Earth Science Frontier at Urban Periphery: Geoheritage from the Vicinity of Kazan City, Russia
Abstract
:1. Introduction
2. Study Area
2.1. Geographical Setting
2.2. Geological Setting
3. Materials and Methods
4. Results
4.1. Pechischi
4.2. Cheremushki
5. Discussion and Conclusions
5.1. Perspectives of Protection and Exploitation
5.2. Heritage Complexity in Kazan and Its Vicinity
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brilha, J. Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: A Review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Erikstad, L. Geoheritage and geodiversity management—The questions for tomorrow. Proc. Geol. Assoc. 2013, 124, 713–719. [Google Scholar] [CrossRef]
- Crofts, R. Putting geoheritage conservation on all agendas. Geoheritage 2018, 10, 231–238. [Google Scholar] [CrossRef]
- De Grosbois, A.M.; Eder, W. Geoparks—A tool for education, conservation and recreation. Environ. Geol. 2008, 55, 465–466. [Google Scholar] [CrossRef]
- Dowling, R.K. Geotourism’s global growth. Geoheritage 2011, 3, 1–13. [Google Scholar] [CrossRef]
- Pasquaré Mariotto, F.; Venturini, C. Strategies and tools for improving Earth Science education and popularization in museums. Geoheritage 2017, 9, 187–194. [Google Scholar] [CrossRef]
- Coratza, P.; Bollati, I.M.; Panizza, V.; Brandolini, P.; Castaldini, D.; Cucchi, F.; Deiana, G.; Del Monte, M.; Faccini, F.; Finocchiaro, F. Advances in Geoheritage Mapping: Application to Iconic Geomorphological Examples from the Italian Landscape. Sustainability 2021, 13, 11538. [Google Scholar] [CrossRef]
- Bentivenga, M.; Cavalcante, F.; Mastronuzzi, G.; Palladino, G.; Prosser, G. Geoheritage: The Foundation for Sustainable Geotourism. Geoheritage 2019, 11, 1367–1369. [Google Scholar] [CrossRef] [Green Version]
- Clary, R.M.; Andrews, W.; Connors, T. Geoheritage: Progress toward Preservation. GSA Today 2022, 32, 18–19. [Google Scholar] [CrossRef]
- Gordon, J.E. Geoconservation principles and protected area management. Int. J. Geoheritage Park. 2019, 7, 199–210. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Montalván-Burbano, N.; Caicedo-Potosí, J.; Berrezueta, E. Geoheritage and Geosites: A Bibliometric Analysis and Literature Review. Geosciences 2022, 12, 169. [Google Scholar] [CrossRef]
- Kaur, G. Geodiversity, Geoheritage and Geoconservation: A Global Perspective. J. Geol. Soc. India 2022, 98, 1221–1228. [Google Scholar] [CrossRef]
- Németh, B.; Németh, K.; Procter, J.N.; Farrelly, T. Geoheritage Conservation: Systematic Mapping Study for Conceptual Synthesis. Geoheritage 2021, 13, 45. [Google Scholar] [CrossRef]
- Neto, K.; Henriques, M.H. Geoconservation in Africa: State of the art and future challenges. Gondwana Res. 2022, 110, 107–113. [Google Scholar] [CrossRef]
- Reynard, E.; Brilha, J. (Eds.) Geoheritage: Assessment, Protection, and Management; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Urban, J.; Radwanek-Bąk, B.; Margielewski, W. Geoheritage Concept in a Context of Abiotic Ecosystem Services (Geosystem Services)—How to Argue the Geoconservation Better? Geoheritage 2022, 14, 54. [Google Scholar] [CrossRef]
- Williams, M.A.; McHenry, M.T.; Boothroyd, A. Geoconservation and Geotourism: Challenges and Unifying Themes. Geoheritage 2020, 12, 63. [Google Scholar] [CrossRef]
- Capdevila-Werning, R. Preserving destruction: Philosophical issues of urban geosites. Open Philos. 2020, 3, 550–565. [Google Scholar] [CrossRef]
- Kubalíková, L.; Balková, M. Two-level assessment of threats to geodiversity and geoheritage: A case study from Hády quarries (Brno, Czech Republic). Environ. Impact Assess. Rev. 2023, 99, 107024. [Google Scholar] [CrossRef]
- Kubalíková, L.; Drápela, E.; Kirchner, K.; Bajer, A.; Balková, M.; Kuda, F. Urban geotourism development and geoconservation: Is it possible to find a balance? Environ. Sci. Policy 2021, 121, 1–10. [Google Scholar] [CrossRef]
- Portal, C.; Kerguillec, R. The Shape of a City: Geomorphological Landscapes, Abiotic Urban Environment, and Geoheritage in the Western World: The Example of Parks and Gardens. Geoheritage 2018, 10, 67–78. [Google Scholar] [CrossRef]
- Reynard, E.; Pica, A.; Coratza, P. Urban Geomorphological Heritage. An Overview. Quaestiones Geographicae 2017, 36, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Wolniewicz, P. Classification and Quantification of Urban Geodiversity and Its Intersection with Cultural Heritage. Geoheritage 2022, 14, 63. [Google Scholar] [CrossRef]
- Comǎnescu, L.; Nedelea, A.; Stǎnoiu, G. Geomorphosites and Geotourism in Bucharest City Center (Romania). Quaestiones Geographicae 2017, 36, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Taha, M.M.N.; Al-Hashim, M.H.; El-Asmar, H.M. Geoarcheomorphosites under Strong Urbanization Pressure at the Tineh Plain, NE of the Nile Delta, Egypt. Geoheritage 2020, 12, 24. [Google Scholar] [CrossRef]
- Hernández, W.; Dóniz-Páez, J.; Pérez, N.M. Urban Geotourism in La Palma, Canary Islands, Spain. Land 2022, 11, 1337. [Google Scholar] [CrossRef]
- Palacio-Prieto, J.L. Geoheritage Within Cities: Urban Geosites in Mexico City. Geoheritage 2014, 7, 365–373. [Google Scholar] [CrossRef]
- Habibi, T.; Ponedelnik, A.A.; Yashalova, N.N.; Ruban, D.A. Urban geoheritage complexity: Evidence of a unique natural resource from Shiraz city in Iran. Resources Policy 2018, 59, 85–94. [Google Scholar] [CrossRef]
- Karpunin, A.M.; Mamonov, S.V.; Mironenko, O.A.; Sokolov, A.R. Geological Monuments of Nature of Russia; Lorien: Sankt-Peterburg, Russia, 1998. (In Russian) [Google Scholar]
- Benton, M.J.; Sennikov, A.G. The naming of the Permian System. J. Geol. Soc. 2022, 179, jgs2021–jgs2037. [Google Scholar] [CrossRef]
- Benton, M.J.; Sennikov, A.G.; Newell, A.J. Murchison’s first sighting of the Permian, at Vyazniki in 1841. Proc. Geol. Assoc. 2010, 121, 313–318. [Google Scholar] [CrossRef]
- Benton, M.J.; Briggs, D.E.G.; Clack, J.A.; Edwards, D.; Galway-Witham, J.; Stringer, C.B.; Turvey, S.T. Russia–UK Collaboration in Paleontology: Past, Present, and Future. Paleontol. J. 2017, 51, 576–599. [Google Scholar] [CrossRef] [Green Version]
- Gomankov, A.V.; Danilova, A.V. Palynological characterization of the Permian reference sections in the Kazan Volga region. Paleontol. J. 2015, 49, 1365–1371. [Google Scholar] [CrossRef]
- Kotlyar, G.V. Permian of the Russia and CIS and its interregional correlation. Dev. Palaeontol. Stratigr. 2000, 18, 17–35. [Google Scholar]
- Menning, M.; Alekseev, A.S.; Chuvashov, B.I.; Davydov, V.I.; Devuyst, F.-X.; Forke, H.C.; Grunt, T.A.; Hance, L.; Heckel, P.H.; Izokh, N.G.; et al. Global time scale and regional stratigraphic reference scales of Central and West Europe, East Europe, Tethys, South China, and North America as used in the Devonian-Carboniferous-Permian Correlation Chart 2003 (DCP 2003). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 240, 318–372. [Google Scholar] [CrossRef]
- Vdovets, M.S.; Silantiev, V.V.; Mozzherin, V.V. A national geopark in the Republic of Tatarstan (Russia): A feasibility study. Geoheritage 2010, 2, 25–37. [Google Scholar] [CrossRef]
- Burganov, F.G. (Ed.) Nature and Natural Resources of the Republic of Tatarstan; AN RT: Kazan, Russia, 2019. (In Russian) [Google Scholar]
- Shaykhutdinova, G.A.; Rogova, T.V.; Mukharamova, S.S. Anthropogenic fragmentation as estimated figures of forest state and sustainability. Adv. Environ. Biol. 2014, 8, 69–73. [Google Scholar]
- Ulengov, R.A.; Khuziakhmetov, A.N.; Nasibullov, R.R.; Yarullin, I.F. Approaches to the environmental assessment of landscapes in the Republic of Tatarstan. Ekoloji 2018, 27, 1713–1717. [Google Scholar]
- Yermolaev, O.P.; Medvedeva, R.A.; Ivanov, M.A. Modern gully erosion in forest and forest-steppe landscapes of the east of the Russian Plain. Geomorfologiya 2021, 52, 28–41. [Google Scholar]
- Nurgaliev, D.K. Type and Reference Sections of the Middle and Upper Permian of the Volga and Kama River Regions; Kazan University Press: Kazan, Russia, 2015. [Google Scholar]
- Gradstein, F.M.; Ogg, J.G.; Schmitz, M.D.; Ogg, G.M. (Eds.) Geologic Time Scale 2020; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Hasterok, D.; Halpin, J.A.; Collins, A.S.; Hand, M.; Kreemer, C.; Gard, M.G.; Glorie, S. New Maps of Global Geological Provinces and Tectonic Plates. Earth-Sci. Rev. 2022, 231, 104069. [Google Scholar] [CrossRef]
- Cocks, L.R.M.; Torsvik, T.H. Baltica from the late Precambrian to mid-Palaeozoic times: The gain and loss of a terrane’s identity. Earth-Sci. Rev. 2005, 72, 39–66. [Google Scholar] [CrossRef]
- Matthews, K.J.; Maloney, K.T.; Zahirovic, S.; Williams, S.E.; Seton, M.; Müller, R.D. Global plate boundary evolution and kinematics since the late Paleozoic. Glob. Planet. Change 2016, 146, 226–250. [Google Scholar] [CrossRef]
- Nikishin, A.M.; Ziegler, P.A.; Stephenson, R.A.; Cloetingh, S.A.P.L.; Furne, A.V.; Fokin, P.A.; Ershov, A.V.; Bolotov, S.N.; Korotaev, M.V.; Alekseev, A.S.; et al. Late Precambrian to Triassic history of the East European Craton: Dynamics of sedimentary basin evolution. Tectonophysics 1996, 268, 23–63. [Google Scholar] [CrossRef] [Green Version]
- Bush, V.A. The deep structure of the Scythian Plate basement. Geotectonics 2014, 48, 413–426. [Google Scholar] [CrossRef]
- Makarova, N.V.; Sukhanova, T.V. Actual problems of studies of recent platform structures: A case study of the East European Craton and adjacent parts of the Scythian Plate. Mosc. Univ. Geol. Bull. 2017, 72, 245–254. [Google Scholar] [CrossRef]
- Lozin, E.V. Deep structure and oil-gas potential of the Volgo-Uralian region and adjacent territories. Litosfera 2002, 3, 46–68. (In Russian) [Google Scholar]
- Shargorodsky, I.E.; Liberman, V.B.; Kazakov, E.R.; Zinatova, M.F.; Girina, I.N.; Ziganshin, A.A. New tectonic scheme of the central regions of the Volga Federal District. Georesursy 2005, 9, 10–13. (In Russian) [Google Scholar]
- Zorina, S.O. Mineralogical composition of the Lower and Upper Kazanian (Mid-Permian) rocks and facies dfistribution at the Petchischi region (Eastern Russian Platform). Carbonates Evaporites 2017, 32, 27–43. [Google Scholar] [CrossRef]
- Zorina, S.O.; Ruselik, E.S.; Il’icheva, O.M.; Netkasova, N.A.; Silant’ev, V.A. Composition and depositional environments of transitional deposits of the lower and upper substages of the Kazanian stage in the stratotypic section of the Cis-Kazanian district. Izv. Vyss. Uchebnykh Zaved. Geol. Razved. 2011, 1, 11–17. (In Russian) [Google Scholar]
- Bel Haouz, W.; Lagnaoui, A.; Silantiev, V.V. A new possible bivalve burrow Oblongichnus solodukhoi from the late Kazanian (middle Permian) stratotype section in Russia. Palaeoworld 2020, 29, 96–107. [Google Scholar] [CrossRef]
- Mouraviev, F.A.; Silantiev, V.V.; Gareev, B.I.; Batalin, G.A.; Vybornova, I.B. Paleosols from the Urzhumian (Middle Permian) reference section, Kazan Volga region, Russia. Int. Multidiscip. Sci. GeoConfer. Surv. Geol. Min. Ecol. Manag. 2018, 18, 387–394. [Google Scholar]
- Nurgalieva, N.G. Reference section of the Upper Kazanian substage: Cyclic regularities. ARPN J. Eng. Appl. Sci. 2016, 11, 6928–6934. [Google Scholar]
- Nurgalieva, N.G.; Ponomarchuk, V.A.; Nurgaliev, D.K. Strontium isotope stratigraphy: Possible applications for age estimation and global correlation of Late Permian carbonates of the Pechishchi type section, Volga River. Russ. J. Earth Sci. 2007, 9, ES1002. [Google Scholar] [CrossRef] [Green Version]
- Nurgalieva, N.G.; Khaziev, R.R.; Gareev, B.I.; Batalin, G.A. Urzhumian stage in geochemical variations. ARPN J. Eng. Appl. Sci. 2014, 9, 757–764. [Google Scholar]
- Nurgalieva, N.G.; Gareev, B.I.; Batalin, G.A. Geochemical variations in the Upper Kazanian (Middle Permian) stratotype section, Russia. IOP Conf. Ser. Earth Environ. Sci. 2020, 516, 012017. [Google Scholar] [CrossRef]
- Bruschi, V.M.; Cendrero, A. Geosite evaluation; can we measure intangible values? Alp. Mediterr. Quat. 2005, 18, 293–306. [Google Scholar]
- Fassoulas, C.; Mouriki, D.; Dimitriou-Nikolakis, P.; Iliopoulos, G. Quantitative Assessment of Geotopes as an Effective Tool for Geoheritage Management. Geoheritage 2012, 4, 177–193. [Google Scholar] [CrossRef]
- Sisto, M.; Di Lisio, A.; Russo, F. Geosite Assessment as a Tool for the Promotion and Conservation of Irpinia Landscape Geoheritage (Southern Italy). Resources 2022, 11, 97. [Google Scholar] [CrossRef]
- Štrba, L.; Rybár, P.; Baláž, B.; Molokac, M.; Hvizdak, L.; Krsak, B.; Lukac, M.; Muchova, L.; Tometzová, D.; Ferenčíková, J. Geosite assessments: Comparison of methods and results. Curr. Issues Tour. 2015, 18, 496–510. [Google Scholar] [CrossRef]
- White, S.; Wakelin-King, G.A. Earth sciences comparative matrix: A comparative method for geoheritage assessment. Geogr. Res. 2014, 52, 168–181. [Google Scholar] [CrossRef]
- Ruban, D.A.; Sallam, E.S.; Khater, T.M.; Ermolaev, V.A. Golden Triangle Geosites: Preliminary Geoheritage Assessment in a Geologically Rich Area of Eastern Egypt. Geoheritage 2021, 13, 54. [Google Scholar] [CrossRef]
- Ruban, D.A. On the duality of marine geoheritage: Evidence from the Abrau area of the Russian Black sea coast. J. Mar. Sci. Eng. 2021, 9, 921. [Google Scholar] [CrossRef]
- Ruban, D.A.; Mikhailenko, A.V.; Yashalova, N.N. Valuable geoheritage resources: Potential versus exploitation. Resour. Policy 2022, 77, 102665. [Google Scholar] [CrossRef]
- Ruban, D.A. Geological heritage of the anthropocene epoch—A conceptual viewpoint. Heritage 2020, 3, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Kirillova, K.; Fu, X.; Lehto, X.; Cai, L. What makes a destination beautiful? Dimensions of tourist aesthetic judgment. Tour. Manag. 2014, 42, 282–293. [Google Scholar] [CrossRef]
- Sallam, E.S.; Ruban, D.A.; Ermolaev, V.A. Geoheritage resources and new direction of infrastructural growth in Egypt: From geosite assessment to policy development. Resour. Policy 2022, 79, 103127. [Google Scholar] [CrossRef]
- Bruno, D.E.; Ruban, D.A. Something more than boulders: A geological comment on the nomenclature of megaclasts on extraterrestrial bodies. Planet. Space Sci. 2017, 135, 37–42. [Google Scholar] [CrossRef]
- Blair, T.C.; McPherson, J.G. Grain-size and textural classification of coarse sedimentary particles. J. Sediment. Res. 1999, 69, 6–19. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology 2012, 59, 2071–2096. [Google Scholar] [CrossRef]
- Terry, J.P.; Goff, J. Megaclasts: Proposed revised nomenclature at the coarse end of the Udden-Wentworth grain-size scale for sedimentary particles. J. Sediment. Res. 2014, 84, 192–197. [Google Scholar] [CrossRef]
- Diniz, M.T.M.; de Araújo, I.G.D. Proposal of a Quantitative Assessment Method for Viewpoint Geosites. Resources 2022, 11, 115. [Google Scholar] [CrossRef]
- Fuertes-Gutiérrez, I.; Fernández-Martínez, E. Geosites Inventory in the Leon Province (Northwestern Spain): A Tool to Introduce Geoheritage into Regional Environmental Management. Geoheritage 2010, 2, 57–75. [Google Scholar] [CrossRef]
- Kubalikova, L.; Kirchner, K.; Kuda, F. Viewpoint Geosites and Their Potential for Geoeducation and Geotourism; Public recreation and landscape protection—With environment hand in hand…: Conference proceedings; Mendel University in Brno: Brno, Czech Republic, 2022; pp. 440–445. [Google Scholar]
- Migo, P.; Pijet-Migo, E. Viewpoint geosites—values, conservation and management issues. Proc. Geol. Assoc. 2017, 128, 511–522. [Google Scholar] [CrossRef]
- Mucivuna, V.C.; Garcia, M.D.G.M.; Reynard, E.; Rosa, P.A.D.S. Integrating geoheritage into the management of protected areas: A case study of the Itatiaia National Park, Brazil. Int. J. Geoheritage Park. 2022, 10, 252–272. [Google Scholar] [CrossRef]
- Burek, C.V. The role of the voluntary sector in the evolving geoconservation movement. Geol. Soc. Spec. Publ. 2008, 300, 61–89. [Google Scholar] [CrossRef]
- Crofts, R. Linking geoconservation with biodiversity conservation in protected areas. Int. J. Geoheritage Park. 2019, 7, 211–217. [Google Scholar] [CrossRef]
- Garcia, M.D.G.; Nascimento, M.A.L.D.; Mansur, K.L.; Pereira, R.G.F.D.A. Geoconservation strategies framework in Brazil: Current status from the analysis of representative case studies. Environ. Sci. Policy 2022, 128, 194–207. [Google Scholar] [CrossRef]
- Pasquaré Mariotto, F.; Bonali, F.L. Virtual Geosites as Innovative Tools for Geoheritage Popularization: A Case Study from Eastern Iceland. Geosciences 2021, 11, 149. [Google Scholar] [CrossRef]
- Pasquaré Mariotto, F.; Antoniou, V.; Drymoni, K.; Bonali, F.L.; Nomikou, P.; Fallati, L.; Karatzaferis, O.; Vlasopoulos, O. Virtual Geosite Communication through a WebGIS Platform: A Case Study from Santorini Island (Greece). Appl. Sci. 2021, 11, 5466. [Google Scholar] [CrossRef]
- Prosser, C.; Murphy, M.; Larwood, J. Geological conservation: A Guide to Good Practice; English Nature: Peterborough, UK, 2006. [Google Scholar]
- Prosser, C.D.; Bridgland, D.R.; Brown, E.J.; Larwood, J.G. Geoconservation for science and society: Challenges and opportunities. Proc. Geol. Assoc. 2011, 122, 337–342. [Google Scholar] [CrossRef]
- Prosser, C.D.; Brown, E.J.; Larwood, J.G.; Bridgland, D.R. Geoconservation for science and society—An agenda for the future. Proc. Geol. Assoc. 2013, 124, 561–567. [Google Scholar] [CrossRef]
- Ochagov, D.M. (Ed.) A Summary List of Specially Protected Natural Areas of Russian Federation, Part II; VNIIprirody: Moscow, Russia, 2006. [Google Scholar]
- Szente, I.; Takács, B.; Harman-Tóth, E.; Weiszburg, T.G. Managing and Surveying the Geological Garden at Tata (Northern Transdanubia, Hungary). Geoheritage 2019, 11, 1353–1365. [Google Scholar] [CrossRef] [Green Version]
- Bollati, I.; Zucali, M.; Giovenco, C.; Pelfini, M. Geoheritage and sport climbing activities: Using the Montestrutto cliff (Austroalpine domain, Western Alps) as an example of scientific and educational representativeness. Ital. J. Geosci. 2014, 133, 187–199. [Google Scholar] [CrossRef]
- Bruno, B.C.; Wallace, A. Interpretive Panels for Geoheritage Sites: Guidelines for Design and Evaluation. Geoheritage 2019, 11, 1315–1323. [Google Scholar] [CrossRef]
- Frey, M.-L. Geotourism—Examining tools for sustainable development. Geosciences 2021, 11, 30. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Mora-Frank, C.; Kovács, T.; Berrezueta, E. Georoutes as a Basis for Territorial Development of the Pacific Coast of South America: A Case Study. Geoheritage 2022, 14, 78. [Google Scholar] [CrossRef]
- Stroppa, P.; Invernizzi, C.; Paris, E.; Pierantoni, P.P. A space-time journey through the composite Conero Geosite (Marche, Italy): A tool for teaching Earth Sciences at school. Rend. Online Soc. Geol. Ital. 2016, 40, 85–90. [Google Scholar] [CrossRef]
- Alberico, I.; Alessio, G.; Fagnano, M.; Petrosino, P. The Effectiveness of Geotrails to Support Sustainable Development in the Campi Flegrei Active Volcanic Area. Geoheritage 2023, 15, 15. [Google Scholar] [CrossRef]
- Bakhareva, O.; Kordonchik, D. Investments in preservation and development of regional cultural heritage: A library of bim elements representing national architectural and urban-planning landmarks. Archit. Eng. 2019, 4, 39–48. [Google Scholar] [CrossRef]
- Bunakov, O.A.; Rodnyansky, D.V.; Eidelman, B.M.; Grigorieva, E.V.; Bashlykov, T.V. The effective use of heritage sites of the major sporting events in Russia. J. Hum. Sport Exerc. 2021, 16, 427–433. [Google Scholar]
- Khramchenkova, R.; Degryse, P.; Sitdikov, A.; Kaisin, A. Analytical studies of post-Medieval glass bottle marks from excavations at Kazan Kremlin (Russia). J. Archaeol. Sci. Rep. 2017, 12, 25–27. [Google Scholar] [CrossRef]
- Litvin, A.A.; Muratova, D.V.; Galimzyanova, L.R. Historical and cultural heritage as a factor for the tourist development of a city. Eur. Res. Stud. J. 2017, 20, 242–247. [Google Scholar]
- Valeev, R.; Valeeva, R. Formation of Kazan archaeological school and its role in the development of the system of historical and cultural heritage preservation of Russia and Tatarstan. Dialog So Vrem. 2021, 74, 229–239. [Google Scholar]
- Arjana, I.W.B.; Ernawati, N.M.; Astawa, I.K. Tourist attractions of Batur geotourism, Bali. J. Environ. Manag. Tour. 2019, 10, 1399–1404. [Google Scholar] [CrossRef] [PubMed]
- Di Lisio, A.; Sisto, M.; Iscaro, C.; Russo, F. Geotourism and economy in Irpinia (Campania, Italy). Rend. Online Soc. Geol. Ital. 2016, 39, 72–75. [Google Scholar] [CrossRef]
- Pijet-Migoń, E.; Migoń, P. Linking Wine Culture and Geoheritage—Missing Opportunities at European UNESCO World Heritage Sites and in UNESCO Global Geoparks? A Survey of Web-Based Resources. Geoheritage 2012, 13, 71. [Google Scholar] [CrossRef]
- Moreira, J.C.; Do Vale, T.F.; Burns, R.C. Fernando de Noronha archipelago (Brazil): A coastal geopark proposal to foster the local economy, tourism and sustainability. Water 2021, 13, 1586. [Google Scholar] [CrossRef]
- Rodrigues, J.; Neto de Carvalho, C.; Ramos, M.; Ramos, R.; Vinagre, A.; Vinagre, H. Geoproducts–Innovative development strategies in UNESCO Geoparks: Concept, implementation methodology, and case studies from Naturtejo Global Geopark, Portugal. Int. J. Geoheritage Park. 2021, 9, 108–128. [Google Scholar] [CrossRef]
- Filimonau, V.; Ermolaev, V.A. Exploring the potential of industrial symbiosis to recover food waste from the foodservice sector in Russia. Sustain. Prod. Consum. 2022, 29, 467–478. [Google Scholar] [CrossRef]
- Filimonau, V.; Ermolaev, V.A.; Vasyukova, A. Food waste in foodservice provided in educational settings: An exploratory study of institutions of early childhood education. Int. J. Gastron. Food Sci. 2022, 28, 100531. [Google Scholar] [CrossRef]
- Filimonau, V.; Chiang, C.-C.; Wang, L.-E.; Muhialdin, B.J.; Ermolaev, V.A. Resourcefulness of chefs and food waste prevention in fine dining restaurants. Int. J. Hosp. Manag. 2023, 108, 103368. [Google Scholar] [CrossRef]
Geoheritage Types | Geosites | |
---|---|---|
Pechischi | Cheremushki | |
Geomorphological | Moderate | Low |
Stratigraphical | High | High |
Paleontological | Moderate | High |
Sedimentary | Low | Low |
Paleogeographical | Moderate | Low |
Mineralogical | Low | - |
Engineering | Low | - |
Economic | Moderate | - |
Geohistorical | High | Moderate |
Geoheritage Properties | Geosites | |
---|---|---|
Pechischi | Cheremushki | |
Uniqueness | Global (+500) | Regional (+100) |
Number of geoheritage types | Nine (+25) | Six (+25) |
Accessibility | Easy in populated area (+25) | Easy in populated area (+25) |
Vulnerability | No danger (+25) | No danger (+25) |
Need for interpretation | Basic explanations required(0) | Basic explanations required (0) |
Scientific importance | International (+25) | International (+25) |
Educational importance | International (+25) | Local (0) |
Touristic importance | International (+25) | Local (0) |
Aesthetic importance | Medium (+25) | High (+50) |
Total scores | 675 | 250 |
Finally justified rank | Global | National |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zorina, S.O.; Ermolaev, V.A.; Ruban, D.A. Earth Science Frontier at Urban Periphery: Geoheritage from the Vicinity of Kazan City, Russia. Heritage 2023, 6, 1103-1117. https://doi.org/10.3390/heritage6020061
Zorina SO, Ermolaev VA, Ruban DA. Earth Science Frontier at Urban Periphery: Geoheritage from the Vicinity of Kazan City, Russia. Heritage. 2023; 6(2):1103-1117. https://doi.org/10.3390/heritage6020061
Chicago/Turabian StyleZorina, Svetlana O., Vladimir A. Ermolaev, and Dmitry A. Ruban. 2023. "Earth Science Frontier at Urban Periphery: Geoheritage from the Vicinity of Kazan City, Russia" Heritage 6, no. 2: 1103-1117. https://doi.org/10.3390/heritage6020061
APA StyleZorina, S. O., Ermolaev, V. A., & Ruban, D. A. (2023). Earth Science Frontier at Urban Periphery: Geoheritage from the Vicinity of Kazan City, Russia. Heritage, 6(2), 1103-1117. https://doi.org/10.3390/heritage6020061