
Citation: Alyabs, N.; Chiou, S.H. The

Missing Indicator Approach for

Accelerated Failure Time Model with

Covariates Subject to Limits of

Detection. Stats 2022, 5, 494–506.

https://doi.org/10.3390/

stats5020029

Academic Editor: Haiming Zhou

Received: 24 March 2022

Accepted: 7 May 2022

Published: 10 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

The Missing Indicator Approach for Accelerated Failure Time
Model with Covariates Subject to Limits of Detection
Norah Alyabs 1,2,* and Sy Han Chiou 1

1 Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA;
schiou@utdallas.edu

2 College of Sciences and Theoretical Studies, Saudi Electronic University, Riyadh 13316, Saudi Arabia
* Correspondence: norah.alyabs@utdallas.edu or n.alyabs@seu.edu.sa

Abstract: The limit of detection (LOD) is commonly encountered in observational studies when
one or more covariate values fall outside the measuring ranges. Although the complete-case (CC)
approach is widely employed in the presence of missing values, it could result in biased estimations
or even become inapplicable in small sample studies. On the other hand, approaches such as the
missing indicator (MDI) approach are attractive alternatives as they preserve sample sizes. This paper
compares the effectiveness of different alternatives to the CC approach under different LOD settings
with a survival outcome. These alternatives include substitution methods, multiple imputation (MI)
methods, MDI approaches, and MDI-embedded MI approaches. We found that the MDI approach
outperformed its competitors regarding bias and mean squared error in small sample sizes through
extensive simulation.
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1. Introduction

We consider situations where the covariates of interest are only observable within a
detection interval, referred to as the limit of detection (LOD) problem, e.g., [1,2]. The limit
of detection is commonly encountered in observational studies. For example, patients with
a positive real-time polymerase chain reaction (PCR) test result for coronavirus disease
usually indicate that the viral RNA load is greater than the lower LOD, which varies from
102 to 106 copies per milliliter [3]. On the other hand, a typical droplet digital PCR test
is restricted to an upper LOD or interval LOD [4]. Assays with high lower LODs or low
higher LODs will likely result in higher false-negative or false-positive rates, respectively [3].
Another example where incomplete data due to the LOD are inevitable is in multi-omics
data analysis, where quantitative omics measurements, such as metabolite levels and
protein expressions, are missing due to the failure of the measurement assay at levels
outside of its detection limits [5]. Proper adjustments are needed for valid data analysis
with missing values due to the LOD.

In the presence of LOD, one of the most straightforward approaches is the complete-case
(CC) analysis, which discards observations that fall outside the detection limits. Despite
the CC analysis yielding unbiased estimates for the regression coefficients, e.g., [1,2,6–8], it
could suffer from efficiency loss and become unstable when the sample size is small or
when there are multiple covariates subject to the LOD. An approach that does not require
discarding observations is to substitute the unobserved values with fixed values outside of
the detection limits [9]. Common substitution methods replace missing values with ad hoc
fix values or values derived from parametric assumptions, e.g., [7,8,10]. Such substitution
methods could result in considerable bias when the imputed value is very different from
the unobserved values or when the parametric assumptions are misspecified [1,2,7,10,11].
An approach to handle covariates subject to the LOD without discarding observations nor
imposing a parametric distributional assumption is the missing indicator (MDI) approach,
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e.g., [6,10,12,13]. The idea of the MDI approach is to create a binary variable that indicates
whether the covariate of interest is observed and include the indicator variable in the model
as an additional covariate [6]. Since the MDI approach uses all of the available observations,
estimating procedures that utilize the MDI approach is expected to yield a more efficient
estimator and be more computationally stable when the sample size is small or multiple
covariates are subject to LOD [14].

Approaches for LOD have been well studied in the literature. For example, the MDI
approach was justified theoretically and numerically and compared to the CC approach
in the context of linear regression [6] and logistic regression [15–17]. Extensions that
combine the MDI and the multiple imputation (MI) approaches have also been studied
under the generalized linear regression setting [18,19]. On a separate note, MDI-based and
MI-based copula models were used to estimate the association between two continuous
variables subjected to lower LOD [10]. Relatively fewer works compared approaches
for LOD with survival outcomes. Among those, most of the existing works focus on
proportional hazards models, e.g., [20,21]. Despite having a more favorable interpretability,
the approaches for LOD under the accelerated failure time (AFT) framework were less
explored until recently [22], where a seminonparametric distribution is recommended to
model the error term.

Recent studies on the MDI approach yield encouraging results when the required
conditions are met. However, most existing works are based on scenarios in which the
covariates of interest are subjected to a lower LOD. We extended the MDI approach’s appli-
cability to general scenarios in which covariates may be subjected to upper or interval LOD.
We applied the MDI approach to the context of survival analysis when the survival time is
subject to an independent right censoring. We assumed the survival time is related to the
covariates via a parametric accelerated failure time model. We compared the performance
of the MDI approach to that of existing methods at different types of LOD via large-scale
simulation studies. We compared the approaches by evaluating the absolute value of
the average biases (AAB) and mean squared error (MSE) for the regression parameter
of interest.

The rest of the paper is organized as follows. Notation and model formulation are
presented in Section 2. A brief description of the estimating procedures in the presence
of covariates subject to the LOD are provided in Section 3. Results of large-scale simula-
tion studies on the performance of the proposed estimators are reported in Section 4. A
discussion concludes Section 5.

2. Notations and Model

Let Ti be the time to an event of interest related to covariates via a parametric
AFT model,

log(Ti) = α + X∗>i β + Z>i γ + εi, i = 1, . . . , n, (1)

where X∗i is a p× 1 covariate vector whose elements are partially missing due to LOD, Zi is
a q× 1 fully observed covariate vector, εis are independent and identically distributed ran-
dom variables with a known distribution, and (α, β, γ) are the corresponding conformable
regression parameters. In the absence of the missing covariate X∗i , the regression coeffi-
cients can be estimated via maximizing the likelihood function. For example, when εi has a
normal distribution with mean zero and variance σ2, Ti follows a log-normal distribution
and the regression coefficients can be obtained by maximizing the likelihood

L(α, γ, σ; Θ) =
n

∏
i=1

[
1
σ

φ

(
log(Yi)− α− Z>i γ

σ

)]∆i
[

Φ

(
−

log(Yi)− α− Z>i γ

σ

)]1−∆i

,

where Yi = min(Ti, Ci) is the observed survival time, ∆i = I(Ti ≤ Ci) is the censoring indi-
cator, and Ci is the censoring time. The functions φ(·) and Φ(·) are the probability density
function and the cumulative distribution function of the standard normal distribution. The
maximum likelihood estimator (MLE) can be obtained by a standard numerical optimiza-
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tion algorithm, such as the Newton–Raphson method. The variance–covariance matrix
of the MLE can be estimated via the information matrix, and the asymptotic normality
of the MLE follows directly from likelihood theorems. The survreg() function from R’s
survival package [23] is available for fitting such a parametric AFT model.

When X∗i is subject to LOD, we assume X∗ij is observable only if Lj ≤ X∗ij ≤ Uj, where
Lj and Uj are the lower and upper bounds of the measurement range, respectively. When X∗ij
falls outside of [Lj, Uj], we observe Xij = max{Lj, min(X∗ij, Uj)}, j = 1, . . . , p. That is, we ob-
serve Xij = Lj if X∗ij < Lj and Xij = Uj if X∗ij > Uj so that the direction of missing is always

known. Accompanying Xi = (Xi1, . . . , Xip)
> is the missing indicator Vi = (Vi1, . . . , Vip)

>,
where Vij = I(Lj ≤ X∗ij ≤ Uj) and I(·) is the indicator function. The observed data then con-
sist of independent copies of Θ = {Yi, ∆i, Xi, Zi, Vi, L1, . . . , Lp, U1, . . . , Up}, i = 1, . . . , n. We
assume the censoring time Ci is conditionally independent of Ti given Xi and Zi. Through-
out the manuscript, we allow X∗ij to be subject to different types and levels of LOD and
discuss approaches that are applicable under these scenarios.

3. Estimating Procedures in the Presence of LOD
3.1. Complete-Case Analysis

The CC analysis is commonly used in the presence of missing covariates. The funda-
mental idea of applying the CC analysis is to discard missing observations outside of the
measurement range. Though the idea of the CC approach is straightforward, discarding ob-
servations from samples loses information and could potentially bias the estimation when
the missingness is dependent on exposure, e.g., [16,24], as in the LOD cases. Additional
convergence issues arise when the original sample size is small; an extreme case is where
the CC approach is inapplicable when all subjects have at least one missing variable. With
the missing indicator, the CC model can be expressed as a modification of (1) as follows:

Qi log(Ti) = Qiαc + QiX>i βc + QiZ>i γc, i = 1, . . . , n, (2)

where Qi = ∏j Vij = 1 if all of Xij, j = 1, . . . , p, are observed, and is zero otherwise. The
regression coefficients {αc, βc, γc} can be obtained by maximizing the modified likelihood,

n

∏
i=1

[
1
σ

φ

(
log(Yi)− αc − X>i βc − Z>i γc

σ

)]∆iQi
[

Φ

(
−

log(Yi)− αc − X>i βc − Z>i γc

σ

)](1−∆i)Qi

.

The CC method is the default approach in survreg() when data contain missing values.

3.2. Parametric Substitution Approaches

Instead of discarding missing observations, imputations methods replace the missing
values with their expectations. Most existing imputation methods replace missing values with
the predicted values from models trained by the observed data, resulting in imputed values
inside the observable region. Such imputation methods are not feasible for imputing missing
values due to LOD, where the missing values are outside of the observable region. For this
reason, it is more appropriate to consider imputation methods that replace missing values
subject to LOD with conditional expectations, E(X∗ij|X∗ij < Lj) or E(X∗ij|X∗ij > Uj), respectively,
depending on the direction of missing. These quantities can be estimated parametrically using
likelihood methods. For example, for a positive X∗ij subject to a lower LOD by Lj > 0, common

substitution values such as Lj/2 and Lj/
√

2 are derived by imposing a uniform distribution
or a triangular distribution to the data below Lj, respectively, e.g., [25,26]. On the other hand,
ad hoc substituting values such as 0 and Lj have also been considered but generally lead to
biased estimations of regression coefficient estimates [9].

Although the aforementioned substituting values have simple forms, they are derived
without using information from the observed X∗ij. An alternative approach is to derive the
substituting values by imposing a distribution assumption on the whole data. For example,
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if X∗ij is assumed to follow a normal distribution with mean µj and variance ς2
j , then (µj, ς2

j )

can be estimated by maximizing the likelihood

n

∏
i=1

[
1
ς

φ

(
xij − µj

ς j

)]Vij
[

Φ

(
Lj − µj

ς j

)]I(Vij=0,X∗ij<Li)
[

Φ

(
µj −Uj

ς j

)]I(Vij=0,X∗ij>Ui)

.

Let r(x) = φ(x)/Φ(x), and µ̂j and ς̂2
j be the MLEs of µj and ς2

j , respectively. Once µ̂j

and ς̂2
j are obtained, the conditional expectations

E(X∗ij|X∗ij < Lj) = µ̂j − ς̂ jr

(
Lj − µ̂j

ς̂ j

)
and E(X∗ij|X∗ij > Uj) = µ̂j + ς̂ jr

(
µ̂j −Uj

ς̂ j

)
,

can be used as the substituting values for those X∗ij censored by Lj and Uj, respectively. The
estimates of the regression coefficients in (1) under the parametric substitution methods are
then obtained by maximizing the likelihood in (1) with missing X∗ij replaced by the desired
substituting values.

3.3. Parametric Multiple Imputation Approaches

Single imputation methods such as those mentioned in Section 3.2 are less computation-
demanding compared to the MI [27] approaches, but the latter could be more efficient as
they better reflect uncertainty about imputed values. The general idea of MI methods is
to impute the missing X∗ij repeatedly with values generated from its predictive distribution
given the observed data. Once the M complete data sets are generated, the CC analysis is
then applied to each complete data set. The separate results are then pooled to provide the
final inference. Building onto the aforementioned substitution method under normal assump-
tions, we consider imputing the missing X∗ijs by random values generated from densities
f (x|X∗ij < Lj, µ̂j, σ̂2

j ) or f (x|X∗ij > Uj, µ̂j, σ̂2
j ). Under the normal assumption on X∗ij, f (x|·)

corresponds to truncated normal density functions and the random values are generated via
the inverse cumulative distribution function method. Let θ̂m = (α̂m, β̂m, γ̂m), m = 1, . . . , M,
be the coefficient estimate obtained by maximizing (1) at the mth imputation. Using the
Rubin’s rule [27], the pooled MI coefficient estimate and variance estimate are

θ̂MI =
1
M

M

∑
m=1

θ̂m and Var(θ̂MI) =
1
M

M

∑
m=1

Var(θ̂m) +

(
1 +

1
M

)
∑M

m=1(θ̂m − θ̂MI)
2

M− 1
,

where Var(θ̂n) is the variance estimate for θ̂m. The proposed MI method differs from the
existing MI methods, such as the ones implemented in mice [28], in that the proposed
method targets imputation values outside of the observed region. Our MI method can be
easily implemented and is flexible in that different parametric assumptions can be implied
for different covariates.

3.4. Missing Indicator Approaches

A useful alternative that does not require discarding or imputing missing values is
the MDI approach [6]. The idea of the MDI approach is to include the missing status as
additional covariates in the model so that all available information remains in the analysis
to maintain statistical power. Specifically, we consider the MDI-embedded AFT model

log(Ti) = αm + (Vi ◦ Xi)
>βm + Z>i γm + (1−Vi)

>θm + εi, i = 1, . . . , n, (3)

where u ◦ v is the element-wise product of vectors u and v and θm is an additional p× 1
regression coefficient. The MLE of (αm, βm, γm, θm) can be obtained by maximizing the
modified likelihood
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n

∏
i=1

[
1
σ

φ

{
ei(αm, βm, γm, θm)

σ

}]∆i
[

Φ
{
− ei(αm, βm, γm, θm)

σ

}]1−∆i

, (4)

where ei(αm, βm, γm, θm) = log(Yi) − αm − (Vi ◦ Xi)
>βm − Z>i γm − (1− Vi)

>θm. In the
context of linear regression, the least-squares estimator for βm was shown to be asymptoti-
cally unbiased for β in (1) if X∗i and Zi are uncorrelated [6]. The performance of the MDI
approach has also been studied under the generalized linear model, e.g., [15]. Since the
parametric AFT model has a log-linear form, the MLE obtained from maximizing (4) is
expected to be asymptotically unbiased in the absence of censoring. We also conjecture
that the asymptotic unbiasedness continue to hold in the presence of censoring. The MDI
approach is easy to implement and can be extended in several directions. For example, the
fully expanded MDI model extends (3) by including interaction terms between the missing
indicators and the observed covariates [15], resulting in the revised AFT model

log(Ti) = αm + (Vi ◦ Xi)
>βm + Z>i γm + (1−Vi)

>θm + [(1−Vi) ◦ Zi]
>φm + εi,

where φm is an additional q× 1 regression coefficient. On the other hand, the MDI approach
could be embedded into the MI approach, e.g., [18,19], resulting in the revised AFT model

log(Ti) = αm + X̃>i βm + Z>i γm + (1−Vi)
>θm + εi, i = 1, . . . , n,

where X̃i = (X̃i1, . . . , X̃ip)
>, X̃ij = X∗ij if Vij = 1, and X̃ij is the imputed value by MI if

Vij = 0. The MI coefficient estimates are then pooled by the Rubin’s rule. Those extensions
of the MDI approach are implemented and compared in simulation.

4. Simulation

A series of simulation studies were conducted to compare methods discussed in
Section 3. The failure time Ti was generated from the AFT model

log(Ti) = β0 + β1X∗i1 + β2X∗i2 + γ1Zi + ε, (5)

where X∗i1 was a Weibull random variable with shape 1 and scale 1/3, X∗i2 was a normal
random variable with mean 0 and variance 0.64, Zi was a standard normal random variable,
the regression parameter (β0, β1, β2, γ1) = (−2, 1,−1, 1), and the error term ε followed a
standard normal distribution. We considered scenarios where covariates are independent
and where the covariates are correlated. In the latter case, the Clayton copula with a
Spearman’s rho of 0.4 was used to specify the correlation between X1 and Z. The censoring
time was independently generated from a uniform distribution over [0, 1.25], yielding a
30% censoring rate on Ti. We considered three types of LOD: lower LOD, upper LOD, and
interval LOD, where X∗ij is observable in [Lj, ∞], [−∞, Uj], and [Lj, Uj], respectively. The
detection limits, Lj and Uj, were quantiles of X∗ij chosen to achieve three levels of missing
proportions, 20%, 40%, and 60%, for light missing, moderate missing, and heavy missing,
respectively. For interval LOD, we additionally assumed Lj to be the (100 ·mj/4)th quantile
of X∗ij, where mj is the missing proportion for X∗ij, j = 1, 2.

For each configuration, we compared the performance of the following approaches to
handling missing data.

Complete-case analysis
M1 removal of subjects with missing X∗ij.

Substitution methods:
M2 substitution of the missing X∗ij by Lj/2 or 2Uj.

M3 substitution of the missing X∗ij by Lj/
√

2 or
√

2Uj.

M4 substitution of the missing X∗ij by E(X∗ij|X∗ij < Lj) or E(X∗ij|X∗ij > Uj) under
normal assumptions.
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Multiple imputation approaches:
M5 MI of the missing X∗ij using the predictive mean matching (PMM) algorithm

implemented in the R package mice [28].
M6 MI of the missing X∗ij using conditional densities derived under normal assump-

tions as described in Section 3.3.

Missing indicator approaches:
M7 the missing indicator approaches (MDI) model.
M8 the expanded MDI model.

Missing-indicator-embedded multiple imputation approaches (MI + MDI):
M9 MI by PMM and fit with MDI model.
M10 MI by normal assumptions and fit with MDI model.
M11 MI by PMM and fit with expanded MDI model.
M12 MI by normal assumptions and fit with expanded MDI model.

The simulation was repeated 10,000 times with sample sizes n = 50, 100, and 500. The
MLE of the regression parameter of the AFT model (5) was obtained using the survreg()
function in the survival package [23] in R [29] under the normal error assumption,
e.g., with argument dist = "lognormal". For the scenarios considered, the CC approach
(M1) sometimes failed to converge as the resultant sample size was too small or empty after
removing missing observations. The convergence rate for the CC approach under different
scenarios presented in the Supplementary Material shows fewer converged replications when
the sample size is small (e.g., n = 50) or the missing proportions are high (e.g., m1 = 60% or
m2 = 60%). For this reason, the simulation results were based on the converged replications
for the CC approach. For MI methods, the number of imputations M was set to 5.

Tables 1 and 2 summarize the AAB and MSE associated with the MLEs of β1, β2, and
γ1 in the AFT model (5) when the covariates are independent and the censored covariates
are subjected to a lower LOD. The MDI approaches (M7 and M8) have among the smallest
AAB and MSE across the considered scenarios. Moreover, the MDI approaches outperform
the CC approach (M1) when the sample size is small or the missing proportions (m1 and
m2) are high. Overall, the AAB and the MSE generally increase with increasing missing
proportions. On the other hand, whereas MSE generally decreases with an increasing sample
size, the trend of AAB varies by model. Among the substitution methods, both M2 and M3
yield smaller AAB for β1 than for β2; this is because the substituting values under these
approaches are close to E(X∗i1|X∗i1 < L1). On the contrary, M4 yields smaller AAB for β2 when
the parametric assumption for X2 is satisfied. The same trend can be seen in the parametric
MI approach, M6. In particular, all of the imputation approaches, including the PMM-based
MI approach (M5), did not improve the performance when compared with the MDI approach.
Combining MDI models in MI approaches does not necessarily improve the performance of
MDI or MI approaches if they would be applied solely. In situations where the combined
approach shows improved AAB over the MI approaches, there are trade-offs in MSE. Of those,
the expanded MDI-embedded MI approach (M11 and M12) yields smaller AAB than the
MDI-embedded MI approach (M9 and M10), but they result in a comparable MSE. In addition,
biases associated with the MLEs of β1 and β2 summarized in Figure 1 provide insight into the
direction of bias. Among those that yield a substantial bias, approaches with uniform and
triangular assumptions, i.e., M2 and M3, tend to overestimate β1 and underestimate β2. In
contrast, approaches with normal assumptions, i.e., M4, M6, and M10, tend to underestimate
β1 and correctly estimate β2. The pattern is reversed in the case of an upper or interval LOD.
These observations suggest that the direction of bias is imposed by the underlying parametric
assumption and highlight the robustness of the MDI approach. Similar trends are observed
in scenarios where the covariates are subjected to the upper or interval LOD and where
n = 500, as presented in the Supplementary Materials. On the other hand, the results when
the covariates are correlated are presented in Tables 3 and 4 and Figure 2. For all approaches,
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correlation generally results in higher AAB and MSE but does not alter the direction of bias.
This observation is consistent with the literature, where the asymptotic bias of the regression
coefficient associated with the censored covariate is shown to increase with an increasing
magnitude of the correlation [6]. However, these theoretical results do not apply directly to a
small sample setting, as the MDI approaches remain at least as good as, if not better than, the
CC approach.

(a) (b)

(c) (d)

(e) (f)

Figure 1. Violin plots showing the empirical distribution of the bias associated with MLE of β1 (red)
and β2 (green) when covariates are independent and X∗ij, j = 1, 2 is subjected to lower LOD. (a) Bias
under n = 50 and m1 = m2 = 20%. (b) Bias under n = 100 and m1 = m2 = 20%. (c) Bias under
n = 50 and m1 = m2 = 40%. (d) Bias under n = 100 and m1 = m2 = 40%. (e) Bias under n = 50 and
m1 = m2 = 60%. (f) Bias under n = 100 and m1 = m2 = 60%.
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Table 1. Summary of the AAB (×1000) when covariates are independent and X∗ij, j = 1, 2 is subjected
to lower LOD. M1 is complete-case analysis; M2–M4 are the different variants of the substitution
methods; M5–M6 are the different variants of the MI methods; M7–M8 are the different variants of
the MDI methods; M9–M12 are the different variants of MDI-embedded MI (MI + MDI) methods.
AAB less than 0.1 is highlighted in gray, with darker tones corresponding to smaller AAB.

Substitution MI MDI MI + MDI

n M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

m1 = m2 = 20%
50 β1 20 7 7 149 54 193 6 11 98 68 34 36

β2 32 219 198 9 55 15 19 20 20 34 18 24
γ1 2 10 10 5 15 5 4 2 33 1 41 2

m1 = m2 = 40%
β1 80 1 43 248 43 345 39 42 136 302 11 73
β2 28 393 373 9 23 73 20 20 92 241 34 24
γ1 5 11 11 8 23 6 8 10 41 6 65 1

m1 = m2 = 60%
β1 40 38 142 298 74 489 39 46 226 671 29 77
β2 213 540 584 12 102 190 5 2 213 592 44 5
γ1 191 12 12 12 61 9 14 45 103 5 155 0

m1 = m2 = 20%
100 β1 27 28 38 124 16 169 31 28 52 60 15 41

β2 15 200 180 6 51 30 12 11 51 52 10 8
γ1 7 5 5 7 3 7 8 4 39 17 45 14

m1 = m2 = 40%
β1 43 36 76 219 53 328 35 30 133 316 36 43
β2 4 365 347 8 30 100 9 6 115 271 2 2
γ1 7 4 4 5 1 7 5 7 58 17 79 10

m1 = m2 = 60%
β1 70 65 161 282 68 477 69 63 165 670 83 88
β2 35 504 545 9 66 220 5 8 226 629 3 11
γ1 22 3 3 5 8 8 4 18 78 15 118 8

Table 2. Summary of the MSE (×1000) when covariates are independent and X∗ij, j = 1, 2 is subjected
to lower LOD. M1 is complete-case analysis; M2–M4 are the different variants of the substitution
methods; M5–M6 are the different variants of the MI methods; M7–M8 are the different variants of
the MDI methods; M9–M12 are the different variants of MDI-embedded MI (MI + MDI) methods.
MSEs less than 0.1 are highlighted in gray, with darker tones corresponding to smaller MSEs.

Substitution MI MDI MI + MDI

n M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

m1 = m2 = 20%
50 β1 530 366 372 288 500 280 476 485 640 447 764 562

β2 126 131 115 52 111 53 98 101 131 102 142 111
γ1 45 33 33 31 38 32 32 43 139 69 148 73

m1 = m2 = 40%
β1 1376 393 433 285 768 299 699 736 795 451 1099 793
β2 457 276 254 58 231 61 186 194 230 189 255 206
γ1 107 35 34 33 46 34 35 82 249 56 269 58

m1 = m2 = 60%
β1 >9999 445 585 305 1585 368 1418 1559 1616 675 2526 1547
β2 >9999 470 538 78 531 99 412 445 493 459 550 448
γ1 >9999 36 36 36 60 36 38 193 513 52 579 50
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Table 2. Cont.

Substitution MI MDI MI + MDI

n M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

m1 = m2 = 20%
100 β1 239 164 165 128 239 132 204 207 272 188 314 234

β2 56 79 68 24 52 25 45 45 58 45 59 46
γ1 21 14 14 14 16 14 14 20 57 27 60 27

m1 = m2 = 40%
β1 501 172 192 142 360 179 300 301 352 243 452 318
β2 147 188 172 28 99 37 76 76 107 126 102 77
γ1 42 14 14 14 19 14 14 34 93 22 100 21

m1 = m2 = 60%
β1 2069 202 273 168 663 279 608 617 566 533 850 646
β2 749 330 379 35 251 78 161 166 262 439 224 169
γ1 142 15 15 15 23 16 15 66 191 20 209 18

Table 3. Summary of the AAB (×1000) when covariates are correlated and X∗ij, j = 1, 2 is subjected
to lower LOD. M1 is complete case analysis; M2–M4 are the different variants of the substitution
methods; M5–M6 are the different variants of the MI methods; M7–M8 are the different variants of
the MDI methods; M9–M12 are the different variants of MDI-embedded MI (MI + MDI) methods.
AAB less than 0.1 is highlighted in gray, with darker tones corresponding to smaller AAB.

Substitution MI MDI MI + MDI

n M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

m1 = m2 = 20%
50 β1 52 29 41 127 7 188 42 43 16 52 14 74

β2 27 188 169 11 23 36 14 16 54 74 18 22
γ1 5 8 5 17 31 8 2 9 65 2 57 5

m1 = m2 = 40%
β1 114 29 77 244 0 366 102 111 47 300 64 139
β2 26 354 336 16 15 102 11 13 128 270 1 16
γ1 4 1 3 7 44 13 7 7 90 13 72 22

m1 = m2 = 60%
β1 39 70 189 296 17 511 235 390 112 640 109 283
β2 105 497 540 17 129 223 30 39 249 612 6 40
γ1 25 15 18 10 25 37 18 46 105 31 106 27

m1 = m2 = 20%
100 β1 21 22 31 133 32 193 24 21 71 83 21 37

β2 6 186 167 15 32 41 9 9 68 66 30 8
γ1 4 0 2 12 44 3 5 6 57 0 41 11

m1 = m2 = 40%
β1 20 25 65 234 75 359 25 23 138 338 9 40
β2 7 353 335 20 13 109 5 2 115 273 5 5
γ1 13 8 11 1 66 17 11 17 68 14 52 20

m1 = m2 = 60%
β1 168 44 143 307 33 515 86 84 142 668 43 103
β2 23 493 534 18 51 223 9 11 191 605 26 9
γ1 25 23 27 19 72 48 26 30 76 39 77 35
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Violin plots showing the empirical distribution of the bias associated with MLE of β1 (red)
and β2 (green) when covariates are correlated and X∗ij, j = 1, 2 is subjected to lower LOD. (a) Bias
under n = 50 and m1 = m2 = 20%. (b) Bias under n = 100 and m1 = m2 = 20%. (c) Bias under
n = 50 and m1 = m2 = 40%. (d) Bias under n = 100 and m1 = m2 = 40%. (e) Bias under n = 50 and
m1 = m2 = 60%. (f) Bias under n = 100 and m1 = m2 = 60%.
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Table 4. Summary of the MSE (×1000) when covariates are correlated and X∗ij, j = 1, 2 is subjected
to lower LOD. M1 is complete case analysis; M2–M4 are the different variants of the substitution
methods; M5–M6 are the different variants of the MI methods; M7–M8 are the different variants of
the MDI methods; M9–M12 are the different variants of MDI-embedded MI (MI + MDI) methods.
MSEs less than 0.1 are highlighted in gray, with darker tones corresponding to smaller MSEs.

Substitution MI MDI MI + MDI

n M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

m1 = m2 = 20%
50 β1 613 395 397 273 565 264 519 543 642 432 798 598

β2 128 118 104 52 112 53 96 99 132 103 134 108
γ1 61 35 34 34 40 33 36 57 143 66 170 69

m1 = m2 = 40%
β1 1742 424 482 272 962 294 901 933 864 455 1203 997
β2 405 244 225 60 231 68 188 191 250 206 263 204
γ1 155 35 35 34 46 34 38 107 236 52 275 54

m1 = m2 = 60%
β1 >9999 556 789 316 2760 384 3314 >9999 2158 625 3449 3606
β2 >9999 420 481 80 520 116 456 488 552 491 638 489
γ1 1539 37 37 36 53 37 38 255 513 49 601 48

m1 = m2 = 20%
100 β1 274 192 195 159 237 160 225 226 265 195 305 245

β2 55 68 58 21 48 23 42 43 64 45 63 44
γ1 29 16 16 16 19 16 17 28 66 28 70 29

m1 = m2 = 40%
β1 550 200 221 166 359 212 320 327 340 263 429 347
β2 143 173 157 23 100 35 75 77 108 127 105 79
γ1 60 16 16 16 24 16 16 45 102 21 112 21

m1 = m2 = 60%
β1 2590 226 302 195 688 323 632 647 552 525 797 668
β2 694 312 362 31 231 76 157 159 237 411 216 162
γ1 207 17 17 16 29 18 17 89 188 22 203 20

5. Discussion

The MDI approach minimizes the loss of information and does not require making
parametric assumptions, making it an attractive alternative to some of the more widely
used approaches for handling missing covariates. Moreover, the MDI approaches show
clear advantages over the competitors and are recommended in models with survival
outcomes, as in our simulation. Our simulation shows no apparent difference between
the MDI and the expanded MDI models, but embedding the expanded MDI model in
MI could result in a higher bias reduction. The advantage of the MDI approach is more
substantial when there is a large proportion of missing covariates or when the distributional
assumption is violated in the MI approach. The MDI approaches continue to perform well
under additional simulation settings, including scenarios where the survival time is not
subject to censoring and scenarios under a Cox proportional hazard model setting.

It has been noted that, even though the MDI approach generally results in a reduced
bias, it might have minimal improvements when the missing mechanism is associated with
the outcome [30] or when the missing covariate is categorical [31]. Those phenomena were
verified in the context of generalized linear regression, and it would be worth investigating
those scenarios in our setting with survival outcomes. Moreover, extending the assessments
of the validity of the MDI approach, e.g., [32,33], to our settings will be of interest.

We only considered scenarios where the direction of missing is known in this paper.
Nevertheless, the MDI approach is still applicable when the direction of missing is unknown.
The aforementioned parametric imputation methods can easily be extended to the case
when the direction of missing is unknown. For example, suppose that X∗ij follows a normal
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distribution with mean µj and variance ς2
j as in Section 3.3. The MLEs of µj and ς2

j can be
obtained by maximizing the likelihood

n

∏
i=1

[
1
ς

φ

(
xij − µj

ς j

)]Vij
[

Φ

(
Lj − µj

ς j

)
+ Φ

(
µj −Uj

ς j

)]1−Vij

.

The corresponding MI procedure can then be carried out with missing X∗ijs imputed by
values generated from density p f (x|X∗ij < Lj, µ̂j, σ̂2

j ) + (1− p) f (x|X∗ij > Uj, µ̂j, σ̂2
j ), where

p = 1 with probability Φ[(Lj − µ̂j)/ς̂ j]/{Φ[(Lj − µ̂j)/ς̂ j] + Φ[(µ̂j −Uj)/ς̂ j]} and p = 0
otherwise. Due to its simplicity, the MDI method can also be easily embedded into other
methods to improve the overall performance. An immediate example is the MI+MDI
approaches considered in Section 4. Another extension is to embed the MDI approach in
threshold regression approaches [34] to accommodate multiple censored covariates.
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