Tracing Old Gestures: A Multiscale Analysis of Ground Stone Tools Developed on Sequential Lab-Controlled Replicative Experiments
Abstract
:1. Introduction
2. Materials and Methods
- -
- The term “passive tool” refers to the lower, stationary stones where the raw material to be treated is placed. This term encompasses grinding slabs, grinding stones, querns, and metates, as well as mortars;
- -
- The term “active tool” refers to the movable tools that fit ergonomically into the palm of the hand. This category includes handstones, manos, and grinders, as well as pestles.
2.1. On the Background of an Experimental GSTs Replicative Collection
- -
- -
- The original stone surface was surveyed by means of Dino-Lite;
- -
- Moulding of the active surface at each given time (T0–T5) was carried out after residue removal (saved for further starch analyses); this procedure allowed for the permanent documentation of the punctual progression of the use-wear in time and space, a useful comparison since the cumulative phenomenon was acknowledged;
- -
- Surface texture and use-wear traces were observed on the moulds at increasing scales of magnification and resolution using different types of microscopes, such as the Stereomicroscope, the Optical Microscope (OM) used with reflected light, and the Scanning Electron Microscope (SEM);
- -
- Microtopography was reconstructed in 3D and measured with the confocal profilometer, which was essential for extracting tribological features at the qualitative and quantitative levels.
- -
- An evaluation of the intrinsic characteristics of the stones was conducted: the general rock classification and petrographic characteristics, the fabric (structure of the rock, including the arrangement of the granular component), and the texture properties (namely, granularity, cohesion of the emerging grains, and the porosity). All of these features can affect the response to mechanical stress and the capacity of the rock(s) to transform different media [19,28,49];
- -
- The type and physical property of the medium transformed were considered. These factors influence the operator/s gesture and the kinematics, among the variable affecting the development and morphology of the use-wear traces;
- -
- The duration of tool use and the amount of processed media, both of which impact the development, distribution, and intensity of use-wear traces, were maintained at a constant rate. As the medium characteristics influence the selection of the shape, size, weight, and surface geometry of the GSTs, they also condition the operator’s gestures;
- -
- We prioritised the human factor over machine reproduction because it allowed for the adaptation of performance strategies regarding the actual steps and needs of the processing. Although the impact of human variability cannot be predicted, we did not standardise the operator’s gestures since they cannot be objectively evaluated. However, we monitored both the gestures through notes, pictures, videos and the modifications on GST surfaces through a multiscale and multimodal analytical strategy.
2.2. Raw Materials
- -
- USO: (roots) Armoracia rusticana, Pastinaca sativa, Daucus carota, Cichorium intybus;
- -
- ASO: (achenes) Rumex crispus, Chenopodium album; (seeds) Echinochloa crus-galli; (acorns) Quercus sp., Quercus ilex; (nuts) Corylus avellana, Pinus sp.; (berries) Morus nigra; (pods) Ceratonia siliqua; (fruits) Trapa natans; (cambium) Pinus nigra.
2.3. The Replicative Experiments Design
2.4. The Multi-Scale Documentation Strategy
3. Results and Discussion
3.1. Microscale Analysis of the Implements Involved in Achenes Processing
3.2. Microscale Analysis of the Implements Involved into Shelled Fruits Processing
3.3. Microscale Analysis of the Implements Involved into Dry Roots Processing
3.4. Microscale Analysis of the Implements Involved into Ochre Processing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Revedin, A.; Aranguren, B.; Becattini, R.; Longo, L.; Mariotti Lippi, M.; Sinitsyn, A.A.; Skakun, N.; Spiridonova, E.A. 30,000 years old Flour: The oldest manufactured staple food. PNAS 2010, 107, 18815–18819. [Google Scholar] [CrossRef] [Green Version]
- De la Torre, I.; Benito-Calvo, I.; Arroyo, A.; Zupancich, A.; Proffitt, T. Experimental protocols for the study of battered stone anvils from Olduvai Gorge (Tanzania). J. Archaeol. Sci. 2013, 40, 313–332. [Google Scholar] [CrossRef]
- Caruana, M.V.; Carvalho, S.; Braun, D.R.; Presnyakova, D.; Haslam, M.; Archer, W.; Bobe, R.; Harris, J.W.K. Quantifying Traces of Tool Use: A Novel Morphometric Analysis of Damage Patterns on Percussive Tools. PLoS ONE 2014, 9, e113856. [Google Scholar] [CrossRef]
- Caricola, I.; Zupancich, A.; Moscone, D.; Mutri, G.; Falcucci, A.; Duches, R.; Duches, R.; Peresani, M.; Cristiani, C. An integrated method for understanding the function of macro-lithic tools. Use wear, 3D and spatial analyses of an Early Upper Palaeolithic assemblage from North Eastern Italy. PLoS ONE 2018, 13, e0207773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longo, L.; Altieri, S.; Birarda, G.; Cagnato, C.; Cefarin, N.; Graziani, V.; Obada, T.; Pantyukhina, I.; Ricci, P.; Skakun, N.; et al. A Multi-Dimensional Approach to Investigate Use-Related Biogenic Residues on Palaeolithic Ground Stone Tools. Environ. Archaeol. 2021. [Google Scholar] [CrossRef]
- Hayes, E.H.; Field, J.H.; Coster, A.C.F.; Fullagar, R.; Matheson, C.; Florin, S.A.; Nango, M.; Djandjomerr, D.; Marwick, B.; Wallis, L.A.; et al. Holocene grinding stones at Madjedbebe reveal the processing of starchy plant taxa and animal tissue. J. Archaeol. Sci. Rep. 2021, 35, 102754. [Google Scholar] [CrossRef]
- Hayes, E.H.; Fullagar, R.; Field, J.H.; Coster, A.C.F.; Matheson, C.; Nango, M.; Djandjomerr, D.; Marwick, B.; Wallis, L.A.; Smith, M.A.; et al. 65,000-years of continuous grinding stone use at Madjedbebe, Northern Australia. Sci. Rep. 2022, 12, 11747. [Google Scholar] [CrossRef]
- Paixão, E.; Marreiros, J.; Dubreuil, L.; Gneisinger, W.; Carver, G.; Prévost, M.; Zaidner, Y. Middle Paleolithic ground stones tools of Nesher Ramla unit V (Southern Levant): A multi-scale use-wear approach for assessing the assemblage functional variability. Quat. Int. 2022, 624, 94–106. [Google Scholar] [CrossRef]
- De Beaune, S. The invention of technology: Prehistory and cognition. Curr. Anthropol. 2004, 45, 139–162. [Google Scholar] [CrossRef] [Green Version]
- Longo, L.; Birarda, G.; Cagnato, C.; Badetti, E.; Covalenco, S.; Pantyukhina, I.; Skakun, N.; Vaccari, L.; Terekhina, V.; Sorrentino, G. Coupling the beams: How controlled extraction methods and FTIR-spectroscopy, OM and SEM reveal the grinding of starchy plants in the Pontic steppe 36,000 years ago. J. Archaeol. Sci. Rep. 2022, 41, 103333. [Google Scholar] [CrossRef]
- Coles, J. A theory. In Experimental Archaeology; Coles, J., Ed.; Academic Press: London, UK, 1979; pp. 1–7. [Google Scholar]
- Adams, J.L. Understanding grinding technology through experimentation. In Designing Experimental Research in Archaeology: Examining Technology through Production and Use; Ferguson, J.R., Ed.; University Press of Colorado: Boulder, CO, USA, 2010; pp. 129–151. [Google Scholar]
- Noiret, P.; Brynzeni, I. Le Paléolithique Supérieur de la Moldavie; Noiret, P., Ed.; Presses Universitaires de Liège: Liège, Belgium, 2009; pp. 425–470. [Google Scholar]
- Noiret, P.; Otte, M. Aurignacian and Gravettian occupations in Eastern Europe between 33,000 and 23,000 uncal BP. In Proceedings of the OIS 3 Conference, Brno, Czech Republic, 15–17 May 2010. [Google Scholar]
- Allsworth-Jones, P.; Borziac, I.A.; Chetraru, N.A.; French, C.A.I.; Medyanik, S.I. Brînzeni: A Multidisciplinary Study of an Upper Palaeolithic site in Moldova. Proc. Prehist. Soc. 2018, 84, 41–76. [Google Scholar] [CrossRef]
- Aranguren, B.M.; Longo, L.; Lunardi, A.; Revedin, A. Wear Traces, experimental archaeology and ethnoarchaeology: An integrated analysis of the Gravettian implements from the site of Bilancino (Tuscany, Italy). In Proceedings of the International Conference “Prehistoric Technology” 40 years later: Functional Studies and the Russian Legacy, Verona, Italy, 20–23 April 2005; pp. 121–130. [Google Scholar]
- Dubreuil, L.; Savage, D.; Delgado-Raack, S.; Plisson, H.; Stephenson, B.; De La Torre, I. Current analytical frameworks for studies of use–Wear on ground stone tools. In Use-Wear and Residue Analysis in Archaeology; Marreiros, J.M., Juan, F., Bao, G., Ferreira Bicho, N., Eds.; Springer: Cham, Switzerland, 2015; pp. 105–158. [Google Scholar]
- Lunardi, A. Studio tecno-funzionale degli strumenti in pietra per una ricostruzione del contesto socio-economico della Cultura dei vasi a bocca quadrata. L’esempio delle comunità di Fimon, Quinzano e Rivoli. Ph.D. Thesis, University of Siena, Siena, Italy, 2009. [Google Scholar]
- Adams, J.L.; Delgado-Raack, S.; Dubreuil, L.; Hamon, C.; Plisson, H.; Risch, R. Functional analysis of macro-lithic artefacts: A focus on working surface. In Non-Flint Raw Material use in Prehistory Old Prejudices and New Direction; Proceedings of UISPP Congress, Lisbon, Portugal, 4-9 September 2006; Sternke, F., Eigeland, L., Laurent-Jacques, C., Eds.; BAR-IS: Oxford, UK, 2009; pp. 43–66. ISBN 9781407307824. [Google Scholar]
- Outram, A.K. Introduction to experimental archeology. World Archaeol. 2008, 40, 1–6. [Google Scholar] [CrossRef]
- Eren, M.; Lycett, S.; Patten, R.; Buchanan, B.; Pargeter, J.; O’Brien, M. Test, model, and method validation: The role of experimental stone artifact replication in hypothesis-driven archeology. Ethnoarchaeology 2016, 8, 103–136. [Google Scholar] [CrossRef] [Green Version]
- Bamforth, D.B. Conducting experimental research as a basis for microwear analysis. In Designing Experimental Research in Archaeology, Examining Technology through Production and Use; Ferguson, J.R., Ed.; University Press of Colorado: Boulder, CO, USA, 2010; pp. 93–109. [Google Scholar]
- Marsh, E.J.; Jeffrey, R.F. Introduction. In Designing Experimental Research in Archaeology, Examining Technology through Production and Use; Ferguson, J.R., Ed.; University Press of Colorado: Boulder, CO, USA, 2010; pp. 1–12. [Google Scholar]
- Astruc, L.; Vargiolu, R.; Zahouani, H. Wear assessments of prehistoric instruments. Wear 2003, 255, 341–347. [Google Scholar] [CrossRef]
- Calandra, I.; Gneisinger, W.; Marreiros, J. A versatile mechanized setup for controlled experiments in archeology. Sci. Technol. Archaeol. Res. 2020, 6, 30–40. [Google Scholar] [CrossRef]
- Marreiros, J.; Calandra, I.; Gneisinger, W.; Paixão, E.; Pedergnana, A.; Schunk, L. Rethinking Use-Wear Analysis and Experimentation as Applied to the Study of Past Hominin Tool Use. J. Paleo Arch. 2020, 3, 475–502. [Google Scholar] [CrossRef]
- Paixão, E.; Pedergnana, A.; Marreiros, J.; Dubreuil, L.; Prévost, M.; Zaidner, Y.; Carver, G.; Gneisinger, W. Using mechanical experiments to study ground stone tool use: Exploring the formation of percussive and grinding wear traces on limestone tools. J. Archaeol. Sci. Rep. 2021, 37, 102971. [Google Scholar] [CrossRef]
- Delgado-Raack, S.; Gómez-Gras, D.; Risch, R. The mechanical properties of macrolithic artifacts: A methodological background for functional analysis. J. Archaeol. Sci. 2009, 36, 1823–1831. [Google Scholar] [CrossRef]
- Hayes, E.; Pardoe, C.; Fullagar, R. Sandstone grinding/pounding tools: Use-trace reference libraries and Australian archaeological applications. J. Archaeol. Sci. Rep. 2018, 20, 97–114. [Google Scholar] [CrossRef]
- Zupancich, A.; Mutri, G.; Caricola, I.; Carra, M.L.; Radini, A.; Cristiani, E. The application of 3D modeling and spatial analysis in the study of groundstones used in wild plants processing. Archaeol. Anthropol. Sci. 2019, 11, 4801–4827. [Google Scholar] [CrossRef] [Green Version]
- Arroyo, A.; Hirata, S.; Matsuzawa, T.; de la Torre, I. Nut cracking tools used by captive chimpanzees (pan troglodytes) and their comparison with early stone age percussive artefacts from Olduvai Gorge. PLoS ONE 2016, 11, e0166788. [Google Scholar] [CrossRef] [Green Version]
- Benito-Calvo, A.; Crittenden, A.N.; Livengood, S.V.; Sánchez-Romero, L.; Martínez-Fernández, A.; de la Torre, I.; Pante, M. 3D 360° surface morphometric analysis of pounding stone tools used by Hadza foragers of Tanzania: A new methodological approach for studying percussive stone artefacts. J. Archaeol. Sci. Rep. 2018, 20, 611–621. [Google Scholar] [CrossRef] [Green Version]
- Arroyo, A.; de la Torre, I. Pitted stones in the Acheulean from Olduvai Gorge Beds III and IV (Tanzania): A use-wear and 3D approach. J. Hum. Evol. 2020, 145, 102837. [Google Scholar] [CrossRef]
- Cristiani, E.; Zupancich, A. Sandstone Ground Stone Technology: A Multi-level Use Wear and Residue Approach to Investigate the Function of Pounding and Grinding Tools. J. Archaeol. 2020, 28, 704–735. [Google Scholar] [CrossRef]
- Zupancich, A.; Cristiani, E. Functional analysis of sandstone ground stone tools: Arguments for a qualitative and quantitative synergetic approach. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Tringham, R.; Cooper, G.; Odell, G.; Voytek, B.; Whitman, A. Experimentation in the Formation of Edge Damage: A New Approach to Lithic Analysis. J. Field Archaeol. 1974, 1, 171–196. [Google Scholar]
- Brink, J.W. The role of abrasives in the formation of lithic use-wear. J. Archaeol. Sci. 1978, 5, 363–371. [Google Scholar] [CrossRef]
- Fullagar, R.L.K. The role of silica in polish formation. J. Archaeol. Sci. 1991, 18, 1–24. [Google Scholar] [CrossRef]
- Lerner, H. Digital image analysis and use-wear accrual as a function of raw material: An example from Northwestern New Mexico. Lithic Technol. 2007, 32, 51–67. [Google Scholar] [CrossRef]
- Ollé, A.; Vergès, J.M. The use of sequential experiments and SEM in documenting stone tool microwear. J. Archaeol. Sci. 2014, 48, 60–72. [Google Scholar] [CrossRef]
- Pedergnana, A.; Ollé, A. Monitoring and interpreting the use-wear formation processes on quartzite flakes through sequential experiments. Quat. Int. 2017, 427, 35–65. [Google Scholar] [CrossRef]
- Calandra, I.; Schunk, L.; Rodriguez, A.; Gneisinger, W.; Pedergnana, A.; Paixão, E.; Pereira, T.; Iovita, R.; Marreiros, J. Back to the edge: Relative coordinate system for use-wear analysis. Archaeol. Anthropol. Sci. 2019, 11, 5937–5948. [Google Scholar] [CrossRef] [Green Version]
- Benito-Calvo, A.; Arroyo, A.; Sánchez-Romero, L.; Pante, M.; de la Torre, I. Quantifying 3D Micro-Surface Changes on Experimental Stones Used to Break Bones and Their Implications for the Analysis of Early Stone Age Pounding Tools. Archaeometry 2017, 60, 419–436. [Google Scholar] [CrossRef]
- Sorrentino, G.; Lo Giudice, A.; Re, A.; Borghi, A.; Longo, L. Più di un semplice ciottolo: Un protocollo sperimentale per la comprensione del ruolo di strumenti macrolitici nella trasformazione delle risorse vegetali nel Paleolitico Superiore in Eurasia. Archeol. Sperimentali. Temi Metod. Ric. 2021, 2, 24–40. [Google Scholar]
- Longo, L.; Skakun, N.N.; Pantyukhina, I.E.; Terekhina, V.V.; Sorrentino, G. Aurignacian grinding stone from Surein I (Crimea): “Trace-ing” the roots of starch-based diet. J. Archaeol. Sci. Rep. 2021, 38, 102999. [Google Scholar] [CrossRef]
- Sorrentino, G.; Menna, F.; Remondino, F.; Paggi, M.; Longo, L.; Borghi, A.; Re, A.; Lo Giudice, A. Close-range photogrammetry reveals morphometric changes on sequentially-used ground stones. Submitted.
- Kapsa, P. Généralités sur l’usure. La Tribologie 2004, 290, 8–9. [Google Scholar]
- Myshkin, N.K.; Grigoriev, A.Y. Roughness and texture concept in tribology. Tribol. Ind. 2013, 35, 97–103. [Google Scholar]
- Dubreuil, L.; Savage, D. Ground stones: A synthesis of the use-wear approach. J. Archaeol. Sci. 2014, 48, 139–153. [Google Scholar] [CrossRef]
- Геoлoгическая карта Мoлдoвы Мoлдавскoй 1:200000, 1985 г.
- Jolie, P.M.; McBrinn, B.S. Experimental Zooarcheology: Research Direction and Methods. In Designing Experimental Research in Archaeology, Examining Technology through Production and Use; Ferguson, J.R., Ed.; University Press of Colorado: Boulder, CO, USA, 2010; pp. 241–258. [Google Scholar]
- Carta geologica d’Italia 1:100.000, Foglio 136. Available online: sgi.isprambiente.it/geologia100k/mostra_foglio.aspx?numero_foglio=136 (accessed on 16 March 2023).
- Reinoso, J.; Durand, P.; Budarapu, P.R.; Paggi, M. Crack patterns in heterogenous rocks using a combined phase field-cohesive interface modeling approach: A numerical study. Energies 2019, 12, 965. [Google Scholar] [CrossRef] [Green Version]
- Hardy, B.L. Climatic variability and plant food distribution in Pleistocene Europe: Implications for Neanderthals diet and subsistence. Quant. Sci. Rev. 2010, 29, 662–679. [Google Scholar] [CrossRef]
- Butterworth, P.J.; Warren, F.J.; Ellis, P.R. Human α-Amylase and Starch Digestion: An Interesting Marriage. Starch–Stärke 2011, 63, 395–405. [Google Scholar] [CrossRef]
- Crowther, A.; Haslam, M.; Oakden, M.; Walde, D.; Mercader, J. Documenting contamination in ancient 930 starch laboratories. J. Archaeol. Sci. 2014, 49, 90–104. [Google Scholar] [CrossRef]
- Dozier, C. Airborne Starch Dispersal from Stone Grinding: Experimental Results and Implications. J. Archaeol. Sci. Rep. 2016, 8, 112–115. [Google Scholar] [CrossRef]
- Hamon, C. Functional analysis of stone grinding and polishing tools from the earliest Neolithic of north-western Europe. J. Archaeol. Sci. 2008, 35, 1502–1520. [Google Scholar] [CrossRef]
- Stark, P.B. Before reproducibility must come preproducibility. Nature 2018, 557, 613. [Google Scholar] [CrossRef] [Green Version]
- Kulzer Mitsui Chemicals Group. Provil Novo: Informazione Prodotto. Available online: https://kulzer-dental.it/IT/downloads/further_products_2/provil_1/Provilnovo_ProdInfo_Logo_Kulzer.pdf (accessed on 16 March 2023).
- Longo, L. Le industrie litiche. L’analisi delle tracce d’uso. In Le Industrie Litiche del Giacimento Paleolitico di Isernia la Pineta. La Tipologia, le Tracce di Utilizzazione, la Sperimentazione; Peretto, C., Ed.; Cosmo Iannone: Isernia, Italy, 1994; pp. 355–404. [Google Scholar]
- Goodall, R.; Darras, L.; Purnell, M. Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis. Sci Rep. 2015, 5, 10800. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, D.; Harman, R.; Evans, A.A. Replicating surface texture: Preliminary testing of molding compound accuracy for surface measurements. J. Archaeol. Sci. Rep. 2018, 18, 839–846. [Google Scholar] [CrossRef]
- Longo, L.; Skakun, N.N.; Sorrentino, G.; Vassallo, V.; Abate, D.; Terekhina, V.; Sinitsyn, A.; Khlopachev, G.; Hermon, S. Les gestes retrouves: A 3D visualisation approach to the functional study of Early Upper Palaeolithic grinding stones. In Exploring Oceans of Data; CAA 2016, Oslo, Norway; Matsumoto, M., Uleberg, E., Eds.; Archaeopress: Oxford, UK, 2018; pp. 447–455. [Google Scholar]
- Delgado-Raack, S.; Menasanch de Tobaruela, J.; Bettinardi, I.; Soldevilla, J.A.; Risch, R. Surface roughness as a quantitative approach to use-wear on macrolithic tools: A comparative analysis. J. Archaeol. Sci. Rep. 2022, 46, 103645. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
Sample | Rock Type | Porosity | Cement | Matrix | % Quartz | Quartz Grains Characteristics | Other Minerals |
---|---|---|---|---|---|---|---|
M7 | Quartz-arenites | Closed <5% | Absent | <5% | 95% | 1000–250 μm; subspherical and subrounded | Feldspar 1 % White mica 2 % Glauconite 1–2% |
M17 * | Quartz-arenites | Closed <5% | Absent | <5% | 95% | 1000–250 μm; subspherical and subangular | Feldspar 1% White mica 2% Glauconite 1–2% |
M22 * | Graywacke | 1–2% | Absent | 55% | 30% | sub-millimetric subspherical and angular | Opaque 5–10%; Glauconite 5–10% |
M23 | Quartz-arenites | Closed <5% | Absent | <5% | 95% | 1000–250 μm; subspherical and rounded | Feldspar 1% White mica 2% Glauconite 1–2% |
GS1 * | Sublitharenite | <5% | 10%; carbonate | 20 | 50% | 1000–100 μm; subspherical and subangular | Opaque 10% Clay 20% Feldspar 5% Calcite 5% |
GS2 * | Sandstone | Closed <5% | 40%; carbonate | <5% | 30% | 500 μm; rounded and subspherical | Opaque 10% Bioclast 10% Clay 10% |
GS3 | Litharenite | 1–2% | 30%; carbonate | <5% | 40% | 300–100 μm; angular and subspherical | Bioclasts 2% Clay 15% Opaque 5% White mica 3% |
GS4 * | Litharenite | Closed <5% | 30%; carbonate | <5% | 45%. | 500–100 μm; angular and subspherical | Calcschist 15% Opaque 5% Epidote 2% White mica 3% |
GS5 * | Litharenite | Closed 5–10% | 25%; carbonate | <5% | 40% | 500–100 μm; angular and subspherical | Quartzites 15% Slate 15% Opaque 5% White mica 3% |
GS6 | Sublitharenite | Closed <5% | Absent | <5% | 75% | 1000–100 μm subspherical and subrounded | Opaque 10% Clay 10% Feldspar 5% |
GS7 | Litharenite | Closed 10% | 15%; carbonate | <5% | 25% | 300–100 μm subspherical and angular | Bioclasts 10% Calcite 30% Opaque 5% Clay 15% |
Time | Passive Stones | Active Stones | Species | Processed Organs | Resources Preparation |
---|---|---|---|---|---|
GS7 | GS8 | ||||
T1 | Rumex crispus | Achenes | Air dry for 3 months | ||
T2 | Rumex crispus | Achenes | Air dry for 3 months | ||
T3 | Rumex crispus | Achenes | Air dry for 3 months | ||
T4 | Rumex crispus | Achenes | Air dry for 3 months | ||
M12 | M9 | ||||
T1 | Rumex crispus | Achenes | Air dry for 3 months | ||
T2 | Rumex crispus | Achenes | Air dry for 3 months | ||
M23 | M2 | ||||
T1 | Quercus sp. | Acorns | Pericarp removed and frosted. Defrosted before the use | ||
T2 | Quercus sp. | Acorns | Pericarp removed and frosted. Defrosted before the use | ||
T3 | Quercus ilex | Acorns | Pericarp removed and dried in the oven (40 °C for 14 h) | ||
M25 | M3 | ||||
T1 | Cichorium intybus | Roots | Air dry for 3 months | ||
T2 | Cichorium intybus | Roots | Air dry for 3 months | ||
T3 | Cichorium intybus | Roots | Air dry for 3 months | ||
WOOD | GS9 | ||||
T1 | Rumex crispus | Achenes | Air dry for 3 months | ||
T2 | Rumex crispus | Achenes | Air dry for 3 months | ||
T3 | Rumex crispus | Achenes | Air dry for 3 months | ||
WOOD | M8 | ||||
T1 | Armoracia rusticana | Roots | Oven dried (40 °C for 6 h) | ||
T2 | Armoracia rusticana | Roots | Oven dried (40 °C for 6 h) | ||
T3 | Armoracia rusticana | Roots | Oven dried (40 °C for 6 h) | ||
WOOD | M7 | ||||
T1 | Corylus avellana | Hazelnuts | Air dry with the nutshell | ||
T2 | Corylus avellana | Hazelnuts | Air dry with the nutshell | ||
T3 | Corylus avellana | Hazelnuts | Air dry with the nutshell | ||
GS14 | GS6 | ||||
T1 | Echinochloa crus-galli | Seeds | Oven dried (40 °C for 6 h) | ||
T2 | Echinochloa crus-galli | Seeds | Oven dried (40 °C for 6 h) | ||
T3 | Echinochloa crus-galli | Seeds | Oven dried (40 °C for 6 h) | ||
T4 | Morus nigra | Berries | Oven dried (40 °C for 6 h) | ||
T5 | Morus nigra | Berries | Oven dried (40 °C for 6 h) | ||
GS3 | M5 | ||||
T1 | Chenopodium album | Achenes | Air dry for 3 months | ||
T2 | Chenopodium album | Achenes | Air dry for 3 months | ||
T3 | Ceratonia siliqua | Pods | Oven dried (40° for 6 h) | ||
T4 | Quercus ilex | Acorns | Pericarp removed and dried in the oven (40 °C for 14 h) | ||
GS16 | GS12 | ||||
T1 | Pinus sp. | Pine nuts | Air dry with the nutshell | ||
T2 | Pinus sp. | Pine nuts | Air dry with the nutshell | ||
T3 | Pinus sp. | Pine nuts | Air dry with the nutshell | ||
T4 | Corylus avellana | Hazelnuts | Air dry with the nutshell | ||
T5 | Corylus avellana | Hazelnuts | Air dry with the nutshell | ||
GS15 | GS13 | ||||
T1 | Daucus carota | Roots | Oven dried (40 °C for 6 h) | ||
T2 | Pastinaca sativa | Roots | Oven dried (40 °C for 6 h) | ||
T3 | Pastinaca sativa | Roots | Oven dried (40 °C for 6 h) | ||
T4 | Trapa natans | Fruits | Oven dried (40 °C for 6 h) | ||
T5 | Trapa natans | Fruits | Oven dried (40 °C for 6 h) | ||
GS10 | M1 | ||||
T1 | Ochre | Mineral pigment | |||
T2 | Ochre | Mineral pigment | |||
T3 | Ochre | Mineral pigment | |||
T4 | Pinus nigra | Phloem | Air dry for 7 days | ||
T5 | Pinus nigra | Phloem | Air dry for 7 days |
Plant Resource | Achene | Acorn | Root | Seeds + Fruits | Ochre + Phloem | Nut Fruits | Roots + Fruits | Achene | Root | Hazelnuts |
---|---|---|---|---|---|---|---|---|---|---|
Passive stone | GS7 | M23 | M25 | GS14 | GS10 | GS16 | GS15 | |||
T0 (±0.2 g) | 1026.5 | 1103.6 | 1091.3 | 4767.0 | 1997.4 | 1043.9 | 648.6 | |||
T-final (±0.2 g) | 1012.4 | 1101.4 | 1091.1 | 4760.5 | 1992.8 | 1042.4 | 647.2 | |||
Lost (±0.3 g) | 14.1 | 2.2 | 0.2 | 6.5 | 4.6 | 1.5 | 1.4 | |||
No. of replicative usage (T) | 4 | 3 | 3 | 5 | 5 | 5 | 5 | |||
Ca. lost for each T | 3.53 ± 0.07 | 0.73 ± 0.09 | 0.07 ± 0.09 | 1.30 ± 0.06 | 0.92 ± 0.06 | 0.30 ± 0.06 | 0.28 ± 0.06 | |||
Active stone | GS8 | M2 | M3 | GS6 | M1 | GS12 | GS13 | GS9 | M8 | M7 |
T0 (±0.2 g) | 338.4 | 334.9 | 322.3 | 360.8 | 522.3 | 394.7 | 302.1 | 252.3 | 326.8 | 330.6 |
T-final (±0.2 g) | 336.1 | 334.5 | 322.1 | 359.8 | 521.0 | 394.6 | 301.1 | 249.4 | 326.4 | 330.6 |
Lost (±0.3 g) | 2.3 | 0.4 | 0.2 | 1.0 | 1.3 | 0.1 | 1.0 | 2.9 | 0.4 | 0.0 |
No. of replicative usage (T) | 4 | 3 | 3 | 5 | 5 | 5 | 5 | 3 | 3 | 3 |
Ca. lost for each T | 0.57 ± 0.07 | 0.13 ± 0.09 | 0.07 ± 0.09 | 0.20 ± 0.06 | 0.26 ± 0.06 | 0.02 ± 0.06 | 0.20 ± 0.06 | 0.97 ± 0.09 | 0.13 ± 0.09 | 0.00 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorrentino, G.; Longo, L.; Obada, T.; Borghi, A.; Re, A.; Paggi, M.; Lo Giudice, A. Tracing Old Gestures: A Multiscale Analysis of Ground Stone Tools Developed on Sequential Lab-Controlled Replicative Experiments. Heritage 2023, 6, 4737-4767. https://doi.org/10.3390/heritage6060252
Sorrentino G, Longo L, Obada T, Borghi A, Re A, Paggi M, Lo Giudice A. Tracing Old Gestures: A Multiscale Analysis of Ground Stone Tools Developed on Sequential Lab-Controlled Replicative Experiments. Heritage. 2023; 6(6):4737-4767. https://doi.org/10.3390/heritage6060252
Chicago/Turabian StyleSorrentino, Giusi, Laura Longo, Theodor Obada, Alessandro Borghi, Alessandro Re, Marco Paggi, and Alessandro Lo Giudice. 2023. "Tracing Old Gestures: A Multiscale Analysis of Ground Stone Tools Developed on Sequential Lab-Controlled Replicative Experiments" Heritage 6, no. 6: 4737-4767. https://doi.org/10.3390/heritage6060252
APA StyleSorrentino, G., Longo, L., Obada, T., Borghi, A., Re, A., Paggi, M., & Lo Giudice, A. (2023). Tracing Old Gestures: A Multiscale Analysis of Ground Stone Tools Developed on Sequential Lab-Controlled Replicative Experiments. Heritage, 6(6), 4737-4767. https://doi.org/10.3390/heritage6060252