Machine-Learning-Based Functional Time Series Forecasting: Application to Age-Specific Mortality Rates
Abstract
:1. Introduction
2. Functional Time Series Forecasting Method
2.1. Dynamic Functional Principal Component Analysis
2.2. Multi-Step-Ahead Time Series Forecasting Strategies
2.3. Construction of Prediction Interval
3. Age-Specific Mortality Data Sets
4. Forecast Evaluation
4.1. Expanding-Window Approach
4.2. Measures of Forecast Accuracy
5. Mortality Data Analyses
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Organization for Economic Co-Operation and Development (OECD). Pensions at a Glance 2013: OECD and G20 Indicators; Working Paper; OECD Publishing: Paris, France, 2013. [Google Scholar] [CrossRef]
- Shang, H.L.; Haberman, S. Grouped multivariate and multilevel functional time series forecasting: An application to annuity pricing. Insur. Math. Econ. 2017, 75, 166–179. [Google Scholar] [CrossRef] [Green Version]
- Booth, H.; Tickle, L. Mortality modelling and forecasting: A review of methods. Ann. Actuar. Sci. 2008, 3, 3–43. [Google Scholar] [CrossRef]
- Shang, H.L.; Booth, H.; Hyndman, R.J. Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods. Demogr. Res. 2011, 25, 173–214. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.D.; Carter, L.R. Modeling and forecasting U.S. mortality. J. Am. Stat. Assoc. Appl. Case Stud. 1992, 87, 659–671. [Google Scholar] [CrossRef]
- Booth, H.; Hyndman, R.J.; Tickle, L.; Jong, P.D. Lee-Carter mortality forecasting: A multi-country comparison of variants and extension. Demogr. Res. 2006, 15, 289–310. [Google Scholar] [CrossRef]
- Booth, H.; Maindonald, J.; Smith, L. Applying Lee-Carter under conditions of variable mortality decline. Popul. Stud. 2002, 56, 325–336. [Google Scholar] [CrossRef]
- Renshaw, A.E.; Haberman, S. Lee-Carter mortality forecasting with age-specific enhancement. Insur. Math. Econ. 2003, 33, 255–272. [Google Scholar] [CrossRef]
- Cairns, A.J.G.; Blake, D.; Dowd, K. A two-factor model for stochastic mortality with parameter uncertainty: Theory and calibration. J. Risk Insur. 2006, 73, 687–718. [Google Scholar] [CrossRef]
- Renshaw, A.E.; Haberman, S. A cohort-based extension to the Lee-Carter model for mortality reduction factors. Insur. Math. Econ. 2006, 38, 556–570. [Google Scholar] [CrossRef]
- Cairns, A.J.G.; Blake, D.; Dowd, K.; Coughlan, G.D.; Epstein, D.; Ong, A.; Balevich, I. A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. N. Am. Actuar. J. 2009, 13, 1–35. [Google Scholar] [CrossRef]
- Plat, R. Stochastic portfolio specific mortality and the quantification of mortality basis risk. Insur. Math. Econ. 2009, 45, 123–132. [Google Scholar] [CrossRef]
- Hatzopoulos, P.; Haberman, S. A parameterized approach to modeling and forecasting mortality. Insur. Math. Econ. 2009, 44, 103–123. [Google Scholar] [CrossRef]
- Hunt, A.; Blake, D. A general procedure for constructing mortality models. N. Am. Actuar. J. 2014, 18, 116–138. [Google Scholar] [CrossRef]
- Wiśniowski, A.; Smith, P.W.F.; Bijak, J.; Raymer, J.; Foster, J.J. Bayesian population forecasting: Extending the Lee-Carter method. Demography 2015, 52, 1035–1059. [Google Scholar] [CrossRef] [Green Version]
- Deprez, P.; Shevchenko, P.V.; Wüthrich, M.V. Machine learning techniques for mortality modeling. Eur. Actuar. J. 2017, 7, 337–352. [Google Scholar] [CrossRef]
- Richman, R.; Wüthrich, M.V. A neural network extension of the Lee-Carter model to multiple populations. Ann. Actuar. Sci. 2021, 15, 346–366. [Google Scholar] [CrossRef]
- Perla, F.; Richman, R.; Scognamiglio, S.; Wüthrich, M.V. Time-series forecasting of mortality rates using deep learning. Scand. Actuar. J. 2021, 2021, 572–598. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Ullah, M.S. Robust forecasting of mortality and fertility rates: A functional data approach. Comput. Stat. Data Anal. 2007, 51, 4942–4956. [Google Scholar] [CrossRef] [Green Version]
- Hyndman, R.J.; Booth, H.; Yasmeen, F. Coherent mortality forecasting: The product-ratio method with functional time series models. Demography 2013, 50, 261–283. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Shang, H.L. Multivariate functional time series forecasting: Application to age-specific mortality rates. Risks 2017, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Shang, H.L.; Haberman, S. Model confidence sets and forecast combination: An application to age-specific mortality. Genus 2018, 74, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, H.L. Dynamic principal component regression: Application to age-specific mortality forecasting. ASTIN Bull. 2019, 49, 619–645. [Google Scholar] [CrossRef] [Green Version]
- Shang, H.L. Dynamic principal component regression for forecasting functional time series in a group structure. Scand. Actuar. J. 2020, 2020, 307–322. [Google Scholar] [CrossRef]
- Shang, H.L.; Yang, Y. Forecasting Australian subnational age-specific mortality rates. J. Popul. Res. 2021, 38, 1–24. [Google Scholar] [CrossRef]
- Sorjamaa, A.; Hao, J.; Reyhani, N.; Ji, Y.; Lendasse, A. Methodology for long-term prediction of time series. Neurocomputing 2007, 2007, 2861–2869. [Google Scholar] [CrossRef] [Green Version]
- Taieb, S.B.; Bontempi, G.; Atiya, A.F.; Sorjamaa, A. A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Syst. Appl. 2012, 39, 7067–7083. [Google Scholar] [CrossRef] [Green Version]
- Taieb, S.B.; Hyndman, R.J. A gradient boosting approach to the Kaggle load forecasting competition. Int. J. Forecast. 2014, 30, 382–394. [Google Scholar] [CrossRef] [Green Version]
- Ramsay, J.O.; Silverman, B.W. Functional Data Analysis; Springer: New York, NY, USA, 2006. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Chiou, J.M. Dynamical functional prediction and classification with application to traffic flow prediction. Ann. Appl. Stat. 2012, 6, 1588–1614. [Google Scholar] [CrossRef] [Green Version]
- Rice, G.; Shang, H.L. A plug-in bandwidth selection procedure for long-run covariance estimation with stationary functional time series. J. Time Ser. Anal. 2017, 38, 591–609. [Google Scholar] [CrossRef] [Green Version]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Hyndman, R.J.; Shang, H.L. Forecasting functional time series (with discussions). J. Korean Stat. Soc. 2009, 38, 199–221. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Shang, H.L. Rainbow plots, bagplots, and boxplots for functional data. J. Comput. Graph. Stat. 2010, 19, 29–45. [Google Scholar] [CrossRef] [Green Version]
- Gneiting, T.; Raftery, A.E. Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. Rev. Artic. 2007, 102, 359–378. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Shang, H.L. ftsa: Functional Time Series Analysis, R Package Version 6.1. 2021. Available online: https://cran.r-project.org/web/packages/ftsa/ftsa.pdf (accessed on 31 January 2022).
- Hyndman, R.J. Demography: Forecasting Mortality, Fertility, Migration and Population Data, R Package Version 1.22. 2019. Available online: https://cran.r-project.org/web/packages/demography/index.html (accessed on 31 January 2022).
- Shang, H.L.; Haberman, S. Forecasting multiple functional time series in a group structure: An application to mortality. ASTIN Bull. 2020, 50, 357–379. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beyaztas, U.; Shang, H. Machine-Learning-Based Functional Time Series Forecasting: Application to Age-Specific Mortality Rates. Forecasting 2022, 4, 394-408. https://doi.org/10.3390/forecast4010022
Beyaztas U, Shang H. Machine-Learning-Based Functional Time Series Forecasting: Application to Age-Specific Mortality Rates. Forecasting. 2022; 4(1):394-408. https://doi.org/10.3390/forecast4010022
Chicago/Turabian StyleBeyaztas, Ufuk, and Hanlin Shang. 2022. "Machine-Learning-Based Functional Time Series Forecasting: Application to Age-Specific Mortality Rates" Forecasting 4, no. 1: 394-408. https://doi.org/10.3390/forecast4010022
APA StyleBeyaztas, U., & Shang, H. (2022). Machine-Learning-Based Functional Time Series Forecasting: Application to Age-Specific Mortality Rates. Forecasting, 4(1), 394-408. https://doi.org/10.3390/forecast4010022