Assessing the Utility of Open-Access Bathymetric Data for Shipwreck Detection in the United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bathymetric LiDAR
2.2. Acoustic Bathymetry Systems
2.3. The Dataset: Open-Access Bathymetric Information from the NOAA
3. Results
3.1. Case Study 1: Long Island, New York
3.2. Case Study 2: The Massachusetts Coast
3.3. Case Study 3: Mississippi Delta (New Orleans, Louisiana)
3.4. Prospects for Automated Detection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bailey, G.; Flemming, N.C. Archaeology of the continental shelf: Marine resources, submerged landscapes and underwater archaeology. Quat. Sci. Rev. 2008, 27, 2153–2165. [Google Scholar] [CrossRef] [Green Version]
- McCoy, M.D. The Race to Document Archaeological Sites Ahead of Rising Sea Levels: Recent Applications of Geospatial Technologies in the Archaeology of Polynesia. Sustainability 2018, 10, 185. [Google Scholar] [CrossRef] [Green Version]
- Thompson, V.D.; Turck, J.A. Adaptive Cycles of Coastal Hunter-Gatherers. Am. Antiq. 2009, 74, 255–278. [Google Scholar] [CrossRef]
- Ward, I.; Smyth, D.; Veth, P.; McDonald, J.; McNeair, S. Recognition and value of submerged prehistoric landscape resources in Australia. Ocean Coast. Manag. 2018, 160, 167–174. [Google Scholar] [CrossRef]
- Flemming, N.C. The Role of the Submerged Prehistoric Landscape in Ground-Truthing Models of Human Dispersal During the Last Half Million Years. In 3D Recording and Interpretation for Maritime Archaeology; Springer Science and Business Media LLC: Berlin, Germany, 2017; Volume 20, pp. 269–283. [Google Scholar]
- Erlandson, J. As the world warms: Rising seas, coastal archaeology, and the erosion of maritime history. J. Coast. Conserv. 2010, 16, 137–142. [Google Scholar] [CrossRef]
- Hilton, M.; Walter, R.; Greig, K.; Konlechner, T. Burial, erosion, and transformation of archaeological landscapes. Prog. Phys. Geogr. Earth Environ. 2018, 42, 607–627. [Google Scholar] [CrossRef]
- Reimann, L.; Vafeidis, A.T.; Brown, S.; Hinkel, J.; Tol, R.S. Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise. Nat. Commun. 2018, 9, 4161. [Google Scholar] [CrossRef] [Green Version]
- Menna, F.; Agrafiotis, P.; Georgopoulos, A. State of the art and applications in archaeological underwater 3D recording and mapping. J. Cult. Herit. 2018, 33, 231–248. [Google Scholar] [CrossRef]
- Quinn, R.; Boland, D. The role of time-lapse bathymetric surveys in assessing morphological change at shipwreck sites. J. Archaeol. Sci. 2010, 37, 2938–2946. [Google Scholar] [CrossRef]
- Plets, R.; Quinn, R.; Forsythe, W.; Westley, K.; Bell, T.; Benetti, S.; McGrath, F.; Robinson, R. Using Multibeam Echo-Sounder Data to Identify Shipwreck Sites: Archaeological assessment of the Joint Irish Bathymetric Survey data. Int. J. Naut. Archaeol. 2011, 40, 87–98. [Google Scholar] [CrossRef]
- Westley, K.; Plets, R.; Quinn, R.; Mcgonigle, C.; Sacchetti, F.; Dale, M.; McNeary, R.; Clements, A. Optimising protocols for high-definition imaging of historic shipwrecks using multibeam echosounder. Archaeol. Anthropol. Sci. 2019, 11, 3629–3645. [Google Scholar] [CrossRef]
- Fernández-Montblanc, T.; Izquierdo, A.; Quinn, R.; Bethencourt, M. Waves and wrecks: A computational fluid dynamic study in an underwater archaeological site. Ocean Eng. 2018, 163, 232–250. [Google Scholar] [CrossRef]
- Bailey, G.N.; Harff, J.; Sakellariou, D. (Eds.) Under the Sea: Archaeology and Palaeolandscapes of the Continental Shelf; Coastal Research Library, Springer International Publishing: Cham, Switzerland, 2017; Volume 20, ISBN 978-3-319-53158-8. [Google Scholar]
- Flemming, N.C. Survival of submerged Lithic and Bronze Age artifact sites: A review of case histories. In Quaternary Coastlines and Marine Archaeology: Towards the Prehistory of Land Bridges and Continental Shelves; Masters, P.M., Flemming, N.C., Eds.; Academic Press: London, UK, 1983; pp. 135–174. [Google Scholar]
- Lodolo, E.; Ben-Avraham, Z. A submerged monolith in the Sicilian Channel (central Mediterranean Sea): Evidence for Mesolithic human activity. J. Archaeol. Sci. Rep. 2015, 3, 398–407. [Google Scholar] [CrossRef]
- Sturt, F.; Flemming, N.; Carabias, D.; Jöns, H.; Adams, J. The next frontiers in research on submerged prehistoric sites and landscapes on the continental shelf. Proc. Geol. Assoc. 2018, 129, 654–683. [Google Scholar] [CrossRef] [Green Version]
- Shih, P.T.-Y.; Chen, Y.-H.; Chen, J.-C. Historic Shipwreck Study in Dongsha Atoll with Bathymetric LiDAR. Archaeol. Prospect. 2013, 21, 139–146. [Google Scholar] [CrossRef]
- Bingham, B.; Foley, B.; Singh, H.; Camilli, R.; Delaporta, K.; Eustice, R.M.; Mallios, A.; Mindell, D.; Roman, C.; Sakellariou, D. Robotic tools for deep water archaeology: Surveying an ancient shipwreck with an autonomous underwater vehicle. J. Field Robot. 2010, 27, 702–717. [Google Scholar] [CrossRef] [Green Version]
- Marx, R.F. Shipwrecks in the Americas; Dover: New York, NY, USA, 1987. [Google Scholar]
- Anderson, D.G.; Bissett, T.G.; Yerka, S.J.; Wells, J.J.; Kansa, E.C.; Kansa, E.; Myers, K.N.; DeMuth, R.C.; White, D.A. Sea-level rise and archaeological site destruction: An example from the southeastern United States using DINAA (Digital Index of North American Archaeology). PLoS ONE 2017, 12, e0188142. [Google Scholar] [CrossRef] [Green Version]
- Passaro, S.; Barra, M.; Saggiomo, R.; Di Giacomo, S.; Leotta, A.; Uhlen, H.; Mazzola, S. Multi-resolution morpho-bathymetric survey results at the Pozzuoli–Baia underwater archaeological site (Naples, Italy). J. Archaeol. Sci. 2013, 40, 1268–1278. [Google Scholar] [CrossRef]
- Doneus, M.; Doneus, N.; Briese, C.; Pregesbauer, M.; Mandlburger, G.; Verhoeven, G. Airborne laser bathymetry–detecting and recording submerged archaeological sites from the air. J. Archaeol. Sci. 2013, 40, 2136–2151. [Google Scholar] [CrossRef]
- Delgado, J.P.; Symons, L.C.; Elliott, K.; Cantelas, F.; Schwemmer, R.V. Assessment of the Deep Sea Wreck USS Independence. Front. Mar. Sci. 2016, 3, 62. [Google Scholar] [CrossRef] [Green Version]
- Farr, R.H.; Momber, G.; Satchell, J.; Flemming, N.C. Paleolandscapes of the Celtic Sea and the Channel/La Manche. In Submerged Landscapes of the European Continental Shelf; Wiley: Hoboken, NJ, USA, 2017; Volume 18, pp. 211–239. [Google Scholar]
- Bates, C.R.; Lawrence, M.; Dean, M.; Robertson, P. Geophysical Methods for Wreck-Site Monitoring: The Rapid Archaeological Site Surveying and Evaluation (RASSE) programme. Int. J. Naut. Archaeol. 2010, 40, 404–416. [Google Scholar] [CrossRef]
- Warren, D.; Church, R.A.; Davey, R. Discovering HMS Ark Royal. Hydro Int. 2004, 8, 26–29. [Google Scholar]
- Wood, D.A.; Taylor, J.C.; Hoyt, J.; Casserley, T.R.; Ebert, E.; Paxton, A. Utilizing Multibeam Sonar Water Column Data to Interpret Fish Populations and Structure Over Shallow-Water Historic Wrecks. In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 10–14 December 2018; p. OS33D-1924. [Google Scholar]
- Hoffman, W.; Hoyt, J.; Sassorossi, W. North Carolina Collaborative Archaeological Survey: Wilmington East and West Wind Energy Areas; Bureau of Ocean Energy Management, National Oceanic and Atmospheric Administration: Sterling, VA, USA, 2020; p. 56.
- Judge, M.T.; McGrath, F.; Cullen, S.; Verbruggen, K. INFOMAR, Ireland’s National Seabed Mapping Programme; Sharing Valuable Insights. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 11–15 December 2017. [Google Scholar]
- Garcia, E.G. Bottom Trawling and Scallop Dredging in the Arctic: Impacts of Fishing on Non-Target Species, Vulnerable Habitats and Cultural Heritage; Nordic Council of Ministers: Copenhagen, Denmark, 2007. [Google Scholar]
- International, I.; Research, D.G.; Research, S.A. Inventory and Analysis of Coastal and Submerged Archaeological Site Occurrence on the Pacific Outer Continental Shelf; U.S. Department of the Interior Bureau of Ocean Energy Management: San Diego, CA, USA, 2013; p. 366.
- Guyot, A.; Lennon, M.; Thomas, N.; Gueguen, S.; Petit, T.; Lorho, T.; Cassen, S.; Hubert-Moy, L. Airborne Hyperspectral Imaging for Submerged Archaeological Mapping in Shallow Water Environments. Remote Sens. 2019, 11, 2237. [Google Scholar] [CrossRef] [Green Version]
- Davis, D.S.; Lipo, C.P.; Sanger, M.C. A comparison of automated object extraction methods for mound and shell-ring identification in coastal South Carolina. J. Archaeol. Sci. Rep. 2019, 23, 166–177. [Google Scholar] [CrossRef]
- Cuenca, E.C. An approach to the automatic surveying of prehistoric barrows through LiDAR. Quat. Int. 2017, 435, 135–145. [Google Scholar] [CrossRef]
- Freeland, T.; Heung, B.; Burley, D.V.; Clark, G.J.; Knudby, A. Automated feature extraction for prospection and analysis of monumental earthworks from aerial LiDAR in the Kingdom of Tonga. J. Archaeol. Sci. 2016, 69, 64–74. [Google Scholar] [CrossRef]
- Guyot, A.; Hubert-Moy, L.; Lorho, T. Detecting Neolithic Burial Mounds from LiDAR-Derived Elevation Data Using a Multi-Scale Approach and Machine Learning Techniques. Remote Sens. 2018, 10, 225. [Google Scholar] [CrossRef] [Green Version]
- Trier, O.D.; Zortea, M.; Tonning, C. Automatic detection of mound structures in airborne laser scanning data. J. Archaeol. Sci. Rep. 2015, 2, 69–79. [Google Scholar] [CrossRef]
- Plets, R.; Dix, J.; Bates, R. Marine Geophysics Data Acquisition, Processing and Interpretation; English Heritage: Swindon, UK, 2013. [Google Scholar]
- Heyman, W.D.; Ecochard, J.-L.B.; Biasi, F.B. Low-Cost Bathymetric Mapping for Tropical Marine Conservation—A Focus on Reef Fish Spawning Aggregation Sites. Mar. Geod. 2007, 30, 37–50. [Google Scholar] [CrossRef]
- Kachelriess, D.; Wegmann, M.; Gollock, M.; Pettorelli, N. The application of remote sensing for marine protected area management. Ecol. Indic. 2014, 36, 169–177. [Google Scholar] [CrossRef]
- Beck, A.; Philip, G.; Abdulkarim, M.; Donoghue, D.N.M. Evaluation of Corona and Ikonos high resolution satellite imagery for archaeological prospection in western Syria. Antiquity 2007, 81, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Davis, D.S. Object-based image analysis: A review of developments and future directions of automated feature detection in landscape archaeology. Archaeol. Prospect. 2018, 26, 155–163. [Google Scholar] [CrossRef]
- Goyer, G.G.; Watson, R. The Laser and its Application to Meteorology. Bull. Am. Meteorol. Soc. 1963, 44, 564–570. [Google Scholar] [CrossRef] [Green Version]
- Chase, A.F.; Chase, D.Z.; Fisher, C.T.; Leisz, S.J.; Weishampel, J.F. Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology. Proc. Natl. Acad. Sci. USA 2012, 109, 12916–12921. [Google Scholar] [CrossRef] [Green Version]
- Evans, D.; Fletcher, R.J.; Pottier, C.; Chevance, J.-B.; Soutif, D.; Tan, B.S.; Im, S.; Ea, D.; Tin, T.; Kim, S.; et al. Uncovering archaeological landscapes at Angkor using lidar. Proc. Natl. Acad. Sci. USA 2013, 110, 12595–12600. [Google Scholar] [CrossRef] [Green Version]
- Inomata, T.; Pinzón, F.; Ranchos, J.L.; Haraguchi, T.; Nasu, H.; Fernandez-Diaz, J.C.; Aoyama, K.; Yonenobu, H. Archaeological Application of Airborne LiDAR with Object-Based Vegetation Classification and Visualization Techniques at the Lowland Maya Site of Ceibal, Guatemala. Remote Sens. 2017, 9, 563. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.; Ouimet, W.B. Rediscovering the lost archaeological landscape of southern New England using airborne light detection and ranging (LiDAR). J. Archaeol. Sci. 2014, 43, 9–20. [Google Scholar] [CrossRef]
- Krasinski, K.; Wygal, B.T.; Wells, J.; Martin, R.L.; Seager-Boss, F. Detecting Late Holocene cultural landscape modifications using LiDAR imagery in the Boreal Forest, Susitna Valley, Southcentral Alaska. J. Field Archaeol. 2016, 41, 1–16. [Google Scholar] [CrossRef]
- Witharana, C.; Ouimet, W.B.; Johnson, K. Using LiDAR and GEOBIA for automated extraction of eighteenth–late nineteenth century relict charcoal hearths in southern New England. GISci. Remote Sens. 2018, 55, 183–204. [Google Scholar] [CrossRef]
- Shell, C.; Roughley, C. Exploring the Loughcrew landscape: A new airborne approach. Archaeol. Irel. 2004, 18, 22–25. [Google Scholar]
- Bewley, R.; Crutchley, S.; Shell, C. New light on an ancient landscape: Lidar survey in the Stonehenge World Heritage Site. Antiquity 2005, 79, 636–647. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Doneus, M.; Miholjek, I.; Mandlburger, G.; Doneus, N.; Verhoeven, G.; Briese, C.; Pregesbauer, M. Airborne Laser Bathymetry for Documentation of Submerged Archaeological Sites in Shallow Water. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Zong, X.; Masini, N.; Wang, G.; Shi, P.; Khatteli, H.; Chen, F.; et al. Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sens. Environ. 2019, 232, 111280. [Google Scholar] [CrossRef]
- Cunningham, A.G.; Lillycrop, W.J.; Guenther, G.C.; Brooks, M.W. Shallow Water Laser Bathymetry: Accomplishments and Applications; US Army Corps of Engineers Mobile United States: Brighton, MD, USA, 1998.
- Lobb, M.A. Developing Terrestrial Laser Scanning of Threatened Coastal Archaeology with Special Reference to Intertidal Structures. Ph.D. Thesis, University of Southampton, Southampton, UK, 2016. [Google Scholar]
- Devereux, B.; Amable, G.; Crow, P. Visualisation of LiDAR terrain models for archaeological feature detection. Antiquity 2008, 82, 470–479. [Google Scholar] [CrossRef]
- Doneus, M. Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models. Remote Sens. 2013, 5, 6427–6442. [Google Scholar] [CrossRef] [Green Version]
- Fujii, N.; Saito, K.; Chiba, T.; Sata, I.; Yoshinaga, T.; Tasaki, K. The new three-dimensional visualization method of heritage sites by lidar data. ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2012, XXXIX, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Chase, A.S.Z.; Chase, D.Z.; Chase, A.F. LiDAR for Archaeological Research and the Study of Historical Landscapes. In Trends in Spatial Analysis and Modelling; Springer Science and Business Media LLC: Berlin, Germany, 2017; Volume 16, pp. 89–100. [Google Scholar]
- Singh, H.; Adams, J.; Mindell, D.; Foley, B. Imaging Underwater for Archaeology. J. Field Archaeol. 2000, 27, 319–328. [Google Scholar] [CrossRef]
- Church, R.A.; Warren, D.J. Sound Methods: The Necessity of High-resolution Geophysical Data for Planning Deepwater Archaeological Projects. Int. J. Hist. Archaeol. 2008, 12, 103–119. [Google Scholar] [CrossRef]
- McCarthy, J.; Benjamin, J.; Winton, T.; Van Duivenvoorde, W. The Rise of 3D in Maritime Archaeology. In 3D Recording and Interpretation for Maritime Archaeology; Springer Science and Business Media LLC: Berlin, Germany, 2019; Volume 31, pp. 1–10. [Google Scholar]
- Kelley, J.T.; Belknap, D.F.; Claesson, S. Drowned coastal deposits with associated archaeological remains from a sea-level “slowstand”: Northwestern Gulf of Maine, USA. Geology 2010, 38, 695–698. [Google Scholar] [CrossRef] [Green Version]
- Somma, R.; Iuliano, S.; Matano, F.; Molisso, F.; Passaro, S.; Sacchi, M.; Troise, C.; De Natale, G. High-resolution morpho-bathymetry of Pozzuoli Bay, southern Italy. J. Maps 2015, 12, 1–9. [Google Scholar] [CrossRef]
- Westley, K.; Bell, T.; Renouf, M.A.P.; Tarasov, L. Impact Assessment of Current and Future Sea-Level Change on Coastal Archaeological Resources—Illustrated Examples rom Northern Newfoundland. J. Isl. Coast. Archaeol. 2011, 6, 351–374. [Google Scholar] [CrossRef]
- Trabant, P. Applied high resolution geophysical methods: Offshore geoengineering hazards. Geophys. J. 1986, 86, 214–215. [Google Scholar]
- Moore, F.; Kelleher, C.; Brady, K.; McKeon, C.; Lawlor, I. RMS Lusitania: The Story of a Wreck; Department of the Culture, Heritage & the Gaeltacht, Department Communications, Climate Action and Environment and Stationery Office Dublin Ireland: Dublin, Ireland, 2019.
- Pelgas, P.; Wirtz, B. French experience using sub-bottom profiler combined with sonar multi-beam as a preventive archaeological diagnostic before dredging. Archaeol. Pol. 2015, 53, 336–340. [Google Scholar]
- Davis, D.S.; Sanger, M.; Lipo, C.P. Automated mound detection using lidar and object-based image analysis in Beaufort County, South Carolina. Southeast. Archaeol. 2018, 38, 23–37. [Google Scholar] [CrossRef]
- Danielson, J.J.; Poppenga, S.K.; Brock, J.C.; Evans, G.A.; Tyler, D.J.; Gesch, D.B.; Thatcher, C.A.; Barras, J.A. Topobathymetric Elevation Model Development using a New Methodology: Coastal National Elevation Database. J. Coast. Res. 2016, 76, 75–89. [Google Scholar] [CrossRef] [Green Version]
- ESRI. ArcGIS; Environmental Systems Research Institute, Inc.: Redlands, CA, USA, 2019. [Google Scholar]
- Palmer, R. Interpreting Aerial Images. In Interpreting Archaeological Topography: 3D Data, Visualisation and Observation; Opitz, R.S., Cowley, D.C., Eds.; Oxbow Books: Oxford, UK, 2013; pp. 76–87. ISBN 978-1-78297-110-8. [Google Scholar]
- Sheard, B. Lost Voyages: Two Centuries of Shipwrecks in the Approaches to New York; Aqua Quest Publications: New York, NY, USA, 1998. [Google Scholar]
- Water Clarity Long Island Sound Study. Available online: http://longislandsoundstudy.net/ecosystem-target-indicators/water-clarity/ (accessed on 18 September 2019).
- Massachusetts Water Resources Authority MWRA’s Harbor, Beaches and River Monitoring Data. Available online: http://www.mwra.state.ma.us/harbor/html/wq_data.htm (accessed on 18 March 2020).
- Wellfleet, M.A. 99 M.S.R.; Us, M. 02667 P.-3421 C. Shipwrecks-Cape Cod National Seashore (U.S. National Park Service). Available online: https://www.nps.gov/caco/learn/historyculture/shipwrecks.htm (accessed on 27 March 2020).
- Weekly Data Report. Lake Pontchartrain Basin Found; Lake Pontchartrain Basin Foundation. Available online: https://saveourlake.org/lpbf-programs/water-quality/weekly-data-report/ (accessed on 18 March 2020).
- Lambers, K. Airborne and Spaceborne Remote Sensing and Digital Image Analysis in Archaeology; Springer Science and Business Media LLC: Berlin, Germany, 2017; pp. 109–122. [Google Scholar]
- Traviglia, A.; Torsello, A. Landscape Pattern Detection in Archaeological Remote Sensing. Geoscience 2017, 7, 128. [Google Scholar] [CrossRef] [Green Version]
- Der Vaart, W.V.-V.; Lambers, K. Learning to Look at LiDAR: The Use of R-CNN in the Automated Detection of Archaeological Objects in LiDAR Data from the Netherlands. J. Comput. Appl. Archaeol. 2019, 2, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Liu, H.; Wang, S.; Yu, B.; Beck, R.; Hinkel, K. A localized contour tree method for deriving geometric and topological properties of complex surface depressions based on high-resolution topographical data. Int. J. Geogr. Inf. Sci. 2015, 29, 1–20. [Google Scholar] [CrossRef]
- Wu, Q.; Deng, C.; Chen, Z. Automated delineation of karst sinkholes from LiDAR-derived digital elevation models. Geomorphology 2016, 266, 1–10. [Google Scholar] [CrossRef]
- Lindsay, J.; Creed, I.F. Distinguishing actual and artefact depressions in digital elevation data. Comput. Geosci. 2006, 32, 1192–1204. [Google Scholar] [CrossRef]
- Magnini, L.; Bettineschi, C. Theory and practice for an object-based approach in archaeological remote sensing. J. Archaeol. Sci. 2019, 107, 10–22. [Google Scholar] [CrossRef]
- Fernández-Montblanc, T.; Quinn, R.; Izquierdo, A.; Bethencourt, M. Evolution of a Shallow Water Wave-Dominated Shipwreck Site: Fougueux (1805), Gulf of Cadiz. Geoarchaeology 2016, 31, 487–505. [Google Scholar] [CrossRef]
- Turck, J.A.; Thompson, V.D. Revisiting the resilience of Late Archaic hunter-gatherers along the Georgia coast. J. Anthropol. Archaeol. 2016, 43, 39–55. [Google Scholar] [CrossRef] [Green Version]
- Russo, M. Archaic Shell Rings of the Southeast U.S.: National Historic Landmarks Historic Context; Southeast Archeological Center, National Park Service: Tallahassee, FL, USA, 2006.
- Hawkins, A.; Stewart, S.; Banning, E. Interobserver bias in enumerated data from archaeological survey. J. Archaeol. Sci. 2003, 30, 1503–1512. [Google Scholar] [CrossRef]
- Proietti, M.; Pickston, A.; Graffitti, F.; Barrow, P.; Kundys, D.; Branciard, C.; Ringbauer, M.; Fedrizzi, A. Experimental test of local observer independence. Sci. Adv. 2019, 5, eaaw9832. [Google Scholar] [CrossRef] [Green Version]
- Davis, D.S.; Douglass, K. Aerial and Spaceborne Remote Sensing in African Archaeology: A Review of Current Research and Potential Future Avenues. Afr. Archaeol. Rev. 2020, 37, 9–24. [Google Scholar] [CrossRef]
- Davis, D.S. Geographic Disparity in Machine Intelligence Approaches for Archaeological Remote Sensing Research. Remote Sens. 2020, 12, 921. [Google Scholar] [CrossRef] [Green Version]
Accuracy Metric | Result |
---|---|
True Positive Rate | 71.33% |
False Negative Rate | 28.67% |
Potential New Identifications: True positive rate X (total detections—reidentified sites) | 135 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davis, D.S.; Buffa, D.C.; Wrobleski, A.C. Assessing the Utility of Open-Access Bathymetric Data for Shipwreck Detection in the United States. Heritage 2020, 3, 364-383. https://doi.org/10.3390/heritage3020022
Davis DS, Buffa DC, Wrobleski AC. Assessing the Utility of Open-Access Bathymetric Data for Shipwreck Detection in the United States. Heritage. 2020; 3(2):364-383. https://doi.org/10.3390/heritage3020022
Chicago/Turabian StyleDavis, Dylan S., Danielle C. Buffa, and Amy C. Wrobleski. 2020. "Assessing the Utility of Open-Access Bathymetric Data for Shipwreck Detection in the United States" Heritage 3, no. 2: 364-383. https://doi.org/10.3390/heritage3020022
APA StyleDavis, D. S., Buffa, D. C., & Wrobleski, A. C. (2020). Assessing the Utility of Open-Access Bathymetric Data for Shipwreck Detection in the United States. Heritage, 3(2), 364-383. https://doi.org/10.3390/heritage3020022