Change Detection between Retrospective and Contemporary 3D Models of the Omega House at the Athenian Agora
Abstract
:1. Introduction
2. Literature on 3D Change Detection
2.1. Monumental Conservation
2.2. General Applicability
3. Materials and Methods
3.1. Accuracy Assessment
3.2. Omega House 3D Modeling
3.3. Methodology
4. Results
4.1. Boolean Operations Difference and Intersection
4.2. Distance Computation
4.3. Volume Calculation
4.4. Overall Assessment
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fatorić, S.; Seekamp, E. Are Cultural Heritage and Resources Threatened by Climate Change? A Systematic Literature Review. Clim. Change 2017, 142, 227–254. [Google Scholar] [CrossRef]
- Hamilton, R.; Kucera, V.; Tidblad, J.; Watt, J. (Eds.) The Effects of Air Pollution on Cultural Heritage; Springer: New York, NY, USA, 2009. [Google Scholar]
- Lemos, V.J. Discrete Element Modeling of Masonry Structures. Int. J. Archit. Herit. 2007, 1, 190–213. [Google Scholar] [CrossRef]
- Moropoulou, A.; Labropoulos, K.C.; Delegou, E.T.; Karoglou, M.; Bakolas, A. A Non-destructive Techniques as a Tool for the Protection of Built Cultural Heritage. Constr. Build. Mater. 2013, 48, 1222–1239. [Google Scholar] [CrossRef]
- Abate, D. Built-Heritage Multi-temporal Monitoring through Photogrammetry and 2D/3D Change Detection Algorithms. Stud. Conserv. 2018, 64, 423–434. [Google Scholar] [CrossRef]
- Wallace, C.O.L.I.N.; Dedík, L.; Minaroviech, J.; Moullou, D. 3D Modeling and Virtual Access of Omega House in the Athenian Agora. In Proceedings of the 22nd International Conference on Cultural Heritage and New Technologies, Vienna, Austria, 10–12 November 2017. [Google Scholar]
- Wallace, C. Retrospective Photogrammetry in Greek Archaeology. Stud. Digit. Herit. 2017, 1, 607–626. [Google Scholar] [CrossRef]
- Falkingham, P.L.; Bates, K.T.; Farlow, J.O. Historical Photogrammetry: Bird’s Paluxy River Dinosaur Chase Sequence Digitally Reconstructed as It Was prior to Excavation 70 Years Ago. PLoS ONE 2014, 9, e93247. [Google Scholar] [CrossRef]
- Discamps, E.; Muth, X.; Gravina, B.; Lacrampe-Cuyaubère, F.; Chadelle, J.-P.; Faivre, J.-P.; Maureille, B. Photogrammetry as a tool for integrating archival data in archaeological fieldwork: Examples from the Middle palaeolithic sites of Combe-Grenal, Le Moustier, and Regourdou. J. Archaeol. Sci. Rep. 2016, 8, 268–276. [Google Scholar] [CrossRef]
- Peppa, M.V.; Mills, J.; Fieber, K.D.; Haynes, I.; Turner, S.; Turner, A.; Douglas, M.; Bryan, P.G. Archaeological Feature Detection from Archive Aerial Photography with a SfM-MVS Image Enhancement Pipeline. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-2, 869–875. [Google Scholar] [CrossRef]
- Bernstein, G.; Fussel, D. Fast, exact, linear Booleans. In Proceedings of the Eurographics Symposium on Geometry Processing, Berlin, Germany, 15–17 July 2009. [Google Scholar]
- Campen, M.; Kobbelt, L. Exact and robust (self-)intersections for polygonal meshes. Comput. Graph. Forum 2010, 29, 397–406. [Google Scholar] [CrossRef]
- Nehring-Wirxel, J.; Trettner, P.; Kobbelt, L. Fast exact Booleans for iterated CSG using octree-embedded BSPs. Comput. Aided Des. 2021, 135, 103015. [Google Scholar] [CrossRef]
- De Araújo, B.R.; Lopes, D.S.; Jepp, P.; Jorge, J.A.; Wyvill, B. A survey on implicit surface polygonization. ACM Comput. Surv. 2015, 47, 1–39. [Google Scholar] [CrossRef]
- Trettner, P.; Kobbelt, L. Sampling from Quadric-Based CSG Surfaces. Comput. Graph. Forum 2021, 40, 41–56. [Google Scholar] [CrossRef]
- Chen, Z.; Tagliasacchi, A.; Zhang, H. Learning Mesh Representations via Binary Space Partitioning Tree Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 6, 1. [Google Scholar] [CrossRef]
- Abate, D. Documentation of paintings restoration through photogrammetry and change detection algorithms. Herit. Sci. 2019, 7, 7–13. [Google Scholar] [CrossRef]
- Lercari, N. Monitoring earthen archaeological heritage using multi-temporal terrestrial laser scanning and surface change detection. J. Cult. Herit. 2019, 39, 152–165. [Google Scholar] [CrossRef]
- Dawson, P.; Brink, J.; Farrokhi, A.; Jia, F.; Lichti, D. A method for detecting and monitoring changes to the Okotoks Erratic-“Big Rock” provincial historic site. J. Cult. Heritage Manag. Sustain. Dev 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Khelifi, A.; Ciccone, G.; Altaweel, M.; Basmaji, T.; Ghazal, M. Autonomous service drones for multimodal detection and monitoring of archaeological sites. Appl. Sci. 2021, 11, 10424. [Google Scholar] [CrossRef]
- Dobos, J.; Steed, A. 3D Diff: An interactive approach to mesh differencing and conflict resolution. In Proceedings of the SIGRAPH ASIA 2012, Singapore, 28 Nonember–1 December 2012. [Google Scholar]
- Palazzolo, E.; Stachniss, C. Fast Image-Based Geometric Change Detection Given a 3D Model. In Proceedings of the IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018. [Google Scholar] [CrossRef]
- Rossi, P.; Castagnetti, C.; Capra, A.; Brooks, A.J.; Mancini, F. Detecting change in coral reef 3D structure using underwater photogrammetry: Critical issues and performance metrics. Appl. Geomat. 2020, 12, S3–S17. [Google Scholar] [CrossRef]
- Dahle, F.; Ohori, K.A.; Agugiaro, G.; Briels, S. Automatic change detection of digital maps using aerial images and point clouds. In Proceedings of the ISPRS Congress 2021, Nice, France, 4–10 July 2021. [Google Scholar] [CrossRef]
- Ragia, L.; Sarri, F.; Mania, K. Precise photorealistic visualization for restoration of historic buildings based on tacheometry data. J. Geogr. Syst. 2018, 20, 115–137. [Google Scholar] [CrossRef]
- Bacharidis, K.; Sarri, F.; Ragia, L. 3D building façade reconstruction using deep learning. ISPRS Int. J. Geo-Inf. 2020, 9, 322. [Google Scholar] [CrossRef]
- Nagy, B.; Kovacs, L.; Benedek, C. ChangeGAN: A deep network for change detection in coarsely registered point clouds. IEEE Robot. Autom. Lett. 2021, 6, 8277–8284. [Google Scholar] [CrossRef]
- Geospatial Positioning Accuracy Standards Part 3: National Standard for Spatial Data Accuracy. Available online: https://www.fgdc.gov/standards/projects/accuracy/part3/chapter3 (accessed on 7 January 2023).
- ASPRS Accuracy Standards for Digital Geospatial Data. Photogramm. Eng. Remote Sens. 2013, 12, 1073–1085.
- LINZ. Available online: https://www.linz.govt.nz/data/geodetic-system/geodetic-control-network-development-maintenance-and-protection/disturbed (accessed on 21 February 2022).
- Kaitantzian, A.; Loupasakis, C. Preliminary Investigation of the Land Subsidence Phenomena Occurring at the Industrial-Commersial Area of Eleonas, Athens, Greece. Bull. Geol. Soc. Greece 2017, 50, 1703–1710. [Google Scholar] [CrossRef]
- Cloud Compare: 3D Point Cloud and Mesh Processing Software. Available online: https://www.cloudcompare.org/ (accessed on 16 October 2022).
- Girardeau-Montaut, D.; Roux, M.; Marc, R.; Thibault, G. Change detection on points cloud data acquired with a ground laser scanner. In Proceedings of the ISPRS Workshop, Laser Scanning 2005, Enschede, The Netherlands, 12–14 September 2005. [Google Scholar]
- Cignoni, P.; Rocchini, C.; Scopigno, R. Metro: Measuring error on simplified surfaces. Comput. Graph. Forum 1998, 17, 167–174. [Google Scholar] [CrossRef] [Green Version]
Point ID | ΔΕ (m) | ΔΝ (m) | ΔH (m) |
---|---|---|---|
1 | 0.044 | 0.239 | −1.862 |
2 | 0.447 | 0.228 | 1.246 |
3 | −0.077 | −0.011 | −0.793 |
4 | 0.785 | −0.040 | 0.015 |
5 | 0.164 | 0.581 | 7.099 |
6 | −0.053 | 0.082 | 0.410 |
7 | −0.173 | 0.139 | 1.013 |
8 | −0.345 | 0.206 | 0.224 |
9 | −0.047 | 0.011 | 0.251 |
10 | −0.495 | 0.078 | 0.460 |
11 | −0.053 | 0.244 | −1.291 |
12 | 0.131 | 0.025 | 0.095 |
13 | −0.011 | 0.309 | 1.082 |
14 | −0.558 | −0.664 | 0.177 |
15 | 0.339 | 0.048 | −0.494 |
16 | 0.298 | −0.032 | 0.390 |
17 | −0.104 | −0.227 | 0.090 |
18 | 0.338 | 0.304 | −1.610 |
19 | −0.098 | 1.003 | 0.883 |
20 | 0.162 | −0.297 | −0.461 |
Residual | Mean (m) | StDev (m) | RMSE (m) |
---|---|---|---|
ΔΕ | 0.057 | 0.342 | 0.339 |
ΔΝ | 0.111 | 0.333 | 0.344 |
ΔH | 0.346 | 1.807 | 1.795 |
Attribute | Model 1972 | Model 2017 |
---|---|---|
Points Number | 360,166 | 1,435,084 |
Faces Number | 715,857 | 2,920,753 |
Edges Number | 1,075,494 | 4,384,396 |
Part of Omega House | C2M Distances Range |
---|---|
Northwest | −9 cm to 5 cm |
Southwest | −17 cm to 5 cm |
Central North | −1.83 cm to 0.9 cm |
Northeast | −1.81 cm to 1.62 cm |
Southeast | −1.67 cm to 1.76 cm |
Part of Omega House | Volume Effect in 2017 Model |
---|---|
Northeast | Decrease per 5.11% |
Central North | Increase per 7.86% |
Northwest | Increase per 0.58% |
Southeast | Increase per 2.1% |
Southwest | Decrease per 1.43% |
Selected Part in Figure 24 | Decrease per 15.11% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panagiotopoulou, A.; Wallace, C.A.B.; Ragia, L.; Moullou, D. Change Detection between Retrospective and Contemporary 3D Models of the Omega House at the Athenian Agora. Heritage 2023, 6, 1645-1679. https://doi.org/10.3390/heritage6020088
Panagiotopoulou A, Wallace CAB, Ragia L, Moullou D. Change Detection between Retrospective and Contemporary 3D Models of the Omega House at the Athenian Agora. Heritage. 2023; 6(2):1645-1679. https://doi.org/10.3390/heritage6020088
Chicago/Turabian StylePanagiotopoulou, Antigoni, Colin Allan Bruce Wallace, Lemonia Ragia, and Dorina Moullou. 2023. "Change Detection between Retrospective and Contemporary 3D Models of the Omega House at the Athenian Agora" Heritage 6, no. 2: 1645-1679. https://doi.org/10.3390/heritage6020088
APA StylePanagiotopoulou, A., Wallace, C. A. B., Ragia, L., & Moullou, D. (2023). Change Detection between Retrospective and Contemporary 3D Models of the Omega House at the Athenian Agora. Heritage, 6(2), 1645-1679. https://doi.org/10.3390/heritage6020088