The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection
Abstract
:1. Introduction
2. Notations and Model
3. Estimating Procedures in the Presence of LOD
3.1. Complete-Case Analysis
3.2. Parametric Substitution Approaches
3.3. Parametric Multiple Imputation Approaches
3.4. Missing Indicator Approaches
4. Simulation
- M1
- removal of subjects with missing .
- M2
- substitution of the missing by or .
- M3
- substitution of the missing by or .
- M4
- substitution of the missing by or under normal assumptions.
- M5
- MI of the missing using the predictive mean matching (PMM) algorithm implemented in the R package mice [28].
- M6
- MI of the missing using conditional densities derived under normal assumptions as described in Section 3.3.
- M7
- the missing indicator approaches (MDI) model.
- M8
- the expanded MDI model.
- M9
- MI by PMM and fit with MDI model.
- M10
- MI by normal assumptions and fit with MDI model.
- M11
- MI by PMM and fit with expanded MDI model.
- M12
- MI by normal assumptions and fit with expanded MDI model.
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bernhardt, P.W.; Wang, H.J.; Zhang, D. Statistical methods for generalized linear models with covariates subject to detection limits. Stat. Biosci. 2015, 7, 68–89. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.; Nan, B. Semiparametric approach to regression with a covariate subject to a detection limit. Biometrika 2016, 103, 161–174. [Google Scholar] [CrossRef] [Green Version]
- Arnaout, R.; Lee, R.A.; Lee, G.R.; Callahan, C.; Yen, C.F.; Smith, K.P.; Arora, R.; Kirby, J.E. SARS-CoV2 testing: The limit of detection matters. bioRxiv 2020. [Google Scholar] [CrossRef]
- Lou, Y.; Chen, C.; Long, X.; Gu, J.; Xiao, M.; Wang, D.; Zhou, X.; Li, T.; Hong, Z.; Li, C.; et al. Detection and Quantification of Chimeric Antigen Receptor Transgene Copy Number by Droplet Digital PCR versus Real-Time PCR. J. Mol. Diagn. 2020, 22, 699–707. [Google Scholar] [CrossRef]
- Lin, D.Y.; Zeng, D.; Couper, D. A general framework for integrative analysis of incomplete multiomics data. Genet. Epidemiol. 2020, 44, 646–664. [Google Scholar] [CrossRef]
- Jones, M.P. Indicator and stratification methods for missing explanatory variables in multiple linear regression. J. Am. Stat. Assoc. 1996, 91, 222–230. [Google Scholar] [CrossRef]
- Nie, L.; Chu, H.; Liu, C.; Cole, S.R.; Vexler, A.; Schisterman, E.F. Linear regression with an independent variable subject to a detection limit. Epidemiology 2010, 21, S17. [Google Scholar] [CrossRef] [Green Version]
- Arunajadai, S.G.; Rauh, V.A. Handling covariates subject to limits of detection in regression. Environ. Ecol. Stat. 2012, 19, 369–391. [Google Scholar] [CrossRef]
- Schisterman, E.F.; Vexler, A.; Whitcomb, B.W.; Liu, A. The limitations due to exposure detection limits for regression models. Am. J. Epidemiol. 2006, 163, 374–383. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.M.; Abrams, S.; Aerts, M.; Maertens, K.; Hens, N. Measuring association among censored antibody titer data. Stat. Med. 2021, 40, 3740–3761. [Google Scholar] [CrossRef]
- Richardson, D.B.; Ciampi, A. Effects of exposure measurement error when an exposure variable is constrained by a lower limit. Am. J. Epidemiol. 2003, 157, 355–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, A.B.; Basilevsky, A.; Hum, D.P. Missing data: A review of the literature. In Handbook of Survey Research; Academic Press: Cambridge, MA, USA, 1983; pp. 415–494. [Google Scholar]
- Chow, W.K. A look at various estimators in logistic models in the presence of missing values. In Technical Report; Rand Corp: Santa Monica, CA, USA, 1979. [Google Scholar]
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences; Taylor & Francis: Oxfordshire, UK, 2013. [Google Scholar]
- Chiou, S.H.; Betensky, R.A.; Balasubramanian, R. The missing indicator approach for censored covariates subject to limit of detection in logistic regression models. Ann. Epidemiol. 2019, 38, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Villa, A.M.; Liu, D.; Ward, M.H.; Albert, P.S. New insights into modeling exposure measurements below the limit of detection. Environ. Epidemiol. 2021, 5, e116. [Google Scholar] [CrossRef] [PubMed]
- Blackhurst, M. Identifying Lead Service Lines with Field Tap Water Sampling. ACS ES T Water 2021, 1, 1983–1991. [Google Scholar] [CrossRef]
- Choi, J.; Dekkers, O.M.; le Cessie, S. A comparison of different methods to handle missing data in the context of propensity score analysis. Eur. J. Epidemiol. 2019, 34, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Sperrin, M.; Martin, G.P. Multiple imputation with missing indicators as proxies for unmeasured variables: Simulation study. BMC Med. Res. Methodol. 2020, 20, 185. [Google Scholar] [CrossRef]
- Lee, S.; Park, S.; Park, J. The proportional hazards regression with a censored covariate. Stat. Probab. Lett. 2003, 61, 309–319. [Google Scholar] [CrossRef]
- Dinse, G.E.; Jusko, T.A.; Ho, L.A.; Annam, K.; Graubard, B.I.; Hertz-Picciotto, I.; Miller, F.W.; Gillespie, B.W.; Weinberg, C.R. Accommodating measurements below a limit of detection: A novel application of Cox regression. Am. J. Epidemiol. 2014, 179, 1018–1024. [Google Scholar] [CrossRef] [Green Version]
- Bernhardt, P.W.; Wang, H.J.; Zhang, D. Flexible modeling of survival data with covariates subject to detection limits via multiple imputation. Comput. Stat. Data Anal. 2014, 69, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Therneau, T.M. A Package for Survival Analysis in R; R Package Version 3.2-13. Available online: https://CRAN.R-project.org/package=survival (accessed on 23 March 2022).
- Hughes, R.A.; Heron, J.; Sterne, J.A.; Tilling, K. Accounting for missing data in statistical analyses: Multiple imputation is not always the answer. Int. J. Epidemiol. 2019, 48, 1294–1304. [Google Scholar] [CrossRef]
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Baccarelli, A.; Pfeiffer, R.; Consonni, D.; Pesatori, A.C.; Bonzini, M.; Patterson Jr, D.G.; Bertazzi, P.A.; Landi, M.T. Handling of dioxin measurement data in the presence of non-detectable values: Overview of available methods and their application in the Seveso chloracne study. Chemosphere 2005, 60, 898–906. [Google Scholar] [CrossRef] [PubMed]
- Rubin, D.B. Statistical matching using file concatenation with adjusted weights and multiple imputations. J. Bus. Econ. Stat. 1986, 4, 87–94. [Google Scholar]
- van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Groenwold, R.H.; White, I.R.; Donders, A.R.T.; Carpenter, J.R.; Altman, D.G.; Moons, K.G. Missing covariate data in clinical research: When and when not to use the missing-indicator method for analysis. CMAJ 2012, 184, 1265–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuchkova, S.; Rotmistrov, A. A Comparison Of The Missing-Indicator Method And Complete Case Analysis In Case Of Categorical Data. In Higher School of Economics Research Paper No. WP BRP; Social Science Research Network: Rochester, NY, USA, 2019; Volume 87. [Google Scholar]
- Blake, H.A.; Leyrat, C.; Mansfield, K.E.; Tomlinson, L.A.; Carpenter, J.; Williamson, E.J. Estimating treatment effects with partially observed covariates using outcome regression with missing indicators. Biom. J. 2020, 62, 428–443. [Google Scholar] [CrossRef] [PubMed]
- Blake, H.A.; Leyrat, C.; Mansfield, K.E.; Seaman, S.; Tomlinson, L.A.; Carpenter, J.; Williamson, E.J. Propensity scores using missingness pattern information: A practical guide. Stat. Med. 2020, 39, 1641–1657. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.; Chiou, S.H.; Maye, J.E.; Atem, F.; Johnson, K.A.; Betensky, R.A. Threshold regression to accommodate a censored covariate. Biometrics 2018, 74, 1261–1270. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alyabs, N.; Chiou, S.H. The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection. Stats 2022, 5, 494-506. https://doi.org/10.3390/stats5020029
Alyabs N, Chiou SH. The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection. Stats. 2022; 5(2):494-506. https://doi.org/10.3390/stats5020029
Chicago/Turabian StyleAlyabs, Norah, and Sy Han Chiou. 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection" Stats 5, no. 2: 494-506. https://doi.org/10.3390/stats5020029
APA StyleAlyabs, N., & Chiou, S. H. (2022). The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection. Stats, 5(2), 494-506. https://doi.org/10.3390/stats5020029