceno (AP) | SC4 |
44 San Michele, Valle Castellana (TE) | SM3 |
Parameter (P) |
---|
No. of naves |
Vertical structures |
Type of masonry |
Shape of façade |
Presence/absence of apse Type of roofing |
Presence/absence of vault(s) |
Archetype | No. Naves | Vertical Structures | Type of Masonry | Shape of Façade | Apse | Roof | Vaults | Repr. [%] | Cumulative Repr. [%] |
---|---|---|---|---|---|---|---|---|---|
#1 | 1 | Irregular | Stone | Gable facade | Absent | Light | Absent | 22.11 | 22.11 |
#2 | 1 | Irregular | Stone | Gable facade | Present | Light | Absent | 17.75 | 39.86 |
#3 | 1 | Irregular | Stone | Gable facade | Present | Light | Present | 8.87 | 48.73 |
Archetype | α0[-] | a0* [g] | a0g [g] | dy,ELS [m] | ay,ELS [g] | dD,DLS [m] | a0, DLS [g] | dNC,NCLS [m] | a0, NCLS [g] | dNC,CLS [m] | a0, CLS [g] |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.071 | 0.05 | 0.11 | 0.00 | 0.00 | 0.09 | 0.11 | 0.19 | 0.11 | 0.29 | 0.00 |
2 | 0.060 | 0.04 | 0.09 | 0.00 | 0.00 | 0.11 | 0.09 | 0.21 | 0.09 | 0.31 | 0.00 |
3 | 0.044 | 0.03 | 0.07 | 0.00 | 0.00 | 0.10 | 0.07 | 0.20 | 0.07 | 0.30 | 0.00 |
Family | Range of PGA [m/s2] | Mean PGA [g] |
---|---|---|
Family 1 | 0.4 < PGA ≤ 1.0 | 0.07 |
Family 2 | 1.0 < PGA ≤ 1.5 | 0.13 |
Family 3 | 1.5 < PGA ≤ 2.0 | 0.18 |
Family 4 | 2.0 < PGA ≤ 3.0 | 0.26 |
Family 5 | 3.0 < PGA ≤ 4.0 | 0.34 |
Family 6 | 4.0 < PGA ≤ 5.0 | 0.46 |
Family 7 | 5.0 < PGA ≤ 6.0 | 0.56 |
Family 8 | 6.0 < PGA ≤ 7.0 | 0.66 |
Family 9 | 7.0 < PGA ≤ 12.0 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cianchino, G.; Masciotta, M.G.; De Matteis, G.; Brando, G. Dual Approach to Large-Scale Seismic Vulnerability Assessment of Churches Through Representative Archetypes. Heritage 2024, 7, 6998-7030. https://doi.org/10.3390/heritage7120324
Cianchino G, Masciotta MG, De Matteis G, Brando G. Dual Approach to Large-Scale Seismic Vulnerability Assessment of Churches Through Representative Archetypes. Heritage. 2024; 7(12):6998-7030. https://doi.org/10.3390/heritage7120324
Chicago/Turabian StyleCianchino, Giorgia, Maria Giovanna Masciotta, Gianfranco De Matteis, and Giuseppe Brando. 2024. "Dual Approach to Large-Scale Seismic Vulnerability Assessment of Churches Through Representative Archetypes" Heritage 7, no. 12: 6998-7030. https://doi.org/10.3390/heritage7120324
APA StyleCianchino, G., Masciotta, M. G., De Matteis, G., & Brando, G. (2024). Dual Approach to Large-Scale Seismic Vulnerability Assessment of Churches Through Representative Archetypes. Heritage, 7(12), 6998-7030. https://doi.org/10.3390/heritage7120324