Geomatic Sensors for Heritage Documentation: A Meta-Analysis of the Scientific Literature
Abstract
:1. Introduction
1.1. Close-Range Sensors
1.1.1. RGB Sensors
1.1.2. Terrestrial Laser Scanners
1.2. Low-Altitude Sensors
1.3. Underwater Sensors
1.4. Aerial and Satellite Sensors
2. Review Studies
3. Materials and Methods
4. Results
4.1. Productivity: Documents in Number
4.2. Documents per Type
4.3. Co-Occurrence of Keywords
4.4. Documents per Country and Affiliations
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Markiewicz, J.; Tobiasz, A.; Kot, P.; Muradov, M.; Shaw, A.; Al-Shamma’a, A. Review of surveying devices for structural health monitoring of cultural heritage buildings. In Proceedings of the 2019 12th International Conference on Developments in eSystems Engineering (DeSE), Kazan, Russia, 7–10 October 2019; pp. 597–601. [Google Scholar]
- Adamopoulos, E.; Rinaudo, F. Close-range sensing and data fusion for built heritage inspection and monitoring—A review. Remote Sens. 2021, 13, 3936. [Google Scholar] [CrossRef]
- Kot, P.; Markiewicz, J.; Muradov, M.; Lapinski, S.; Shaw, A.; Zawieska, D.; Tobiasz, A.; Al-Shamma’a, A. Combination of the photogrammetric and microwave remote sensing for Cultural Heritage documentation and preservation–preliminary results. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 1409–1413. [Google Scholar] [CrossRef]
- Lercari, N.; Jaffke, D.; Campiani, A.; Guillem, A.; McAvoy, S.; Delgado, G.J.; Bevk Neeb, A. Building Cultural Heritage Resilience through Remote Sensing: An Integrated Approach Using Multi-Temporal Site Monitoring, Datafication, and Web-GL Visualization. Remote Sens. 2021, 13, 4130. [Google Scholar] [CrossRef]
- Vileikis, O.; Khabibullaeyev, F. Application of Digital Heritage Documentation for Condition Assessments and Monitoring Change in Uzbekistan. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 10 September 2021; Volume 8, No. M-1-2021. pp. 179–186. [Google Scholar]
- Bräuer-Burchardt, C.; Munkelt, C.; Bleier, M.; Heinze, M.; Gebhart, I.; Kühmstedt, P.; Notni, G. Underwater 3D Scanning System for Cultural Heritage Documentation. Remote Sens. 2023, 15, 1864. [Google Scholar] [CrossRef]
- Yilmaz, H.M.; Yakar, M.; Gulec, S.A.; Dulgerler, O.N. Importance of digital close-range photogrammetry in documentation of cultural heritage. J. Cult. Herit. 2007, 8, 428–433. [Google Scholar] [CrossRef]
- Rüther, H.; Smit, J.; Kamamba, D. A comparison of close-range photogrammetry to terrestrial laser scanning for heritage documentation. South. Afr. J. Geomat. 2012, 1, 149–162. [Google Scholar]
- Lerma, J.L.; Navarro, S.; Cabrelles, M.; Villaverde, V. Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: The Upper Palaeolithic Cave of Parpalló as a case study. J. Archaeol. Sci. 2010, 37, 499–507. [Google Scholar] [CrossRef]
- Lee, T.O. An Examination of Close-Range Photogrammetry and Traditional Cave Survey Methods for Terrestrial and Underwater Caves for 3-Dimensional Mapping. Doctoral Dissertation, University of Southern California, Los Angeles, CA, USA, 2018. [Google Scholar]
- Menna, F.; Agrafiotis, P.; Georgopoulos, A. State of the art and applications in archaeological underwater 3D recording and mapping. J. Cult. Herit. 2018, 33, 231–248. [Google Scholar] [CrossRef]
- Murtiyoso, A.; Grussenmeyer, P. Documentation of heritage buildings using close-range UAV images: Dense matching issues, comparison and case studies. Photogramm. Rec. 2017, 32, 206–229. [Google Scholar] [CrossRef]
- Bakirman, T.; Bayram, B.; Akpinar, B.; Karabulut, M.F.; Bayrak, O.C.; Yigitoglu, A.; Seker, D.Z. Implementation of ultra-light UAV systems for cultural heritage documentation. J. Cult. Herit. 2020, 44, 174–184. [Google Scholar] [CrossRef]
- Li, Z.; Yan, Y.; Jing, Y.; Zhao, S.G. The design and testing of a LiDAR Platform for a UAV for heritage mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 17–24. [Google Scholar] [CrossRef]
- Brumana, R.A.; Oreni, D.A.; Van Hecke, L.; Barazzetti, L.U.; Previtali, M.A.; Roncoroni, F.A.; Valente, R.I. Combined geometric and thermal analysis from UAV platforms for archaeological heritage documentation. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 2, 49–54. [Google Scholar] [CrossRef]
- Monna, F.; Rolland, T.; Denaire, A.; Navarro, N.; Granjon, L.; Barbé, R.; Chateau-Smith, C. Deep learning to detect built cultural heritage from satellite imagery.-Spatial distribution and size of vernacular houses in Sumba, Indonesia. J. Cult. Herit. 2021, 52, 171–183. [Google Scholar] [CrossRef]
- Agapiou, A.; Hadjimitsis, D.G.; Alexakis, D.; Sarris, A. Observatory validation of Neolithic tells (“Magoules”) in the Thessalian plain, central Greece, using hyperspectral spectroradiometric data. J. Archaeol. Sci. 2012, 39, 1499–1512. [Google Scholar] [CrossRef]
- Berra, F.E.; Gaulton, R.; Barr, S. Commercial Off-the-Shelf Digital Cameras on Unmanned Aerial Vehicles for Multitemporal Monitoring of Vegetation Reflectance and NDVI. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4878–4886. [Google Scholar] [CrossRef]
- Geert, V.; Philippe, S.; Dirk, P.; Frank, V. Spectral Characterization of a Digital Still Camera’s NIR Modification to Enhance Archaeological Observation. Geoscience and Remote Sensing, IEEE Trans. Geosci. Remote Sens. 2009, 47, 3456–3468. [Google Scholar] [CrossRef]
- Maas, H.G. Close-Range Photogrammetry Sensors. In Advances in Photogrammetry, Remote Sensing and Spatial Information Science: 2008 ISPRS Congress Book; CRC Press: Boca Raton, FL, USA, 2008; pp. 63–72. [Google Scholar]
- Luhmann, T.; Fraser, C.; Maas, H.G. Sensor modelling and camera calibration for close-range photogrammetry. ISPRS J. Photogramm. Remote Sens. 2016, 115, 37–46. [Google Scholar] [CrossRef]
- Kholil, M.; Ismanto, I.; Fu’Ad, M.N. 3D Reconstruction Using Structure from Motion (SFM) Algorithm and Multi View Stereo (MVS) Based on Computer Vision. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1073, p. 012066. [Google Scholar]
- Torresani, A.; Remondino, F. Videogrammetry vs. photogrammetry for heritage 3D reconstruction. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W15, 1157–1162. [Google Scholar] [CrossRef]
- Balletti, C.; Guerra, F.; Tsioukas, V.; Vernier, P. Calibration of action cameras for photogrammetric purposes. Sensors 2014, 14, 17471–17490. [Google Scholar] [CrossRef]
- Remondino, F.; Fraser, C. Digital camera calibration methods: Considerations and comparisons. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, 6, 266–272. [Google Scholar]
- Cronk, S.; Fraser, C.; Hanley, H. Automated metric calibration of colour digital cameras. Photogramm. Rec. 2006, 21, 355–372. [Google Scholar] [CrossRef]
- Herban, S.; Costantino, D.; Alfio, V.S.; Pepe, M. Use of low-cost spherical cameras for the digitisation of cultural heritage structures into 3d point clouds. J. Imaging 2022, 8, 13. [Google Scholar] [CrossRef]
- Murtiyoso, A.; Grussenmeyer, P.; Suwardhi, D. Technical considerations in Low-Cost heritage documentation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 225–232. [Google Scholar] [CrossRef]
- Fangi, G.; Pierdicca, R.; Sturari, M.; Malinverni, E.S. Improving spherical photogrammetry using 360 omni-cameras: Use cases and new applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 331–337. [Google Scholar] [CrossRef]
- Zhien, W.; Massimo, M. Challenges and Opportunities in Lidar Remote Sensing. Front. Remote Sens. 2021, 2, 641723. [Google Scholar] [CrossRef]
- Abmayr, T.; Härtl, F.; Reinköster, M.; Fröhlich, C. Terrestrial laser scanning: Applications in cultural heritage conservation and civil engineering. In Proceedings of the ISPRS Working Group V4 2005, Mestre-Venice, Italy, 22–24 August 2005. [Google Scholar]
- Nuttens, T.; De Maeyer, P.; De Wulf, A.; Goossens, R.; Stal, C. Terrestrial Laser Scanning and Digital Photogrammetry for Cultural Heritage: An Accuracy Assessment; FIG Working Week: Marrakech, Morocco, 2011; p. 10. [Google Scholar]
- Grussenmeyer, P.; Landes, T.; Doneus, M.; Lerma, J. Basics of Range-Based Modelling Techniques in Cultural Heritage 3D Recording. In 3D Recording, Documentation and Management of Cultural Heritage; Whittles Publishing: Dunbeath, UK, 2016. [Google Scholar]
- Kushwaha, S.K.; Dayal, K.R.; Sachchidanand Raghavendra, S.; Pande, H.; Tiwari, P.S.; Agrawal, S.; Srivastava, S.K. 3D Digital Documentation of a Cultural Heritage Site Using Terrestrial Laser Scanner—A Case Study. In Applications of Geomatics in Civil Engineering: Select Proceedings of ICGCE 2018; Springer: Singapore, 2020; pp. 49–58. [Google Scholar]
- Grussenmeyer, P.; Landes, T.; Voegtle, T.; Ringle, K. Comparison methods of terrestrial laser scanning, photogrammetry and tacheometry data for recording of cultural heritage buildings. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 213–218. [Google Scholar]
- Bernat, M.; Janowski, A.; Rzepa, S.; Sobieraj, A.; Szulwic, J. Studies on the use of terrestrial laser scanning in the maintenance of buildings belonging to the cultural heritage. In Proceedings of the 14th Geoconference on Informatics, Geoinformatics and Remote Sensing, SGEM. ORG, Albena, Bulgaria, 19–25 June 2014; Volume 3, pp. 307–318. [Google Scholar]
- Klapa, P.; Mitka, B.; Zygmunt, M. Application of Integrated Photogrammetric and Terrestrial Laser Scanning Data to Cultural Heritage Surveying. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; Volume 95, p. 032007. [Google Scholar]
- Keitaanniemi, A.; Rönnholm, P.; Kukko, A.; Vaaja, M.T. Drift analysis and sectional post-processing of indoor simultaneous localization and mapping (SLAM)-based laser scanning data. Autom. Constr. 2023, 147, 104700. [Google Scholar] [CrossRef]
- Barba, S.; Ferreyra, C.; Cotella, V.A.; di Filippo, A.; Amalfitano, S. A SLAM integrated approach for digital heritage documentation. In Proceedings of the International Conference on Human-Computer Interaction, Málaga, Spain, 22–24 September 2021; pp. 27–39. [Google Scholar]
- Ortiz-Coder, P.; Sánchez-Ríos, A. An integrated solution for 3D heritage modeling based on videogrammetry and V-SLAM technology. Remote Sens. 2020, 12, 1529. [Google Scholar] [CrossRef]
- Rodríguez-Gonzálvez, P.; Jiménez Fernández-Palacios, B.; Muñoz-Nieto, Á.L.; Arias-Sanchez, P.; Gonzalez-Aguilera, D. Mobile LiDAR System: New Possibilities for the Documentation and Dissemination of Large Cultural Heritage Sites. Remote Sens. 2017, 9, 189. [Google Scholar] [CrossRef]
- Lauterbach, H.A.; Borrmann, D.; Heß, R.; Eck, D.; Schilling, K.; Nüchter, A. Evaluation of a Backpack-Mounted 3D Mobile Scanning System. Remote Sens. 2015, 7, 13753–13781. [Google Scholar] [CrossRef]
- Lichti, D.; Stewart, M.P.; Tsakiri, M.; Snow, A.J. Calibration and testing of a terrestrial laser scanner. Int. Arch. Photogramm. Remote Sens. 2000, 33, 485–492. [Google Scholar]
- Rietdorf, A.; Gielsdorf, F.; Gruendig, L. A concept for the calibration of terrestrial laser scanners. In Proceedings of the INGEO 2004 and FIG Regional Central and Eastern European Conference of Engineering Surveying, Bratislava, Slovakia, 11–13 November 2004; Volume 11, p. 13. [Google Scholar]
- Gowroju, S.; Santhosh Ramchander, N. Applications of Drones—A Review. In Drone Technology; Mohanty, S.N., Ravindra, J.V.R., Surya Narayana, G., Pattnaik, C.R., Mohamed Sirajudeen, Y., Eds.; Wiley-Scrivener: Austin, TX, USA, 2023; pp. 183–206. [Google Scholar] [CrossRef]
- Meyer, D.; Fraijo, E.; Lo, E.; Rissolo, D.; Kuester, F. Optimizing UAV Systems for Rapid Survey and Reconstruction of Large Scale Cultural Heritage Sites. In 2015 Digital Heritage; IEEE: Piscataway, NJ, USA, 2015; Volume 1, pp. 151–154. [Google Scholar]
- Georgopoulos, A.; Oikonomou, C.; Adamopoulos, E.; Stathopoulou, E.K. Evaluating unmanned aerial platforms for cultural heritage large scale mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 355–362. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, F.; Jia, X.; Huang, X.; Li, D.; Mao, Z. Deep Neural Networks for Quantitative Damage Evaluation of Building Losses Using Aerial Oblique Images: Case Study on the Great Wall (China). Remote Sens. 2021, 13, 1321. [Google Scholar] [CrossRef]
- Oczipka, M.; Bemmann, J.; Piezonka, H.; Munkabayar, J.; Ahrens, B.; Achtelik, M.; Lehmann, F. Small Drones for Geo-Archaeology in the Steppes: Locating and Documenting the Archaeological Heritage of the Orkhon Valley in Mongolia. In Remote Sensing for Environmental Monitoring, GIS Applications, and Geology IX; SPIE: Bellingham, WA, USA, 2009; Volume 7478, pp. 53–63. [Google Scholar]
- Bagnolo, V.; Paba, N. UAV-based photogrammetry for archaeological heritage site survey and 3D modeling of the sardus pater temple (Italy). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 45–51. [Google Scholar] [CrossRef]
- Stek, T.D. Drones over Mediterranean landscapes. The potential of small UAV’s (drones) for site detection and heritage management in archaeological survey projects: A case study from Le Pianelle in the Tappino Valley, Molise (Italy). J. Cult. Herit. 2016, 22, 1066–1071. [Google Scholar] [CrossRef]
- Matyukira, C.; Mhangara, P. Advancement in the Application of Geospatial Technology in Archaeology and Cultural Heritage in South Africa: A Scientometric Review. Remote Sens. 2023, 15, 4781. [Google Scholar] [CrossRef]
- Uribe, P.; Angás, J.; Romeo, F.; Pérez-Cabello, F.; Santamaría, D. Mapping Ancient Battlefields in a multi-scalar approach combining Drone Imagery and Geophysical Surveys: The Roman siege of the oppidum of Cabezo de Alcalá (Azaila, Spain). J. Cult. Herit. 2021, 48, 11–23. [Google Scholar] [CrossRef]
- Koutsoudis, A.; Ioannakis, G.; Pistofidis, P.; Arnaoutoglou, F.; Kazakis, N.; Pavlidis, G.; Chamzas, C.; Tsirliganis, N. Multispectral aerial imagery-based 3D digitisation, segmentation and annotation of large scale urban areas of significant cultural value. J. Cult. Herit. 2021, 49, 1–9. [Google Scholar] [CrossRef]
- Materazzi, F.; Pacifici, M. Archaeological crop marks detection through drone multispectral remote sensing and vegetation indices: A new approach tested on the Italian pre-Roman city of Veii. J. Archaeol. Sci. Rep. 2022, 41, 103235. [Google Scholar] [CrossRef]
- Khelifi, A.; Ciccone, G.; Altaweel, M.; Basmaji, T.; Ghazal, M. Autonomous service drones for multimodal detection and monitoring of archaeological sites. Appl. Sci. 2021, 11, 10424. [Google Scholar] [CrossRef]
- Patrucco, G.; Cortese, G.; Giulio Tonolo, F.; Spanò, A. Thermal and optical data fusion supporting built heritage analyses. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 619–626. [Google Scholar] [CrossRef]
- Vlachos, M.; Skarlatos, D. An Extensive Literature Review on Underwater Image Colour Correction. Sensors 2021, 21, 5690. [Google Scholar] [CrossRef]
- Diamanti, E.; Løvås, H.S.; Larsen, M.K.; Ødegård, Ø. A multi-camera system for the integrated documentation of Underwater Cultural Heritage of high structural complexity; The case study of M/S Helma wreck. IFAC-Pap. OnLine 2021, 54, 422–429. [Google Scholar] [CrossRef]
- Selmo, D.; Sturt, F.; Miles, J.; Basford, P.; Malzbender, T.; Martinez, K.; Thompson, C.; Earl, G.; Bevan, G. Underwater reflectance transformation imaging: A technology for in situ underwater cultural heritage object-level recording. J. Electron. Imaging 2017, 26, 011029. [Google Scholar] [CrossRef]
- Skarlatos, D.; Agrafiotis, P. Image-Based Underwater 3DReconstruction for Cultural Heritage: From Image Collection to, 3.D. Critical Steps and Considerations. In Visual Computing for Cultural Heritage Springer Series on Cultural Computing; Liarokapis, F., Voulodimos, A., Doulamis, N., Doulamis, A., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Skarlatos, D.; Demestiha, S.; Kiparissi, S. An ‘open’ method for 3D modelling and mapping in underwater archaeological sites. Int. J. Herit. Digit. Era 2012, 1, 1–24. [Google Scholar] [CrossRef]
- Drap, P.; Merad, D.; Hijazi, B.; Gaoua, L.; Nawaf, M.M.; Saccone, M.; Chemisky, B.; Seinturier, J.; Sourisseau, J.-C.; Gambin, T.; et al. Underwater Photogrammetry and Object Modeling: A Case Study of Xlendi Wreck in Malta. Sensors 2015, 15, 30351–30384. [Google Scholar] [CrossRef]
- Hu, K.; Wang, T.; Shen, C.; Weng, C.; Zhou, F.; Xia, M.; Weng, L. Overview of Underwater 3D Reconstruction Technology Based on Optical Images. J. Mar. Sci. Eng. 2023, 11, 949. [Google Scholar] [CrossRef]
- Lindsay, I.; Mkrtchyan, A. Free and Low-Cost Aerial Remote Sensing in Archaeology: An Overview of Data Sources and Recent Applications in the South Caucasus. Adv. Archaeol. Pract. 2023, 11, 1–20. [Google Scholar] [CrossRef]
- Uribe, P.; Pérez-Cabello, F.; Bea, M.; De La Riva, J.; Martín-Bueno, M.; Sáenz, C.; Serreta, A.; Magallón, M.A.; Angás, J. Aerial mapping and multi-sensors approaches from remote sensing applied to the roman archaeological heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-5/W4, 461–467. [Google Scholar] [CrossRef]
- Agapiou, A.; Alexakis, D.D.; Hadjimitsis, D.G. Spectral sensitivity of ALOS, ASTER, IKONOS, LANDSAT and SPOT satellite imagery intended for the detection of archaeological crop marks. Int. J. Digit. Earth 2014, 7, 351–372. [Google Scholar] [CrossRef]
- Winton, H.; Horne, P. National archives for national survey programmes: NMP and the English heritage aerial photograph collection. Landsc. Through Lens. Aer. Photogr. Hist. Enviroment. Aer. Archaeol. Res. Group 2010, 2, 7–18. [Google Scholar]
- Cowley, D.C.; Stichelbaut, B.B. Historic aerial photographic archives for European archaeology. Eur. J. Archaeol. 2012, 15, 217–236. [Google Scholar] [CrossRef]
- Cowley, D.; Ferguson, L. Historic Aerial Photographs for Archaeology and Heritage Management. In Space Time and Place, Proceedings of the III International Conference on Remote Sensing in Archaeology, Tiruchirappalli, India, 17–21 August 2009; BAR International Series 2118; British Archaeological Reports Ltd.: Oxford, UK, 2010; pp. 17–21. [Google Scholar]
- Agapiou, A. Remote sensing heritage in a petabyte-scale: Satellite data and heritage Earth Engine© applications. Int. J. Digit. Earth 2017, 10, 85–102. [Google Scholar] [CrossRef]
- Pappu, S.; Akhilesh, K.; Ravindranath, S.; Raj, U. Applications of satellite remote sensing for research and heritage management in Indian prehistory. J. Archaeol. Sci. 2010, 37, 2316–2331. [Google Scholar] [CrossRef]
- Lasaponara, R.; Masini, N. Satellite Remote Sensing: A New Tool for Archaeology. In Proceedings of the I International EARSeL Workshop “Advances in Remote Sensing for Archaeology and Cultural Heritage Management”, Rome, Italy, 30 September 2008; Springer: Dordrecht, The Netherlands, 2012; p. 366. [Google Scholar] [CrossRef]
- Agapiou, A.; Hadjimitsis, D.G.; Alexakis, D.D.; Papadavid, G. Examining Phenol. Cycle Barley (Hordeum Vulgare) Using Satell. Situ Spectroradiometer Meas. Detect. Buried Archaeol. Remain. GISci. Remote Sens. 2012, 49, 854–872. [Google Scholar] [CrossRef]
- Agapiou, A.; Lysandrou, V.; Sarris, A.; Papadopoulos, N.; Hadjimitsis, D.G. Fusion of satellite multispectral images based on ground-penetrating radar (GPR) data for the investigation of buried concealed archaeological remains. Geosciences 2017, 7, 40. [Google Scholar] [CrossRef]
- Agapiou, A.; Lysandrou, V. Remote sensing archaeology: Tracking and mapping evolution in European scientific literature from 1999 to 2015. J. Archaeol. Sci. Rep. 2015, 4, 192–200. [Google Scholar] [CrossRef]
- Tapete, D.; Cigna, F. Trends and perspectives of space-borne SAR remote sensing for archaeological landscape and cultural heritage applications. J. Archaeol. Sci. Rep. 2017, 14, 716–726. [Google Scholar] [CrossRef]
- Cuca, B.; Zaina, F.; Tapete, D. Monitoring of Damages to Cultural Heritage across Europe Using Remote Sensing and Earth Observation: Assessment of Scientific and Grey Literature. Remote Sens. 2023, 15, 3748. [Google Scholar] [CrossRef]
- Argyrou, A.; Agapiou, A. A Review of Artificial Intelligence and Remote Sensing for Archaeological Research. Remote Sens. 2022, 14, 6000. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Zong, X.; Masini, N.; Wang, G.; Shi, P.; Khatteli, H.; Chen, F.; et al. Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sens. Environ. 2019, 232, 111280. [Google Scholar] [CrossRef]
- Jebur, A.K. The Techniques of Cultural Heritage: Literature Review. Saudi J. Civ. Eng. 2022, 6, 108–114. [Google Scholar] [CrossRef]
- Magnani, M.; Douglass, M.; Schroder, W.; Reeves, J.; Braun, D.R. The digital revolution to come: Photogrammetry in archaeological practice. Am. Antiq. 2020, 85, 737–760. [Google Scholar] [CrossRef]
- Marín-Buzón, C.; Pérez-Romero, A.; Lopez-Castro, J.L.; Ben Jerbania, I.; Manzano-Agugliaro, F. Photogrammetry as a new scientific tool in archaeology: Worldwide research trends. Sustainability 2021, 13, 5319. [Google Scholar] [CrossRef]
- Pepe, M.; Alfio, V.S.; Costantino, D. UAV platforms and the SfM-MVS approach in the 3D surveys and modelling: A review in the cultural heritage field. Appl. Sci. 2022, 12, 12886. [Google Scholar] [CrossRef]
- Lo Brutto, M.; Garraffa, A.; Meli, P. UAV platforms for cultural heritage survey: First results. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 227–234. [Google Scholar] [CrossRef]
- Campana, S.; Sordini, M.; Remondino, F. Integration of geomatics techniques for the digital documentation of heritage areas. In Proceedings of the 1st International EARSeL Workshop, CNR, Rome, Italy, 30 September 2008; Volume 30, pp. 309–312. [Google Scholar]
- Bitelli, G.; Dellapasqua, M.; Girelli, V.A.; Sanchini, E.; Tini, M.A. 3D Geomatics Techniques for an integrated approach to Cultural Heritage knowledge: The case of San Michele in Acerboli’s Church in Santarcangelo di Romagna. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 291–296. [Google Scholar] [CrossRef]
- Vacca, G.; Dessi, A. Low-Cost Geomatics Surveys for Emergency Interventions on Cultural Heritage. The Case of Historic Wall in Cagliari. In International Conference on Computational Science and Its Applications; Springer Nature: Cham, Switzerland, 2023; pp. 650–664. [Google Scholar]
- Sánchez-Aparicio, L.J.; Riveiro, B.; Gonzalez-Aguilera, D.; Ramos, L.F. The combination of geomatic approaches and operational modal analysis to improve calibration of finite element models: A case of study in Saint Torcato Church (Guimarães, Portugal). Constr. Build. Mater. 2014, 70, 118–129. [Google Scholar] [CrossRef]
- Girelli, V.A.; Borgatti, L.; Dellapasqua, M.; Mandanici, E.; Spreafico, M.C.; Tini, M.A.; Bitelli, G. Integration of geomatics techniques for digitizing highly relevant geological and cultural heritage sites: The case of San Leo (Italy). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 281–286. [Google Scholar] [CrossRef]
- Sansoni, G.; Trebeschi, M.; Docchio, F. State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation. Sensors 2009, 9, 568–601. [Google Scholar] [CrossRef]
- Cuca, B.; Hadjimitsis, D.G. Space technology meets policy: An overview of Earth Observation sensors for monitoring of cultural landscapes within policy framework for Cultural Heritage. J. Archaeol. Sci. Rep. 2017, 14, 727–733. [Google Scholar] [CrossRef]
- Salleh, S.Z. Bibliometric and content analysis on publications in digitization technology implementation in cultural heritage for recent five years (2016–2021). Digit. Appl. Archaeol. Cult. Herit. 2022, 25, e00225. [Google Scholar] [CrossRef]
- Scopus Engine. Available online: https://www.scopus.com/search/form.uri?display=basic&zone=header&origin=AuthorProfile#basic (accessed on 8 August 2023).
- About Scopus. Available online: https://blog.scopus.com/about#:~:text=Scopus%20is%20a%20source-neutral,promote%20ideas%2C%20people%20and%20institutions (accessed on 8 August 2023).
- Jamil, A.H.; Yakub, F.; Azizan, A.; Roslan, S.A.; Zaki, S.A.; Ahmad, S.A. A Review on Deep Learning Application for Detection of Archaeological Structures. J. Adv. Res. Appl. Sci. Eng. Technol. 2022, 26, 7–14. [Google Scholar]
- Ostoić, S.K.; Salbitano, F.; Borelli, S.; Verlič, A. Urban forest research in the Mediterranean: A systematic review. Urban For. Urban Green 2018, 31, 185–196. [Google Scholar] [CrossRef]
- Malanski, P.D.; Dedieu, B.; Schiavi, S. Mapping the research domains on work in agriculture. A bibliometric review from Scopus database. J. Rural. Stud. 2021, 81, 305–314. [Google Scholar] [CrossRef]
- Burnham, J.F. Scopus database: A review. Biomed. Digit. Libr. 2006, 3, 1–8. [Google Scholar] [CrossRef]
- Salisbury, L. Web of Science and Scopus: A comparative review of content and searching capabilities. Charlest. Advis. 2009, 11, 5–18. [Google Scholar]
- Pranckutė, R. Web of Science (WoS) and Scopus: The titans of bibliographic information in today’s academic world. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; McKenzie, J.E. Introduction to PRISMA 2020 and implications for research synthesis methodologists. Res. Synth. Methods 2022, 13, 156–163. [Google Scholar] [CrossRef]
- Microsoft Corporation. Microsoft Excel. 2023. Available online: https://office.microsoft.com/excel (accessed on 8 August 2023).
- SankeyMATIC. Available online: https://sankeymatic.com/about/ (accessed on 8 August 2023).
- Van Eck, N.J.; Waltman, L. VOSviewer Manual, Manual for VOSviewer Version; Volume 1, University of Leiden: Leiden, The Netherlands, 2011. [Google Scholar]
- VOSviewer 1.6.19. Available online: https://www.vosviewer.com (accessed on 8 August 2023).
- Chen, C.; Ibekwe-SanJuan, F.; Hou, J. The structure and dynamics of co-citation clusters: A multiple-perspective co-citation analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- CiteSpace. Interpret Results. Available online: https://sites.google.com/site/citespace101/first-example/4-3-interpret-results (accessed on 8 August 2023).
- Kleinberg, J. Bursty and hierarchical structure in streams. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, AB, Canada, 23–26 July 2002; pp. 91–101. [Google Scholar]
No | Information Extracted from Scopus |
---|---|
1. | Author(s) |
2. | Document title |
3. | Year |
4. | EID (Scopus Electronic Identifier) |
5. | Source title |
6. | Volume, issues, pages |
7. | Citation count |
8. | Source and document type |
9. | Publication stage |
10. | DOI |
11. | Open access |
12. | Affiliations |
13. | Publisher |
14. | Language of original document |
15. | Abstract |
16. | Author keywords |
17. | Indexed keywords |
Cluster | Label |
---|---|
#0 | remote sensing; archaeology; lidar; historical geography; supervised classifiers; aerial vehicles; system program; supervised classifiers; spectral analysis |
#1 | terrestrial laser; cultural heritage; dimensional computer graphics; system program; computer vision; dimensional computer; three dimensional |
#2 | dimensional computer; human computer; interactive computer; damage detection; damage comparison; dimensional computer graphics; massive point; least squares |
Keywords | Year | Strength | Begin | End | 2010–2022 |
---|---|---|---|---|---|
three dimensional | 2010 | 83.76 | 2010 | 2013 | ▃▃▃▃▂▂▂▂▂▂▂▂▂ |
sensors | 2010 | 32.9 | 2010 | 2013 | ▃▃▃▃▂▂▂▂▂▂▂▂▂ |
calibration | 2010 | 25.88 | 2010 | 2016 | ▃▃▃▃▃▃▃▂▂▂▂▂▂ |
image processing | 2010 | 23.25 | 2010 | 2016 | ▃▃▃▃▃▃▃▂▂▂▂▂▂ |
satellites | 2010 | 20.22 | 2010 | 2016 | ▃▃▃▃▃▃▃▂▂▂▂▂▂ |
design | 2010 | 19.42 | 2010 | 2012 | ▃▃▃▂▂▂▂▂▂▂▂▂▂ |
research | 2010 | 17.87 | 2010 | 2013 | ▃▃▃▃▂▂▂▂▂▂▂▂▂ |
nasa | 2010 | 16.64 | 2010 | 2012 | ▃▃▃▂▂▂▂▂▂▂▂▂▂ |
photography | 2011 | 26.98 | 2011 | 2015 | ▂▃▃▃▃▃▂▂▂▂▂▂▂ |
laser scanner | 2011 | 19.09 | 2011 | 2013 | ▂▃▃▃▂▂▂▂▂▂▂▂▂ |
terrestrial laser scanning | 2012 | 13.76 | 2012 | 2017 | ▂▂▃▃▃▃▃▃▂▂▂▂▂ |
surface analysis | 2010 | 33.21 | 2013 | 2017 | ▂▂▂▃▃▃▃▃▂▂▂▂▂ |
system program documentation | 2013 | 19.44 | 2013 | 2015 | ▂▂▂▃▃▃▂▂▂▂▂▂▂ |
spectroscopy | 2013 | 15.4 | 2013 | 2014 | ▂▂▂▃▃▂▂▂▂▂▂▂▂ |
information management | 2012 | 16.69 | 2015 | 2019 | ▂▂▂▂▂▃▃▃▃▃▂▂▂ |
3 d modeling | 2012 | 16.24 | 2015 | 2017 | ▂▂▂▂▂▃▃▃▂▂▂▂▂ |
close-range photogrammetry | 2010 | 18.41 | 2016 | 2017 | ▂▂▂▂▂▂▃▃▂▂▂▂▂ |
structure from motion | 2013 | 25.45 | 2017 | 2019 | ▂▂▂▂▂▂▂▃▃▃▂▂▂ |
uav | 2014 | 19.27 | 2017 | 2022 | ▂▂▂▂▂▂▂▃▃▃▃▃▃ |
antennas | 2017 | 36.93 | 2018 | 2022 | ▂▂▂▂▂▂▂▂▃▃▃▃▃ |
heritage | 2016 | 16.03 | 2018 | 2022 | ▂▂▂▂▂▂▂▂▃▃▃▃▃ |
landscape archaeology | 2019 | 16.18 | 2019 | 2020 | ▂▂▂▂▂▂▂▂▂▃▃▂▂ |
textures | 2012 | 15.8 | 2019 | 2020 | ▂▂▂▂▂▂▂▂▂▃▃▂▂ |
monitoring | 2010 | 14.93 | 2019 | 2022 | ▂▂▂▂▂▂▂▂▂▃▃▃▃ |
deep learning | 2020 | 31.28 | 2020 | 2022 | ▂▂▂▂▂▂▂▂▂▂▃▃▃ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agapiou, A.; Skarlatos, D. Geomatic Sensors for Heritage Documentation: A Meta-Analysis of the Scientific Literature. Heritage 2023, 6, 6843-6861. https://doi.org/10.3390/heritage6100357
Agapiou A, Skarlatos D. Geomatic Sensors for Heritage Documentation: A Meta-Analysis of the Scientific Literature. Heritage. 2023; 6(10):6843-6861. https://doi.org/10.3390/heritage6100357
Chicago/Turabian StyleAgapiou, Athos, and Dimitrios Skarlatos. 2023. "Geomatic Sensors for Heritage Documentation: A Meta-Analysis of the Scientific Literature" Heritage 6, no. 10: 6843-6861. https://doi.org/10.3390/heritage6100357
APA StyleAgapiou, A., & Skarlatos, D. (2023). Geomatic Sensors for Heritage Documentation: A Meta-Analysis of the Scientific Literature. Heritage, 6(10), 6843-6861. https://doi.org/10.3390/heritage6100357