Estimating Path Choice Models through Floating Car Data
Abstract
:1. Introduction
2. Literature Review
3. Proposed Method
3.1. General Procedure
3.2. Route Choice Probabilities
- pn(In/Sn) is the conditioned probability to choose the subset In belonging to Sn;
- pn(k/In) is the conditioned probability to choose the route k belonging to In.
- Vk is the systematic utility;
- εk is the random residual.
4. Results
4.1. Study Areas and Available Data
4.1.1. Case Study 1: Veneto Region
4.1.2. Case Study 2: Lazio Region
4.2. Models
5. Discussion
6. Conclusions
- two sets of FCD have been analyzed in order to individuate the routes followed by users and, consequently, to obtain a reasonable choice set to use in model calibration;
- two classes of route choice models have been calibrated, for cars and freight vehicles.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eurostat. Database—Eurostat. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 5 April 2022).
- Istat. Statistiche Istat. Available online: http://dati.istat.it/ (accessed on 5 April 2022).
- European Commission. Transport in the European Union Current Trends and Issues, Mobility and Transport. Available online: https://transport.ec.europa.eu/index_en (accessed on 5 April 2022).
- Comi, A.; Polimeni, A.; Crisalli, U.; Nuzzolo, A. A methodology based on floating car data for the analysis of the potential rail-road freight demand. Int. J. Transp. Econ. 2021, XLVIII, 3–4. [Google Scholar] [CrossRef]
- Crisalli, U.; Comi, A.; Rosati, L. A Methodology for the Assessment of Rail-road Freight Transport Policies. Procedia Soc. Behav. Sci. 2013, 87, 292–305. [Google Scholar] [CrossRef]
- Comi, A.; Polimeni, A. Assessing the Potential of Short Sea Shipping and the Benefits in Terms of External Costs: Application to the Mediterranean Basin. Sustainability 2020, 12, 5383. [Google Scholar] [CrossRef]
- Cascetta, E. Transportation Systems Analysis: Models and Applications, 2nd ed.; Springer Optimization and its Applications; Springer: New York, NY, USA, 2009; ISBN 978-0-387-75856-5. [Google Scholar]
- Manski, C.F. The Structure of Random Utility Models. Theory Decis. 1977, 8, 229–254. [Google Scholar] [CrossRef]
- Prashker, J.N.; Bekhor, S. Route Choice Models Used in the Stochastic User Equilibrium Problem: A Review. Transp. Rev. 2004, 24, 437–463. [Google Scholar] [CrossRef]
- Prato, C.G. Route Choice Modeling: Past, Present and Future Research Directions. J. Choice Model. 2009, 2, 65–100. [Google Scholar] [CrossRef] [Green Version]
- Luce, R.D. Individual Choice Behavior: A Theoretical Analysis; Wiley: New York, NY, USA, 1959. [Google Scholar]
- Ben-Akiva, M.E.; Ramming, M.S.; Bekhor, S. Route Choice Models. In Human Behaviour and Traffic Networks; Schreckenberg, M., Selten, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 23–45. [Google Scholar]
- Cascetta, E.; Nuzzolo, A.; Russo, F.; Vitetta, A. A Modified Logit Route Choice Model Overcoming Path Overlapping Problems. Specification and Some Calibration Results for Interurban Networks. In Proceedings of the Thirteenth International Symposium on Transportation and Traffic Theory, Lyon, France, 24–26 July 1996; pp. 697–711. [Google Scholar]
- Ben-Akiva, M.; Bierlaire, M. Discrete Choice Methods and Their Applications to Short Term Travel Decisions. In Handbook of Transportation Science; Hall, R.W., Ed.; International Series in Operations Research & Management Science; Springer: Boston, MA, USA, 1999; pp. 5–33. ISBN 978-1-4615-5203-1. [Google Scholar]
- Prashker, J.N.; Bekhor, S. Investigation of Stochastic Network Loading Procedures. Transp. Res. Rec. 1998, 1645, 94–102. [Google Scholar] [CrossRef]
- Prashker, J.N.; Bekhor, S. Congestion, Stochastic, and Similarity Effects in Stochastic: User-Equilibrium Models. Transp. Res. Rec. 2000, 1733, 80–87. [Google Scholar] [CrossRef]
- Castillo, E.; Menéndez, J.M.; Jiménez, P.; Rivas, A. Closed Form Expressions for Choice Probabilities in the Weibull Case. Transp. Res. Part B Methodol. 2008, 42, 373–380. [Google Scholar] [CrossRef]
- Sharifi, M.S.; Chen, A.; Kitthamkesorn, S.; Song, Z. Link-Based Stochastic Loading Methods for Weibit Route Choice Model. Transp. Res. Rec. 2015, 2497, 84–94. [Google Scholar] [CrossRef]
- Sheffi, Y.; Powell, W. A Comparison of Stochastic and Deterministic Traffic Assignment over Congested Networks. Transp. Res. Part B Methodol. 1981, 15, 53–64. [Google Scholar] [CrossRef]
- Cantarella, G.; Binetti, M. Stochastic Assignment with Gammit Path Choice Models. In Transportation Planning; Applied Optimization; Patriksson, M., Labbé, M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; Volume 64, pp. 53–67. [Google Scholar]
- Teodorovic, D.; Kikuchi, S. Transportation Route Choice Model Using Fuzzy Inference Technique. In Proceedings of the First International Symposium on Uncertainty Modeling and Analysis, College Park, MD, USA, 3–5 December 1990; pp. 140–145. [Google Scholar]
- Henn, V. What Is the Meaning of Fuzzy Costs in Fuzzy Traffic Assignment Models? Transp. Res. Part C Emerg. Technol. 2005, 13, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Lotan, T.; Koutsopoulos, H.N. Models for Route Choice Behavior in the Presence of Information Using Concepts from Fuzzy Set Theory and Approximate Reasoning. Transportation 1993, 20, 129–155. [Google Scholar] [CrossRef]
- Henn, V.; Ottomanelli, M. Handling Uncertainty in Route Choice Models: From Probabilistic to Possibilistic Approaches. Eur. J. Oper. Res. 2006, 175, 1526–1538. [Google Scholar] [CrossRef]
- Quattrone, A.; Vitetta, A. Random and Fuzzy Utility Models for Road Route Choice. Transp. Res. Part E Logist. Transp. Rev. 2011, 47, 1126–1139. [Google Scholar] [CrossRef]
- Peeta, S.; Yu, J.W. A Hybrid Model for Driver Route Choice Incorporating En-Route Attributes and Real-Time Information Effects. Netw. Spat. Econ. 2005, 5, 21–40. [Google Scholar] [CrossRef]
- Arslan, T.; Khisty, J. A Rational Approach to Handling Fuzzy Perceptions in Route Choice. Eur. J. Oper. Res. 2006, 168, 571–583. [Google Scholar] [CrossRef]
- Ridwan, M. Fuzzy Preference Based Traffic Assignment Problem. Transp. Res. Part C Emerg. Technol. 2004, 12, 209–233. [Google Scholar] [CrossRef]
- Binetti, M.; De Mitri, M.; Ottomanelli, M. Analysis of Imprecise Perception in Route Choice Considering Fuzzy Costs. In Advanced Concepts, Methodologies and Technologies for Transportation and Logistics; Żak, J., Hadas, Y., Rossi, R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 452–467. [Google Scholar]
- De Maio, M.L.; Vitetta, A. Route Choice on Road Transport System: A Fuzzy Approach. J. Intell. Fuzzy Syst. 2015, 28, 2015–2027. [Google Scholar] [CrossRef]
- Hawas, Y.E. Development and Calibration of Route Choice Utility Models: Neuro-Fuzzy Approach. J. Transp. Eng. 2004, 130, 171–182. [Google Scholar] [CrossRef]
- Di Gangi, M.; Polimeni, A. Path choice models in stochastic assignment: Implementation and comparative analysis. Front. Future Transp. 2022. fothcoming. [Google Scholar]
- Vitetta, A. A Quantum Utility Model for Route Choice in Transport Systems. Travel Behav. Soc. 2016, 3, 29–37. [Google Scholar] [CrossRef]
- Di Gangi, M.; Vitetta, A. Quantum Utility and Random Utility Model for Path Choice Modelling: Specification and Aggregate Calibration from Traffic Counts. J. Choice Model. 2021, 40, 100290. [Google Scholar] [CrossRef]
- Di Gangi, M.; Vitetta, A. Specification and Aggregate Calibration of a Quantum Route Choice Model from Traffic Counts. In New Trends in Emerging Complex Real Life Problems; Daniele, P., Scrimali, L., Eds.; AIRO Springer Series; Springer International Publishing: Cham, Switzerland, 2018; pp. 227–235. ISBN 978-3-030-00473-6. [Google Scholar]
- Mahmassani, H.; Joseph, T.; Jou, R.C. Survey Approach for Study of Urban Commuter Choice Dynamics. Transp. Res. Rec. 1993, 1412, 80–89. [Google Scholar]
- Bierlaire, M.; Frejinger, E. Route Choice Modeling with Network-Free Data. Transp. Res. Part C Emerg. Technol. 2008, 16, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, G.; Musolino, G.; Vitetta, A. Freight Demand Distribution in a Suburban Area: Calibration of an Acquisition Model with Floating Car Data. J. Adv. Transp. 2022, 2022, 1535090. [Google Scholar] [CrossRef]
- Comi, A.; Russo, F. Emerging Information and Communications Technologies: The Challenges for the Dynamic Freight Management in City Logistics. Front. Future Transp. 2022. [Google Scholar] [CrossRef]
- Abu-Aisha, A.; Harfouche, R.; Katrakazas, C.; Antoniou, C. A New Methodology to Infer Travel Behavior Using Floating Car Data. In Proceedings of the 2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Heraklion, Greece, 16–17 June 2021; pp. 1–6. [Google Scholar]
- Schlaich, J. Analyzing Route Choice Behavior with Mobile Phone Trajectories. Transp. Res. Rec. 2010, 2157, 78–85. [Google Scholar] [CrossRef]
- Ta, N.; Zhao, Y.; Chai, Y. Built Environment, Peak Hours and Route Choice Efficiency: An Investigation of Commuting Efficiency Using GPS Data. J. Transp. Geogr. 2016, 57, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Arifin, Z.N.; Axhausen, K.W. Investigating Commute Mode and Route Choice Variabilities in Jakarta Using Multi-Day GPS Data. Int. J. Technol. 2014, 3, 45–55. [Google Scholar]
- Ramaekers, K.; Reumers, S.; Wets, G.; Cools, M. Modelling Route Choice Decisions of Car Travellers Using Combined GPS and Diary Data. Netw. Spat. Econ. 2013, 13, 351–372. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Wei, Y. Revealing Taxi Driver Route Choice Characteristics Based on GPS Data. In Proceedings of the 14th COTA International Conference of Transportation Professionals, Changsha, China, 4–7 July 2014; pp. 565–573. [Google Scholar] [CrossRef]
- Lue, G.; Miller, E.J. Estimating a Toronto Pedestrian Route Choice Model Using Smartphone GPS Data. Travel Behav. Soc. 2019, 14, 34–42. [Google Scholar] [CrossRef]
- Broach, J.; Dill, J.; Gliebe, J. Where Do Cyclists Ride? A Route Choice Model Developed with Revealed Preference GPS Data. Transp. Res. Part A Policy Pract. 2012, 46, 1730–1740. [Google Scholar] [CrossRef]
- Marchal, F.; Hackney, J.; Axhausen, K.W. Efficient Map Matching of Large Global Positioning System Data Sets: Tests on Speed-Monitoring Experiment in Zürich. Transp. Res. Rec. 2005, 1935, 93–100. [Google Scholar] [CrossRef]
- Bierlaire, M.; Chen, J.; Newman, J. A Probabilistic Map Matching Method for Smartphone GPS Data. Transp. Res. Part C Emerg. Technol. 2013, 26, 78–98. [Google Scholar] [CrossRef]
- Du, J.; Aultman-Hall, L. Increasing the Accuracy of Trip Rate Information from Passive Multi-Day GPS Travel Datasets: Automatic Trip End Identification Issues. Transp. Res. Part A Policy Pract. 2007, 41, 220–232. [Google Scholar] [CrossRef]
- Chung, E.H.; Shalaby, A. A Trip Reconstruction Tool for GPS-Based Personal Travel Surveys. Transp. Plan. Technol. 2005, 28, 381–401. [Google Scholar] [CrossRef]
- Bwambale, A.; Choudhury, C.; Hess, S. Modelling Long-Distance Route Choice Using Mobile Phone Call Detail Record Data: A Case Study of Senegal. Transp. A Transp. Sci. 2019, 15, 1543–1568. [Google Scholar] [CrossRef]
- Frejinger, E.; Bierlaire, M. Capturing Correlation with Subnetworks in Route Choice Models. Transp. Res. Part B Methodol. 2007, 41, 363–378. [Google Scholar] [CrossRef]
- Montini, L.; Antoniou, C.; Axhausen, K.W. Route and Mode Choice Models Using GPS Data. In Proceedings of the TRB 96th Annual Meeting Compendium of Papers, Transportation Research Board, Washington, DC, USA, 8–12 January 2017; p. 17. [Google Scholar]
- Dhakar, N.S.; Srinivasan, S. Route Choice Modeling Using GPS-Based Travel Surveys. Transp. Res. Rec. 2014, 2413, 65–73. [Google Scholar] [CrossRef]
- Duncan, L.C.; Watling, D.P.; Connors, R.D.; Rasmussen, T.K.; Nielsen, O.A. Path Size Logit Route Choice Models: Issues with Current Models, a New Internally Consistent Approach, and Parameter Estimation on a Large-Scale Network with GPS Data. Transp. Res. Part B Methodol. 2020, 135, 1–40. [Google Scholar] [CrossRef]
- Hess, S.; Quddus, M.; Rieser-Schüssler, N.; Daly, A. Developing Advanced Route Choice Models for Heavy Goods Vehicles Using GPS Data. Transp. Res. Part E Logist. Transp. Rev. 2015, 77, 29–44. [Google Scholar] [CrossRef] [Green Version]
- Sobhani, A.; Aliabadi, H.A.; Farooq, B. Metropolis-Hasting Based Expanded Path Size Logit Model for Cyclists’ Route Choice Using GPS Data. Int. J. Transp. Sci. Technol. 2019, 8, 161–175. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, Z.; Zheng, P.; Xu, W. Calibration of C-Logit-Based SUE Route Choice Model Using Mobile Phone Data. Information 2018, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Croce, A.I.; Musolino, G.; Rindone, C.; Vitetta, A. Route and Path Choices of Freight Vehicles: A Case Study with Floating Car Data. Sustainability 2020, 12, 8557. [Google Scholar] [CrossRef]
- Gentile, G. New Formulations of the Stochastic User Equilibrium with Logit Route Choice as an Extension of the Deterministic Model. Transp. Sci. 2018, 52, 1531–1547. [Google Scholar] [CrossRef]
- Nuzzolo, A.; Comi, A.; Polimeni, A. Urban Freight Vehicle Flows: An Analysis of Freight Delivery Patterns through Floating Car Data. Transp. Res. Procedia 2020, 47, 409–416. [Google Scholar] [CrossRef]
- Ruan, M.; Lin, J.; Kawamura, K. Modeling Urban Commercial Vehicle Daily Tour Chaining. Transp. Res. Part E Logist. Transp. Rev. 2012, 48, 1169–1184. [Google Scholar] [CrossRef]
- Comi, A.; Nuzzolo, A.; Polimeni, A. Aggregate Delivery Tour Modeling through AVM Data: Experimental Evidence for Light Goods Vehicles. Transp. Lett. 2021, 13, 201–208. [Google Scholar] [CrossRef]
- Stinson, M.; Pourabdollahi, Z.; Livshits, V.; Jeon, K.; Nippani, S.; Zhu, H. A Joint Model of Mode and Shipment Size Choice Using the First Generation of Commodity Flow Survey Public Use Microdata. Int. J. Transp. Sci. Technol. 2017, 6, 330–343. [Google Scholar] [CrossRef]
- Nuzzolo, A.; Crisalli, U.; Comi, A. An aggregate transport demand model for import and export flow simulation. Transport 2015, 30, 43–54. [Google Scholar] [CrossRef] [Green Version]
β1 [1/h] | β2 [1/€] | β3 [1/€] | ||
Heavy goods vehicles | Value | −0.744 | 2.133 | −0.031 |
t-Student | −3.51 | 3.70 | −1.41 | |
ρ2 = 0.26 %-of-right = 84% | ||||
Cars | Value | −12.84 | −1.345 | |
t-Student | −2.16 | −3.35 | ||
ρ2 = 0.39 %-of-right = 92% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comi, A.; Polimeni, A. Estimating Path Choice Models through Floating Car Data. Forecasting 2022, 4, 525-537. https://doi.org/10.3390/forecast4020029
Comi A, Polimeni A. Estimating Path Choice Models through Floating Car Data. Forecasting. 2022; 4(2):525-537. https://doi.org/10.3390/forecast4020029
Chicago/Turabian StyleComi, Antonio, and Antonio Polimeni. 2022. "Estimating Path Choice Models through Floating Car Data" Forecasting 4, no. 2: 525-537. https://doi.org/10.3390/forecast4020029
APA StyleComi, A., & Polimeni, A. (2022). Estimating Path Choice Models through Floating Car Data. Forecasting, 4(2), 525-537. https://doi.org/10.3390/forecast4020029