Deterioration of World Heritage Cave Monument of Ajanta, India: Insights to Important Biological Agents and Environment Friendly Solutions
Abstract
:1. Introduction
2. Study Area
3. Methodology
4. Results and Discussion
4.1. Deterioration of Ajanta Caves
4.2. Insect Behavior for Damage Control
- (a)
- Attraction: Also known as positive phototaxis. Many insects usually follow this light behavior and get attracted to the light source e.g., Lasioderma serricorne, and Trogoderma granarium. One can observe this common light behavior of insects during showers when a lot of insects get attracted to light source [3].
- (b)
- Repulsion: Also known as negative phototaxis. In negative phototaxis, insects move away from the light source e.g., Tetranychus urticae, and Neoseiulus womersley. Negative phototaxis is a little rare in comparison to positive phototaxis behavior of insects [8].
4.3. Insect Pest Control to Control Degradation of Heritage Structures
- (a)
- A regular spray of chemicals that includes insecticides and herbicides;
- (b)
- Consolidation of weak and loose plaster on cave walls;
- (c)
- Chemical treatment for the removal of superficial accretions;
- (d)
- Removing old preservative coat followed by applications of new preservative coat;
- (e)
- Regular cleaning of the caves;
- (f)
- Use of bio-pesticides (information not available).
5. Light-Based Control of Insect Pests
6. Conclusions and Way Forward
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bakri, A.F.; Yusuf, N.A.; Jaini, N. Managing Heritage Assets: Issues, Challenges and the Future of Historic Bukit Jugra, Selangor. Procedia Soc. Behav. Sci. 2012, 68, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, O.P.; Dhawan, S.; Garg, K.L.; Shaheen, F.; Pathak, N.; Misra, A. Study of biodeterioration of the Ajanta wall paintings. Int. Biodeterior. 1988, 121–129. [Google Scholar] [CrossRef]
- Agrawal, O.P. Conservation problems of Ajanta wall paintings. Stud. Conserv. 2013, 31, 86–89. [Google Scholar] [CrossRef]
- Bharti, G. Ajanta caves: Deterioration and Conservation Problems (A Case Study). Int. J. Sci. Res. Publ. 2013, 3, 1–3. Available online: www.ijsrp.org (accessed on 11 November 2013).
- Umadi, R.; Dookie, S.; Rydell, J. The Monumental Mistake of Evicting Bats from Archaeological Sites—A Reflection from New Delhi. Heritage 2019, 2, 553–567. [Google Scholar] [CrossRef]
- Singh, M.; Arbad, B.R. Conservation and Restoration Research on 2nd BCE Murals of Ajanta. Int. J. Sci. Eng. Res. 2012, 3, 1–8. [Google Scholar]
- Brimblecombe, P.; Lankester, P. Long-term changes in climate and insect damage in historic houses. Stud. Conserv. 2013, 58, 13–22. [Google Scholar] [CrossRef]
- Barton, H.A. Introduction to cave microbiology: A review for the non-specialist. J. Cave Karst Stud. 2006, 68, 43–54. [Google Scholar]
- Deutsch, C.A.; Tewksbury, J.J.; Tigchelaar, M. Increase in crop losses to insect pests in a warming climate. Science 2018, 361, 916–919. [Google Scholar] [CrossRef] [Green Version]
- Gontareva, E.F.; Ansari, M.K.; Ruban, D.A.; Ahmad, M.; Singh, T.N. Geological dimension of the cultural heritage: A case example of the Ajanta caves (Maharashtra, India). Cuad. Lab. Xeol. Laxe 2015, 38, 67–78. [Google Scholar]
- Uno, T.; Shimazdu, Y. Thermal environment in Ajanta caves. In Proceedings of the Archi-Cultural Translations through the Silk Road, 2nd International Conference, Nishinomiya, Japan, 14–16 July 2012; pp. 191–196. [Google Scholar]
- Bankar, M.V.; Bhosle, N.P. Ethnobotanical Survey of Medicinal Plants in Ajanta Region (MS) India. J. Pharm. Biol. Sci. 2017, 12, 59–64. [Google Scholar] [CrossRef]
- Singh, M.; Arbad, B.R. Characterization of 4th–5th century A.D. earthen plaster support layers of Ajanta mural paintings. Constr. Build. Mater. 2015, 82, 142–154. [Google Scholar] [CrossRef]
- Hueck-Van der Plas, E.H. The microbiological deterioration of porous building materials. Int. Biodeterior. Bull. 1968, 4, 11–28. [Google Scholar]
- Lal, B.B. The Murals- their composition and technique. In The Murals: The Preservation of the Ajanta Murals; Ghosh, A., Ed.; Director-General of Archaeological Survey of India: New Delhi, India, 1966. [Google Scholar]
- Moiseff, A.; Pollack, G.S.; Hoy, R.R. Steering responses of flying crickets to sound and ultrasound: Mate attraction and predator avoidance. Proc. Natl. Acad. Sci. USA 1978, 75, 4052–4056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterflinger, K.; Piñar, G. Microbial deterioration of cultural heritage and works of art-Tilting at windmills. Appl. Microbiol. Biotechnol. 2013, 97, 9637–9646. [Google Scholar] [CrossRef]
- Singh, M.; Arbad, B.R. Architectural History and Painting Art at Ajanta: Some Salient Features. Arts 2013, 2, 134–150. [Google Scholar] [CrossRef]
- Singh, M.; Arbad, B.R. On Carrying capacity of Cave Murals of Ajanta Introduction. Int. J. Sci. Eng. Res. 2013, 4, 4–7. [Google Scholar]
- Perry, R.W. A review of factors affecting cave climates for hibernating bats in temperate North America. Environ. Rev. 2013, 21, 28–39. [Google Scholar] [CrossRef]
- Wang, S.; Tan, X.L.; Michaud, J.P.; Zhang, F.; Guo, X. Light intensity and wavelength influence development, reproduction and locomotor activity in the predatory flower bug Oriussauteri (Poppius) (Hemiptera: Anthocoridae). J. Biocontrol 2013, 58, 667–674. [Google Scholar] [CrossRef]
- Rieswijk, C. Measures to Reduce the Negative Effects of Light Pollution. Master’s Thesis, University of Utrecht, Utrecht, The Netherlands, 31 January 2014. [Google Scholar]
- Shimoda, M.; Honda, K.I. Insect reactions to light and its applications to pest management. Appl. Entomol. Zool. 2013, 48, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Stermer, R.A. Spectral Response of Certain Stored Product Insects to Electromagnetic Radiation. J. Econ. Entomol. 1959, 52, 888–892. [Google Scholar] [CrossRef]
- Sheppard, A.D.; Rund, S.S.C.; George, G.F.; Clark, E.; Acri, D.J.; Duffield, G.E. Light manipulation of mosquito behavior: Acute and sustained photic suppression of biting activity in the Anopheles gambiae malaria mosquito. Parasites Vectors 2017, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lum, P.T.M.; Flaherty, B.R. Regulating Oviposition by Plodiainterpunctella in the laboratory by light and dark conditions. J. Econ. Entomol. 1970, 63, 236–239. [Google Scholar] [CrossRef]
- Fullard, J.H.; Napoleone, N. Diel flight periodicity and the evolution of auditory defenses in the macrolepidoptera. Anim. Behav. 2001, 62, 349–368. [Google Scholar] [CrossRef]
- Lin, J.T. Identification of photoreceptor locations in the compound eye of Coccinella septempunctata Linnaeus (Coleoptera, Coccinellidae). J. Insect Physiol. 1993, 39, 555–562. [Google Scholar] [CrossRef]
- Mellor, H.E.; Bellingham, J.; Anderson, M. Spectral efficiency of the glasshouse whitefly Trialeurodes vaporariorum and Encarsia Formosa its hymenopteran parasitoid. Entomol. Exp. et Appl. 1997, 83, 11–20. [Google Scholar] [CrossRef]
- Murata, M.; Hariyama, T.; Yamahama, Y.; Toyama, M.; Ohta, I. Effects of the range of light wavelengths on the phototactic behavior and biological traits in the melon thrips, Thrips palmi Karny (Thysanoptera Thripidae). Ethol. Ecol. Evol. 2018, 30, 101–113. [Google Scholar] [CrossRef]
- Lal, B.B. Rock paintings of India- A study in conservation. In Conservation of Cultural Property in India; ICCROM: Rome, Italy, 1976. [Google Scholar]
- Varotsos, C.; Tzanis, C.; Cracknell, A. The enhanced deterioration of the cultural heritage monuments due to air pollution. Environ. Sci. Pollut. Res. 2009, 16, 590–592. [Google Scholar] [CrossRef]
- Ashfaq, M.; Khan, R.A.; Khan, M.A.; Rasheed, F.; Hafeez, S. Insect Orientation to Various Color Lights in the Agricultural Biomes of Faisalabad. Pak. Entomol. 2005, 27, 49–52. [Google Scholar]
Sl. No | Insect Species | Order | Phototaxis Behavior Positive (+) or Negative (−) | Wavelength (nm) | References |
---|---|---|---|---|---|
1 | Lasioderma serricorne | Coleoptera | + | 365–550 | [24] |
2 | Trogoderma granarium | Coleoptera | + | 520–540 | [24] |
3 | Coccinella septempunctata | Coleoptera | + | 360 | [28] |
4 | Oriu insidious | Hemiptera | + | 310–520 | [21] |
5 | Trialeurodes | Hemiptera | + | 340–520 | [29] |
6 | Sitotroga cereallela | Lepidoptera | + | 475–550 | [24] |
7 | Plodia interpuctella | Lepidoptera | + | 340–365 | [24] |
9 | Thrips palmi | Thysanoptera | + | 355–735 | [30] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.; Dhyani, S.; Kokate, P.; Chakraborty, S.; Nimsadkar, S. Deterioration of World Heritage Cave Monument of Ajanta, India: Insights to Important Biological Agents and Environment Friendly Solutions. Heritage 2019, 2, 2545-2554. https://doi.org/10.3390/heritage2030156
Singh S, Dhyani S, Kokate P, Chakraborty S, Nimsadkar S. Deterioration of World Heritage Cave Monument of Ajanta, India: Insights to Important Biological Agents and Environment Friendly Solutions. Heritage. 2019; 2(3):2545-2554. https://doi.org/10.3390/heritage2030156
Chicago/Turabian StyleSingh, Sunidhi, Shalini Dhyani, Piyush Kokate, Soumya Chakraborty, and Sagar Nimsadkar. 2019. "Deterioration of World Heritage Cave Monument of Ajanta, India: Insights to Important Biological Agents and Environment Friendly Solutions" Heritage 2, no. 3: 2545-2554. https://doi.org/10.3390/heritage2030156
APA StyleSingh, S., Dhyani, S., Kokate, P., Chakraborty, S., & Nimsadkar, S. (2019). Deterioration of World Heritage Cave Monument of Ajanta, India: Insights to Important Biological Agents and Environment Friendly Solutions. Heritage, 2(3), 2545-2554. https://doi.org/10.3390/heritage2030156