Challenges for the Protection of Underwater Cultural Heritage (UCH), from Waterlogged and Weathered Stone Materials to Conservation Strategies: An Overview
Abstract
:1. Introduction
2. Stone Materials’ Damage Underwater
Bioerosion and Calcareous Materials
3. Sampling and Analytical Methods Applied in Geosciences to Study UCH
4. New Materials and Experimentations for the Stone Materials’ Protection in Underwater Sites
5. Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UNESCO. The entry into force of the 2001 UNESCO Convention on the Protection of the Underwater Cultural Heritage. In Proceedings of the Convention on the Protection of the Underwater Cultural Heritage, Paris, France, 2 November 2001. [Google Scholar]
- Cronyn, J.M. Introducing Archaeological Conservation. In Elements of Archaeological Conservation; Routledge: London, UK, 1990; pp. 1–10. [Google Scholar]
- Hamilton, D.L. Basic Methods of Conserving Underwater Archaeological Material Culture; United States Department of Defense Legacy Resource Management Program: Washington, DC, USA, 1996; p. 128. [Google Scholar]
- Aloise, P.; Ricca, M.; Russa, M.F.; Ruffolo, S.A.; Belfiore, C.M.; Padeletti, G.; Crisci, G.M.; La Russa, M.F. Diagnostic analysis of stone materials from underwater excavations: The case study of the Roman archaeological site of Baia (Naples, Italy). Appl. Phys. A 2013, 114, 655–662. [Google Scholar] [CrossRef]
- La Russa, M.F.; Ricca, M.; Belfiore, C.M.; Ruffolo, S.A.; Álvarez De Buergo Ballester, M.; Crisci, G.M. The Contribution of Earth Sciences to the Preservation of Underwater Archaeological Stone Materials: An Analytical Approach. JCS 2015, 6, 335–348. [Google Scholar]
- Ricca, M.; Comite, V.; La Russa, M.F.; Barca, D. Diagnostic analysis of bricks from the underwater archaeological site of Baia (Naples, Italy): Preliminary results. Rendiconti Online della Società Geologica Italiana 2016, 38, 85–88. [Google Scholar] [CrossRef]
- Cámara, B.; De Buergo, M.Á.; Bethencourt, M.; Fernández-Montblanc, T.; La Russa, M.F.; Ricca, M.; Fort, R.; Gallego, B.C. Biodeterioration of marble in an underwater environment. Sci. Total Environ. 2017, 609, 109–122. [Google Scholar] [CrossRef]
- European Convention on the Protection of the Archaeological Heritage (Revised). 1992. Available online: https://www.coe.int/en/web/conventions/full-list/-/conventions/treaty/143 (accessed on 12 May 2020).
- Davidde, B. Underwater archaeological parks: A new perspective and a challenge for conservation—The Italian panorama. Int. J. Naut. Archaeol. 2002, 31, 83–88. [Google Scholar] [CrossRef]
- Crisci, G.M.; Russa, M.F.; Macchione, M.; Malagodi, M.; Palermo, A.M.; Ruffolo, S.A.; La Russa, M.F. Study of archaeological underwater finds: Deterioration and conservation. Appl. Phys. A 2010, 100, 855–863. [Google Scholar] [CrossRef]
- Guirado, S.; Fortes, F.J.; Laserna, J. Elemental analysis of materials in an underwater archeological shipwreck using a novel remote laser-induced breakdown spectroscopy system. Talanta 2015, 137, 182–188. [Google Scholar] [CrossRef]
- Bruno, F.; Muzzupappa, M.; Barbieri, L.; Gallo, A.; Ritacco, G.; Lagudi, A.; La Russa, M.F.; Ruffolo, S.A.; Crisci, G.M.; Ricca, M.; et al. The CoMAS Project: New Materials and Tools for Improving the In situ Documentation, Restoration, and Conservation of Underwater Archaeological Remains. Mar. Technol. Soc. J. 2016, 50, 108–118. [Google Scholar] [CrossRef]
- Randazzo, L.; Ricca, M.; Ruffolo, S.; Aquino, M.; Petriaggi, B.D.; Enei, F.; La Russa, M.F. An Integrated Analytical Approach to Define the Compositional and Textural Features of Mortars Used in the Underwater Archaeological Site of Castrum Novum (Santa Marinella, Rome, Italy). Minerals 2019, 9, 268. [Google Scholar] [CrossRef] [Green Version]
- Gregory, D.; Jensen, P.; Strætkvern, K. Conservation and in situ preservation of wooden shipwrecks from marine environments. J. Cult. Herit. 2012, 13, S139–S148. [Google Scholar] [CrossRef]
- Belfiore, C.M.; La Russa, M.F.; Barca, D.; Galli, G.; Pezzino, A.; Ruffolo, S.A.; Viccaro, M.; Fichera, G.V. A trace element study for the provenance attribution of ceramic artefacts: The case of Dressel 1 amphorae from a late-Republican ship. J. Archaeol. Sci. 2014, 43, 91–104. [Google Scholar] [CrossRef]
- Ricca, M.; Belfiore, C.M.; Ruffolo, S.A.; Barca, D.; De Buergo, M.A.; Crisci, G.M.; La Russa, M.F. Multi-analytical approach applied to the provenance study of marbles used as covering slabs in the archaeological submerged site of Baia (Naples, Italy): The case of the “Villa con ingresso a protiro”. Appl. Surf. Sci. 2015, 357, 1369–1379. [Google Scholar] [CrossRef]
- Ruffolo, S.A.; Ricca, M.; Macchia, A.; La Russa, M.F. Antifouling coatings for underwater archaeological stone materials. Prog. Org. Coat. 2017, 104, 64–71. [Google Scholar] [CrossRef]
- Jang, S.; Nam, B.; Park, D.; Kim, H.; Lee, C.H.; Yu, J.E. Desalination characteristics for ceramics excavated from Taean shipwreck, Korea. J. Cult. Herit. 2013, 14, 229–237. [Google Scholar] [CrossRef]
- Lopez-Arce, P.; Zornoza-Indart, A.; Gomez-Villalba, L.S.; Perez-Monserrat, E.M.; De Buergo, M.A.; Vivar, G.; Fort, R. Archaeological ceramic amphorae from underwater marine environments: Influence of firing temperature on salt crystallization decay. J. Eur. Ceram. Soc. 2013, 33, 2031–2042. [Google Scholar] [CrossRef] [Green Version]
- Ricca, M.; La Russa, M.F.; Ruffolo, S.A.; Davidde, B.; Barca, D.; Crisci, G.M. Mosaic marble tesserae from the underwater archaeological site of Baia (Naples, Italy): Determination of the provenance. Eur. J. Miner. 2014, 26, 323–331. [Google Scholar] [CrossRef]
- La Russa, M.F.; Ruffolo, S.A.; Ricci, S.; Davidde Petriaggi, B.; Barca, D.; Ricca, M.; Capristo, V. A Multidisciplinary approach for the study of underwater artefacts: The case of Tritone Barbato marble statue (Grotta Azzurra, Island of Capri, Naples). Period. Mineral. 2013, 82, 101–111. [Google Scholar]
- Belfiore, C.M.; La Russa, M.F.; Randazzo, L.; Montana, G.; Pezzino, A.; Ruffolo, S.A.; Aloise, P. Laboratory tests addressed to realize customized restoration procedures of underwater archaeological ceramic finds. Appl. Phys. A 2013, 114, 741–752. [Google Scholar] [CrossRef]
- Rovella, N.; Comite, V.; Ricca, M. The Methodology of Investigation On Red- And Black-Figured Pottery of Unknown Provenance. IJCS 2016, 7, 954–964. [Google Scholar]
- Wahl, M. Marine epibioses: 1 Fouling and antifouling: Some basic aspects. Mar. Ecol. Prog. Ser. 1989, 58, 175–189. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, C.N. La biocostruzione negli ecosistemi marini e la biologia marina italiana. Biologia Marina Mediterranea 2018, 8, 112–130. [Google Scholar]
- Callow, M.E.; Callow, J.A. Marine biofouling: A sticky problem. Biologist 2002, 49, 1–5. [Google Scholar]
- Basso, D. Carbonate production by calcareous red algae and global change. Geodiversitas 2012, 34, 13–33. [Google Scholar] [CrossRef]
- Antonelli, F.; Perasso, C.S.; Ricci, S.; Petriaggi, B.D. Impact of the sipunculan Aspidosiphon muelleri Diesing, 1851 on calcareous underwater Cultural Heritage. Int. Biodeterior. Biodegrad. 2015, 100, 133–139. [Google Scholar] [CrossRef]
- Casoli, E.; Ricci, S.; Belluscio, A.; Gravina, M.F.; Ardizzone, G. Settlement and colonization of epi-endobenthic communities on calcareous substrata in an underwater archaeological site. Mar. Ecol. 2014, 36, 1060–1074. [Google Scholar] [CrossRef]
- Davidde Petriaggi, B.; Ricci, S.; Vlachogianni, E.; Antonelli, F.; Sacco Perasso, C.; Schistocheili, K. An overview of the state of conservation of the marble artefacts from the Antikythera shipwreck. Archaeol. Marit. Mediter. 2017, 14, 13–74. [Google Scholar]
- Ricci, S.; Sanfilippo, R.; Basso, D.; Perasso, C.S.; Antonelli, F.; Rosso, A. Benthic Community Formation Processes of the Antikythera Shipwreck Statues Preserved in the National Archaeological Museum of Athens (Greece). J. Marit. Archaeol. 2018, 14, 81–106. [Google Scholar] [CrossRef]
- Bromley, R.G. A stratigraphy of marine bioerosion. Geol. Soc. Lond. Spéc. Publ. 2004, 228, 455–479. [Google Scholar] [CrossRef]
- Wisshak, M. High-Latitude Bioerosion: The Kosterfjord Experiment; Springer: Berlin, Germany, 2006; p. 202. [Google Scholar]
- Wisshak, M.; Tapanila, L. Current Developments in Bioerosion; Springer: Berlin, Germany, 2008; p. 499. [Google Scholar]
- Davidde Petriaggi, B.; Bartolini, M.; Poggi, D.; Ricci, S. Marine bioerosion of stone artefacts preserved in the Museo Archeologico dei CampiFlegrei in the Castle of Baia (Naples). Archaeol. Maritima Mediterr. 2010, 7, 1000–1041. [Google Scholar]
- Ricci, S.; Perasso, C.S.; Antonelli, F.; Petriaggi, B.D. Marine bivalves colonizing Roman artefacts recovered in the Gulf of Pozzuoli and in the Blue Grotto in Capri (Naples, Italy): Boring and nestling species. Int. Biodeterior. Biodegrad. 2015, 98, 89–100. [Google Scholar] [CrossRef]
- Ricci, S.; Antonelli, F.; Perasso, C.S.; Poggi, D.; Casoli, E. Bioerosion of submerged lapideous artefacts: Role of endolithic rhizoids of Acetabularia acetabulum (Dasycladales, Chlorophyta). Int. Biodeterior. Biodegrad. 2016, 107, 10–16. [Google Scholar] [CrossRef]
- Taylor, P.D.; Wilson, M. Palaeoecology and evolution of marine hard substrate communities. Earth Sci. Rev. 2003, 62, 1–103. [Google Scholar] [CrossRef]
- Rosell, D. Excavating and endolithic sponge species (Porifera) from the Mediterranean: Species descriptions and identification key. Org. Divers. Evol. 2002, 2, 55–86. [Google Scholar] [CrossRef] [Green Version]
- Golubic, S.; Perkins, R.D.; Lukas, K.J. Boring microorganisms and microborings in carbonate substrates. In Study of Trace Fossils; Springer: New York, NY, USA, 1975; p. 259. [Google Scholar]
- Taylor, P.D. The impact of the SEM in studies of living and fossil bryozoans. Syst. Assoc. Spec. 1990, 41, 259–280. [Google Scholar]
- Petriaggi, R.; Davidde Petriaggi, B. Restaurare sott’acqua: Cinque anni di sperimentazione del NIAS-ICR. Boll. ICR Nuova Ser. 2007, 14, 127–141. [Google Scholar]
- Gregory, D.; Matthiesen, H. The 4th International Conference on Preserving Archaeological Remains In Situ (PARIS4): 23–26 May 2011, the National Museum of Denmark, Copenhagen. Conserv. Manag. Archaeol. Sites 2012, 14, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ricci, S.; Antonelli, F.; Sacco Perasso, C.; Davidde Petriaggi, B. Indagini Quali-Quantitative Della Colonizzazione Biologica di Geotessuti Utilizzati per la Protezione In Situ di Pavimenti Musivi Sommersi. In Proceedings of the POSTER. II Convegno Tematico di Biologia e Biotecnologie per i Beni Culturali Biologia e Archeobiologia: Dalla Conoscenza alla Conservazione Preventiva, Palermo, Italy, 19–21 March 2015. [Google Scholar]
- Randazzo, L.; Ricca, M.; Pellegrino, D.; La Russa, D.; Marrone, A.; Macchia, A.; Rivaroli, L.; Enei, F.; La Russa, M.F. Anti-fouling additives for the consolidation of archaeological mortars in underwater environment: Efficacy tests performed on the apsidal fishpond of Castrum Novum (Rome, Italy). IJCS 2020, 11, 243–250. [Google Scholar]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis Journal of Photochemistry and Photobiology C. Photochem. Rev. 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Hou, X.; Huang, M.-D.; Wu, X.-L.; Liu, A. Preparation and studies of photocatalytic silver-loaded TiO2 films by hybrid sol–gel method. Chem. Eng. J. 2009, 146, 42–48. [Google Scholar] [CrossRef]
- Gregory, D.J.; Manders, M. Best practices for locating, surveying, assessing, monitoring and preserving underwater archaeological sites. In SASMAP Guideline Manual 2; Gregory, D.J., Manders, M., Eds.; SASMAP Project: Amersfoort, The Netherlands, 2015. [Google Scholar]
- Davidde Petriaggi, B. Methods and strategies for the conservation and museum display in situ of underwater cultural heritage. Archaeol. Maritima Mediterr. 2004, 1, 137–150. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricca, M.; La Russa, M.F. Challenges for the Protection of Underwater Cultural Heritage (UCH), from Waterlogged and Weathered Stone Materials to Conservation Strategies: An Overview. Heritage 2020, 3, 402-411. https://doi.org/10.3390/heritage3020024
Ricca M, La Russa MF. Challenges for the Protection of Underwater Cultural Heritage (UCH), from Waterlogged and Weathered Stone Materials to Conservation Strategies: An Overview. Heritage. 2020; 3(2):402-411. https://doi.org/10.3390/heritage3020024
Chicago/Turabian StyleRicca, Michela, and Mauro Francesco La Russa. 2020. "Challenges for the Protection of Underwater Cultural Heritage (UCH), from Waterlogged and Weathered Stone Materials to Conservation Strategies: An Overview" Heritage 3, no. 2: 402-411. https://doi.org/10.3390/heritage3020024
APA StyleRicca, M., & La Russa, M. F. (2020). Challenges for the Protection of Underwater Cultural Heritage (UCH), from Waterlogged and Weathered Stone Materials to Conservation Strategies: An Overview. Heritage, 3(2), 402-411. https://doi.org/10.3390/heritage3020024