Inverted Landforms of the Western Caucasus: Implications for Geoheritage, Geotourism, and Geobranding
Abstract
:1. Introduction
2. Geographical and Geological Setting
3. Materials and Methods
4. Results
4.1. Gud and Gudok Mountains
4.2. Kabanya Mountain
4.3. Northwestern Skazhenny Range
5. Discussion
5.1. Structural Landform Inversion in Mountainous Adygeya
5.2. Further Implications for Geotourism
5.3. Geobranding Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cundari, A.; Ollier, C.D. Inverted relief due to lava flows along valleys. Aust. Geogr. 1970, 11, 291–293. [Google Scholar] [CrossRef]
- Pain, C.F.; Ollier, C.D. Inversion of relief—A component of landscape evolution. Geomorphology 1995, 12, 151–165. [Google Scholar] [CrossRef]
- van Wyk de Vries, B.; Karatson, D.; Gouard, C.; Nemeth, K.; Rapprich, V.; Aydar, E. Inverted volcanic relief: Its importance in illustrating geological change and its geoheritage potential. Int. J. Geoherit. Parks 2022, 10, 47–83. [Google Scholar] [CrossRef]
- Butt, C.R.M.; Bristow, A.P.J. Relief inversion in the geomorphological evolution of sub-Saharan West Africa. Geomorphology 2013, 185, 16–26. [Google Scholar] [CrossRef]
- Schwarz, T. Ferricrete formation and relief inversion: An example from Central Sudan. Catena 1994, 21, 257–268. [Google Scholar] [CrossRef]
- Zaki, A.S.; Giegengack, R. Inverted topography in the southeastern part of the Western Desert of Egypt. J. Afr. Earth Sci. 2016, 121, 56–61. [Google Scholar] [CrossRef]
- Wang, Z.-T.; Lai, Z.-P.; Qu, J.-J. Inverted relief landforms in the Kumtagh Desert of northwestern China: A mechanism to estimate wind erosion rates. Geol. J. 2017, 52, 131–140. [Google Scholar] [CrossRef]
- Karim, K.H.; Khanaqa, P.A. Syncline contribution to mountain peak building: Examples from Western Zagros, Kurdistan Region, Northeastern Iraq. Arab. J. Geosci. 2017, 10, 375. [Google Scholar] [CrossRef]
- Froede, C.R., Jr.; Rucker, B.R. Iron Mountain, Santa Rosa County, Florida: A paleogroundwater table inverted relief feature. Southeast. Geol. 2006, 44, 137–145. [Google Scholar]
- Lucchitta, I.; Holm, R. Re-evaluation of exotic gravel and inverted topography at Crooked Ridge, northern Arizona: Relicts of an ancient river of regional extent. Geosphere 2020, 16, 533–545. [Google Scholar] [CrossRef] [Green Version]
- Bussard, J.; Giaccone, E. Assessing the ecological value of dynamic mountain geomorphosites. Geogr. Helv. 2021, 76, 385–399. [Google Scholar] [CrossRef]
- Kubalíková, L.; Kirchner, K. Geosite and geomorphosite assessment as a tool for geoconservation and geotourism purposes: A case study from Vizovickávrchovina Highland (Eastern Part of the Czech Republic). Geoheritage 2016, 8, 5–14. [Google Scholar] [CrossRef]
- Madeira, M.R.; Correa, E.A.; Simon, A.L.H. Spatial concentration of geomorphological heritage elements in Guaritas do Camaquã geomorphosite (Rio Grande do sul—Brazil). Rev. Bras. Geomorfol. 2021, 22, 275–295. [Google Scholar]
- Morino, C.; Coratza, P.; Soldati, M. Landslides, a Key Landform in the Global Geological Heritage. Front. Earth Sci. 2022, 10, 864760. [Google Scholar] [CrossRef]
- Panizza, M. Geomorphosites: Concepts, methods and examples of geomorphological survey. Chin. Sci. Bull. 2001, 46, 4–6. [Google Scholar] [CrossRef]
- Pereira, P.; Pereira, D. Methodological guidelines for geomorphosite assessment. Geomorphol. Relief Process. Environ. 2010, 2, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Reynard, E.; Coratza, P.; Giusti, C. Geomorphosites and geotourism. Geoheritage 2011, 3, 129–130. [Google Scholar] [CrossRef] [Green Version]
- Reynard, E.; Coratza, P.; Hobléa, F. Current research on geomorphosites. Geoheritage 2016, 8, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Rypl, J.; Kirchner, K.; Dvorácková, S. Geomorphological inventory as a tool for proclaiming geomorphosite (a case study of Mt. Myslivna in the Novohradskéhory Mts.—Czech Republic). Geoheritage 2016, 8, 393–400. [Google Scholar] [CrossRef]
- Ruban, D.A. Quantification of geodiversity and its loss. Proc. Geol. Assoc. 2010, 121, 326–333. [Google Scholar] [CrossRef]
- Cipriani, A.; Roncacè, S. The dolines of Campoli Appennino (Frosinone, Italy): A geo-historical overview. Rend. Online Soc. Geol. Ital. 2020, 52, 77–102. [Google Scholar] [CrossRef]
- Mikhailenko, A.V.; Ruban, D.A.; Ermolaev, V.A. Accessibility of geoheritage sites—A methodological proposal. Heritage 2021, 4, 1080–1091. [Google Scholar] [CrossRef]
- Bedanokov, M.K.; Chich, S.K.; Chetyz, D.Y.; Trepet, S.A.; Lebedev, S.A.; Kostianoy, A.G. Physicogeographical characteristics of the Republic of Adygea. Handb. Environ. Chem. 2020, 106, 19–55. [Google Scholar]
- Ruban, D.A. Mountains Ranges and Summits of the Northeastern Periphery of the Lagonaki Highland; DGTU-Print: Rostov-on-Don, Russia, 2020. (In Russian) [Google Scholar]
- Duszyński, F.; Migoń, P.; Strzelecki, M.C. Escarpment retreat in sedimentary tablelands and cuesta landscapes—Landforms, mechanisms and patterns. Earth-Sci. Rev. 2019, 196, 1028. [Google Scholar] [CrossRef]
- Alekseeva, A.E.; Ershov, A.V.; Linev, D.N. Numerical modeling of uplift and erosion at the Western Caucasus orogen in the Neogene-Quaternary. Mosc. Univ. Geol. Bull. 2014, 69, 213–218. [Google Scholar] [CrossRef]
- Ismail-Zadeh, A.; Adamia, S.; Chabukiani, A.; Chelidze, T.; Cloetingh, S.; Floyd, M.; Gorshkov, A.; Gvishiani, A.; Ismail-Zadeh, T.; Kaban, M.K.; et al. Geodynamics, seismicity, and seismic hazards of the Caucasus. Earth-Sci. Rev. 2020, 207, 103222. [Google Scholar] [CrossRef]
- Van Hinsbergen, D.J.J.; Torsvik, T.H.; Schmid, S.M.; Matenco, L.C.; Maffione, M.; Vissers, R.L.M.; Gurer, D.; Spakman, W. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Res. 2020, 81, 79–229. [Google Scholar] [CrossRef]
- Popov, Y.V.; Pustovit, O.E.; Tereshchenko, V.A. Accessory chrome spinels of serpentinites of tectonic melange of the Dakhov uplift (Greater Caucasus). Geol. Geofiz. Yuga Ross. 2020, 10, 38–55. [Google Scholar]
- Rostovtsev, K.O.; Agaev, V.B.; Azarian, N.R.; Babaev, R.G.; Besnosov, N.V.; Hassanov, N.A.; Zesashvili, V.I.; Lomize, M.G.; Paitschadze, T.A.; Panov, D.I.; et al. Jurassic of the Caucasus; Nauka: St. Petersburg, Russia, 1992. (In Russian) [Google Scholar]
- Ruban, D.A. Jurassic encrinites and shoreline shifts in the Greater Caucasus basin. Stratigr. Sedimentol. Oil-Gas Basins 2012, 2, 72–84. [Google Scholar]
- Adamia, S.; Alania, V.; Chabukiani, A.; Kutelia, Z.; Sadradze, N. Great Caucasus (Cavcasioni): A Long-lived North-Tethyan Back-Arc Basin. Turk. J. Earth Sci. 2011, 20, 611–628. [Google Scholar] [CrossRef]
- Golonka, J. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 2004, 381, 235–273. [Google Scholar] [CrossRef]
- Yasamanov, N.A. Landscape-Climatic Conditions of the Jurassic, the Creaceous, and the Paleogene in the South of the USSR; Nedra: Moskva, USSR, 1978. (In Russian) [Google Scholar]
- Kazmin, V.G.; Tikhonova, N.F. Evolution of Early Mesozoic back-arc basins in the Black Sea—Caucasus segment of a Tethyan active margin. Geol. Soc. Spec. Publ. 2006, 260, 179–200. [Google Scholar] [CrossRef]
- Okay, A.I.; Nikishin, A.M. Tectonic evolution of the southern margin of Laurasia in the Black Sea region. Int. Geol. Rev. 2015, 57, 1051–1076. [Google Scholar] [CrossRef]
- Saintot, A.; Brunet, M.-F.; Yakovlev, F.; Sébrier, M.; Stephenson, R.; Ershov, A.; Chalot-Prat, F.; McCann, T. The Mesozoic-Cenozoic tectonic evolution of the Greater Caucasus. Geol. Soc. Lond. Mem. 2006, 32, 277–289. [Google Scholar] [CrossRef] [Green Version]
- Vasey, D.A.; Cowgill, E.; Cooper, K.M. A preliminary framework for magmatism in modern continental back-arc basins and its application to the Triassic-Jurassic tectonic evolution of the Caucasus. Geochem. Geophys. Geosyst. 2021, 22, e2020GC009490. [Google Scholar] [CrossRef]
- Brilha, J. Inventory and quantitative assessment of geosites and geodiversity sites: A review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Henriques, M.H.; dos Reis, R.P.; Garcia, G.G.; Joao, P.; Marques, R.M.; Custodio, S. Developing paleogeographic heritage concepts and ideas through the Upper Jurassic record of the Salgado and Consolacao geosites (Lusitanian Basin, Portugal). Resour. Policy 2022, 76, 102594. [Google Scholar] [CrossRef]
- Prosser, C.; Murphy, M.; Larwood, J. Geological Conservation: A Guide to Good Practice; English Nature: Peterborough, UK, 2006. [Google Scholar]
- Mucivuna, V.C.; Garcia, M.D.G.M.; Reynard, E. Comparing quantitative methods on the evaluation of scientific value in geosites: Analysis from the Itatiaia National Park, Brazil. Geomorphology 2022, 396, 107988. [Google Scholar] [CrossRef]
- Warowna, J.; Zglobicki, W.; Kolodynska-Gawrysiak, R.; Gajek, G.; Gawrysiak, L.; Telecka, M. Geotourist values of loess geoheritage within the planned Geopark Malopolska Vistula River Gap, E Poland. Quat. Int. 2016, 399, 46–57. [Google Scholar] [CrossRef]
- Kirillova, K.; Fu, X.; Lehto, X.; Cai, L. What makes a destination beautiful? Dimensions of tourist aesthetic judgment. Tour. Manag. 2014, 42, 282–293. [Google Scholar] [CrossRef]
- Bollati, I.; Zucali, M.; Giovenco, C.; Pelfini, M. Geoheritage and sport climbing activities: Using the Montestrutto cliff (Austroalpine domain, Western Alps) as an example of scientific and educational representativeness. Ital. J. Geosci. 2014, 133, 187–199. [Google Scholar] [CrossRef]
- Panizza, V.; Mennella, M. Assessing geomorphosites used for rock climbing. The example of Monteleone Rocca Doria (Sardinia, Italy). Geogr. Helv. 2007, 62, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Ruban, D.A.; Ermolaev, V.A. Unique geology and climbing: A literature review. Geosciences 2020, 10, 259. [Google Scholar] [CrossRef]
- Bentivenga, M.; Palladino, G.; Prosser, G.; Guglielmi, P.; Geremia, F.; Laviano, A. A Geological Itinerary Through the Southern Apennine Thrust Belt (Basilicata—Southern Italy). Geoheritage 2017, 9, 1–17. [Google Scholar] [CrossRef]
- Palladino, G.; Prosser, G.; Bentivenga, M. The Geological Itinerary of Sasso di Castalda: A Journey into the Geological History of the Southern Apennine Thrust-belt (Basilicata, Southern Italy). Geoheritage 2013, 5, 47–58. [Google Scholar] [CrossRef]
- Fuertes-Gutiérrez, I.; Fernández-Martínez, E. Geosites inventory in the Leon Province (Northwestern Spain): A tool to introduce geoheritage into regional environmental management. Geoheritage 2010, 2, 57–75. [Google Scholar] [CrossRef]
- Migoń, P.; Pijet-Migoń, E. Viewpoint geosites—Values, conservation and management issues. Proc. Geol. Assoc. 2017, 128, 511–522. [Google Scholar] [CrossRef]
- Mikhailenko, A.V.; Ruban, D.A. Environment of viewpoint geosites: Evidence from the Western Caucasus. Land 2019, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- Bichler, B.F.; Peters, M. Soft adventure motivation: An exploratory study of hiking tourism. Tour. Rev. 2021, 76, 473–488. [Google Scholar] [CrossRef]
- Buckley, R. Adventure tourism as a research tool in non-tourism disciplines. Tour. Recreat. Res. 2014, 39, 39–49. [Google Scholar] [CrossRef]
- Gross, S.; Sand, M. Adventure tourism: A perspective paper. Tour. Rev. 2020, 75, 153–157. [Google Scholar] [CrossRef]
- Ponte, J.; Couto, G.; Sousa, Á.; Pimentel, P.; Oliveira, A. Idealizing adventure tourism experiences: Tourists’ self-assessment and expectations. J. Outdoor Recreat. Tour. 2021, 35, 100379. [Google Scholar] [CrossRef]
- Janowski, I.; Gardiner, S.; Kwek, A. Dimensions of adventure tourism. Tour. Manag. Perspect. 2021, 37, 100776. [Google Scholar] [CrossRef]
- Rantala, O.; Rokenes, A.; Valkonen, J. Is adventure tourism a coherent concept? A review of research approaches on adventure tourism. Ann. Leis. Res. 2018, 21, 539–552. [Google Scholar] [CrossRef]
- Rantala, O.; Hallikainen, V.; Ilola, H.; Tuulentie, S. The softening of adventure tourism. Scand. J. Hosp. Tour. 2018, 18, 343–361. [Google Scholar] [CrossRef] [Green Version]
- Ivlieva, O.V.; Shmytkova, A.V.; Sukhov, R.I.; Kushnir, K.V.; Grigorenko, T.N. Assessing the tourist and recreational potential in the South of Russia. E3S Web Conf. 2020, 208, 05013. [Google Scholar] [CrossRef]
- Ignatyeva, M.; Yurak, V.; Dushin, A. Valuing natural resources and ecosystem services: Systematic review of methods in use. Sustainability 2022, 14, 1901. [Google Scholar] [CrossRef]
- Farsani, N.T.; Mortazavi, M.; Bahrami, A.; Kalantary, R.; Bizhaem, F.K. Traditional crafts: A tool for geo-education in geotourism. Geoheritage 2017, 9, 577–584. [Google Scholar] [CrossRef]
- Rodrigues, J.; Neto de Carvalho, C.; Ramos, M.; Ramos, R.; Vinagre, A.; Vinagre, H. Geoproducts—Innovative development strategies in UNESCO Geoparks: Concept, implementation methodology, and case studies from Naturtejo Global Geopark, Portugal. Int. J. Geoheritage Parks 2021, 9, 108–128. [Google Scholar] [CrossRef]
- Reynard, E.; Coratza, P. Scientific research on geomorphosites. A review of the activities of the IAG working group on geomorphosites over the last twelve years. Geogr. Fis. Din. Quat. 2013, 36, 159–168. [Google Scholar]
- Ermolaev, V.A.; Yashalova, N.N.; Ruban, D.A. Cheese as a tourism resource in Russia: The first report and relevance to sustainability. Sustainability 2019, 11, 5520. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruban, D.A.; Mikhailenko, A.V.; Ermolaev, V.A. Inverted Landforms of the Western Caucasus: Implications for Geoheritage, Geotourism, and Geobranding. Heritage 2022, 5, 2315-2331. https://doi.org/10.3390/heritage5030121
Ruban DA, Mikhailenko AV, Ermolaev VA. Inverted Landforms of the Western Caucasus: Implications for Geoheritage, Geotourism, and Geobranding. Heritage. 2022; 5(3):2315-2331. https://doi.org/10.3390/heritage5030121
Chicago/Turabian StyleRuban, Dmitry A., Anna V. Mikhailenko, and Vladimir A. Ermolaev. 2022. "Inverted Landforms of the Western Caucasus: Implications for Geoheritage, Geotourism, and Geobranding" Heritage 5, no. 3: 2315-2331. https://doi.org/10.3390/heritage5030121
APA StyleRuban, D. A., Mikhailenko, A. V., & Ermolaev, V. A. (2022). Inverted Landforms of the Western Caucasus: Implications for Geoheritage, Geotourism, and Geobranding. Heritage, 5(3), 2315-2331. https://doi.org/10.3390/heritage5030121